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Abstract: Liquid crystal elastomer (LCE) fiber with a fixed end in an inhomogeneous temperature
field is capable of self-oscillating because of coupling between heat transfer and deformation, and the
dynamics of a translating LCE fiber in an inhomogeneous temperature field are worth investigating
to widen its applications. In this paper, we propose a theoretic constitutive model and the asymptotic
relationship of a LCE fiber translating in a linear temperature field and investigate the dynamical
behaviors of a corresponding fiber-mass system. In the three cases of the frame at rest, uniform,
and accelerating translation, the fiber-mass system can still self-oscillate, which is determined by
the combination of the heat-transfer characteristic time, the temperature gradient, and the thermal
expansion coefficient. The self-oscillation is maintained by the energy input from the ambient linear
temperature field to compensate for damping dissipation. Meanwhile, the amplitude and frequency
of the self-oscillation are not affected by the translating frame for the three cases. Compared with
the cases of the frame at rest, the translating frame can change the equilibrium position of the self-
oscillation. The results are expected to provide some useful recommendations for the design and
motion control in the fields of micro-robots, energy harvesters, and clinical surgical scenarios.

Keywords: liquid crystal elastomer; fiber; translating; heat-driven; dynamics; constitutive model

1. Introduction

The phenomenon of continuous periodic motion of a system under the influence
of a steady external environment stimulation is known as self-excited motion [1–4]. To
compensate for the energy dissipation consumed by the damping, the periodic motion of
self-excited oscillation is maintained by collecting the energy directly from the external
environment [5–7]. This property minimizes the complexity of self-excited oscillation sys-
tems, making complicated control system design easier to implement and allowing for high
load capacity [8,9]. Self-excited motion possesses the autonomous characteristics [10–14],
which aids in the study of non-equilibrium thermodynamic processes [15,16], and has
several applications in the fields of active machinery [17–20], mobile robots [21,22], energy
acquisition [23–26], and motors [27].

Self-oscillation phenomena have been reported based on several active materials, such
as liquid crystal elastomer (LCE) [28–31], polyelectrolyte gel [32,33], and hydrogel [34,35].
When subjected to external excitations such as light [6], chemicals [34], electric field [36],
magnetic field [37], and heat [38], these responsive materials can change their own shape
and locomote. Based on various kinds of stimuli-responsive materials, a large number
of modes of self-excited motion have also been constructed, such as rolling [12,18,20,39],
bending [40–43], vibration [44,45], stretching and shrinking [46,47], torsion [7,48], swing-
ing [49,50], swimming [51], buckling [29,52–54], jumping [45,55,56], rotation [57], ever-
sion or inversion [38,58], and even self-excited synchronized motion of some coupled
liquid crystalline oscillators [59]. The mechanisms of these self-excited motions are ex-
plained by the nonlinear feedback mechanisms of the systems, such as the self-shadowing
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mechanism [18,60], the coupling mechanism among liquid volatilization and membrane
deformation [16], and a combination of finite deformation and chemical reaction [32,33].

One of the prevalent external stimuli for triggering the actuation of responsive materi-
als is heat [61–63]. In a steady-temperature field, self-excited oscillation of a liquid crystal
elastomer fiber with a hanging weight was recently reported [46]. In the experiment, the
anisotropic rod-like liquid crystalline molecules and stretchy long-chain polymers are used
to synthesize and prepare the LCE material. The LCE microfiber is hung from a rigid flat
plate in the temperature field and the mass is placed on the bottom free end of the fiber.
The fiber system was discovered to be able to vibrate continuously in an inhomogeneous
temperature field. Theoretical research demonstrates that the self-oscillation is caused by
the combination between the vibration of the fiber and heat exchange [47]. When the fiber
vibrates, it can collect heat energy from the environment, to compensate for the damping
dissipation and keep its own motion [47]. This complex, thermodynamic-coupled nonlinear
dynamics problem is further studied in [61]. It abstractly presented a fiber engine module
and established its constitutive model and asymptotic relationship, which is similar to
the Kelvin-Voigt viscoelastic model consisting of a dashpot and a spring. It is found that
the one-end-fixed fiber in a linear temperature field has three kinds of behaviors: damper,
spring, and engine.

Although considerable research has been carried out on the self-oscillation motion of
a thermal-responsive LCE fiber with one end fixed [46,47,61], the dynamics of a translating
thermally responsive fiber with a moving frame need to be explored for further possible
applications. To investigate the dynamical behaviors of the LCE fiber translating in a
temperature field varying linearly with position, we propose a theoretic constitutive model
of LCE fiber and its asymptotic relationship and study the fiber-mass system in three typical
cases of the frame, at rest, uniform, and accelerating translation. The objective of this work
is to establish a constitutive model, obtain its dynamical behavior, and provide some useful
recommendations for the design and motion control of micro-robots of various structures
and applications.

The article is organized as follows. In Section 2, a constitutive model of translating
LCE fiber in a linear temperature field is proposed, and its asymptotic relationship is
derived for the small characteristic time. In Section 3, we establish a thermally responsive
fiber-mass system with zero characteristic time, and formulate its corresponding governing
equations based on the constitutive model, to investigate its dynamical behaviors for three
typical cases of the frame, at rest, uniform, and accelerating translation. In Section 4, by
considering the small characteristic time, we study the dynamics of the fiber-mass system
through the proposed constitutive model and asymptotic relationship. In Section 5, we
further investigate the dynamics of the fiber-mass system with a finite characteristic time
based on the constitutive model. Finally, a short summary is provided in Section 6.

2. Constitutive Model of a Translating Thermally Responsive Fiber

In this section, we propose a constitutive model of a LCE fiber connected with a
translating frame in a linear temperature field. For a small characteristic time, its asymptotic
relationship is further derived. When the displacements and velocities of the two ends of
the LCE fiber are given, the tensional force in the fiber can be calculated.

2.1. Constitutive Model

The model for a LCE fiber connected with a translating frame in a linear temperature
field is shown in Figure 1. We define a reference state of the fiber, which represents the
free-standing fiber without thermal expansion at reference temperature Tr, and the original
length is denoted by L. w1(t),

.
w1(t), w2(t), and

.
w2(t) are the displacements and velocities

of the translating frame and the free end of the LCE fiber, which is regarded as a current
state. To analyze the deformation of a translating LCE fiber, a Lagrangian coordinate
system, X, is fixed in the reference configuration of the fiber, and the Eulerian coordinate
system, x, is also built in the current state to describe the spatial coordinate. The origins of
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coordinates are fixed at the O point. Meanwhile, x = x(X, t) is the instantaneous position of
a material at point X of the translating fiber, and u(X, t) is its instantaneous displacement.
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Figure 1. Schematic model for a LCE fiber connected with a translating frame in a linear temperature
field. (a) Reference state; (b) Current state. The original length of the fiber is L. w1(t),

.
w1(t), w2(t),

and
.

w2(t) are the displacements and velocities of the translating frame and the free end of the LCE
fiber. When the displacements and velocities of the two ends of the LCE fiber are given, the tension
force of the fiber can be determined.

LCE material can generally generate a rapid deformation response and recoverable
deformation, which is synthesized and prepared by liquid crystalline molecules and flexible
long-chain polymers [46]. When a tensile force is applied onto the LCE fiber, it is stretched
in the monodomain state. When heated up in the temperature field, the stretched fiber
contracts along the axial direction because of the transition from the monodomain phase
to the isotropic phase. When cooled down, the fiber can completely relax to its original
length. Hence, the nematic–isotropic phase transition and the reorientation of the liquid
crystal mesogens occur during the contraction and expansion of the fiber. For simplicity,
we assume that the tension force, FL(t), of the translating fiber is proportional to its elastic
strain, as:

FL(t) = KL[ε(X, t)− εT(X, t)], (1)

in which K is the spring constant. ε(X, t) is the one-dimensional strain, namely,

ε(X, t) =
∂u(X, t)

∂X
. (2)

εT(X, t) is the thermally induced strain, and we also assume that it is proportional to
the temperature difference, T(X, t), in the fiber between the actual temperature of the fiber
and the reference temperature Tr, i.e.,

εT(X, t) = αT(X, t), (3)

with α being the thermal expansion coefficient. α < 0 indicates thermal contraction, while
α > 0 indicates thermal expansion.

Considering that in the fiber, FL(t) is uniform and constant, Equation (1) is integrated
on both sides from 0 to X. By combining Equations (2) and (3), Equation (1) can further be
expressed as:

FL(t)X = KL
[

u(X, t)− w1(t)− α
∫ X

0
T(X, t)dX

]
. (4)



Polymers 2022, 14, 3185 4 of 18

When X = L, the tensional force at the end of the translating fiber can be reduced as:

FL(t) = K
[

w2(t)− w1(t)− α
∫ L

0
T(X, t)dX

]
. (5)

It is noted that the temperature field in the translating fiber varies with time and is
inhomogeneous. Hence, there exits heat exchange between the translating fiber and the
surrounding environment, and we denote the temperature distribution by Text(x). We also
assume that the thin fiber’s radius, R, is significantly smaller than its length, L. As a result,
the temperature field in the translating fiber is essentially homogeneous over its radius.
The temperature field, T = T(X, t), in the fiber is governed by:

τ
dT(X, t)

dt
= Text(x)− T(X, t), (6)

where τ is the characteristic time, which is related to the heat capacity of the fiber per unit
length, ρc, and the heat exchange coefficient, h. The characteristic time can be expressed by
τ = ρc/h. The actual external temperature field is generally complex and nonlinear and
may be produced by a light on–off or hot plate. In this study, for simplicity, we assume
that the external steady temperature field is linear with the spatial coordinate, and the
distribution of the linear temperature field can be described by:

Text(x) = βx, (7)

where β is the temperature gradient. It is noted that the origin of spatial coordinates is fixed
at O point (x = 0), and the temperature difference, Text(0), is zero, i.e., the actual external
temperature is equal to the reference temperature Tr. It should be noted that the spatial
coordinate of the material point, x(X, t), can be calculated by:

x(X, t) = u(X, t) + X, (8)

where u(X, t) can be derived from Equations (4) and (5) as:

u(X, t) =
X
L

[
w2(t)− w1(t)− α

∫ L

0
T(X, t)dX

]
+ α

∫ X

0
T(X, t)dX + w1(t). (9)

By introducing the following dimensionless parameters: t = t/
√

L/g, FL = FL/mg,
u = u/L, w1 = w1/L, w2 = w2/L, X = X/L, x = x/L, τ = τ/

√
L/g, K = KL/mg,

α = αTL, T = T/TL, Text = Text/TL, and β = βL/TL (TL is the environmental temperature
at x = L), we combine Equations (5)–(9) and derive the formulas as follows:

τ
dT
(
X, t
)

dt
= β

{
X
[

w2
(
t
)
− w1

(
t
)
− α

∫ 1

0
T
(
X, t
)
dX
]
+ α

∫ X

0
T
(
X, t
)
dX + w1

(
t
)
+ X

}
− T

(
X, t
)
, (10)

FL
(
t
)
= K

[
w2
(
t
)
− w1

(
t
)
− α

∫ 1

0
T
(
X, t
)
dX
]

. (11)

Equation (10) shows that the temperature field inside the fiber can be determined for
a given displacement of the two ends of the fiber. Then, the tension force of the fiber can
be calculated using Equation (11). In this study, the constitutive model of the translating
fiber is considered Equations (10) and (11). The four dimensionless parameters, such
as the spring constant K, the temperature gradient β, the characteristic time τ, and the
thermal expansion coefficient α, are important influencing factors of the constitutive model.
Conveniently, the constitutive model can be used to analyze the translating fiber-mass
system in the following sections.
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2.2. Asymptotic Relationship

In the following, we develop the asymptotic relationship of the translating LCE fiber
with a small characteristic time, τ, which means the situations of a high heat transfer
coefficient or a low heat capacity. For τ << 1, the temperature field can be written as:

T
(
X, t
)
= T(0)(X, t

)
+ τT(1)(X, t

)
+ O

(
τ2
)

. (12)

Then, we insert Equation (12) into Equation (10) and compare the coefficients of the
same order of τ. The temperature field can be further given as:

βXw2
(
t
)
− αβX

∫ 1

0
T(0)(X, t

)
dX + αβ

∫ X

0
T(0)(X, t

)
dX− βXw1

(
t
)
+ βw1

(
t
)
+ βX− T(0)(X, t

)
= 0, (13)

dT(0)(X, t
)

dt
= −αβX

∫ 1

0
T(1)(X, t

)
dX + αβ

∫ X

0
T(1)(X, t

)
dX− T(1)(X, t

)
. (14)

By analytically solving Equation (13), we can obtain the zero-order part of the temper-
ature field as follows:

T(0)(X, t
)
=

β
[
w2
(
t
)
− w1

(
t
)
+ 1
]

eαβ − 1

(
eαβX − 1

)
+ βw1

(
t
)
. (15)

Then, we combine Equation (14) with Equation (15), and the first-order part of the
temperature field can be calculated as:

T(1)(X, t
)
=

β
( .

w2
(
t
)
− .

w1
(
t
))

eαβ − 1


(

eαβX − 1
)(

1− eαβ + αβeαβ
)

eαβ − 1
− αβXeαβX

. (16)

Therefore, the temperature field can be solved as:

T
(
X, t
)
=

β[w2(t)−w1(t)+1]
eαβ−1

(
eαβX − 1

)
+ βw1

(
t
)

+τ
β
( .

w2(t)−
.

w1(t)
)

eαβ−1

[ (
eαβX−1

)(
1−eαβ+αβeαβ

)
eαβ−1

− αβXeαβX

]
(17)

We combine Equation (11) with Equation (17) and obtain the tensional force, FL(t), of
the translating fiber as:

FL
(
t
)
= Kαβτ

1− eαβ + αβeαβ(
eαβ − 1

)2

[ .
w2
(
t
)
− .

w1
(
t
)]

+
Kαβ

eαβ − 1

[
w2
(
t
)
− eαβw1

(
t
)]

+ K

(
αβ

eαβ − 1
− 1

)
. (18)

Equation (18) is the asymptotic relationship of the constitutive model of translating
LCE fiber described by Equations (10) and (11). Next, we further establish a dynamic
fiber-mass system model and utilize the constitutive model to obtain the corresponding
governing equation. For three typical cases of the frame at rest, uniform, and accelerating
translation, the asymptotic relationship is utilized in Section 3 to study the dynamical
behaviors of the fiber-mass system with zero characteristic time, and both the constitu-
tive model and approximate solution are used in Section 4 to study the case of a small
characteristic time. The constitutive model is also utilized to investigate the case of finite
characteristic time, τ, in Section 5. The typical values of material properties and geometric
parameters from accessible experiments are listed in Table 1 [46,47], and the dimensionless
parameters are estimated in Table 2.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

a0 first damping coefficient 0 ∼ 5× 10−5 kg/s
a1 second damping coefficient 0 ∼ 5× 10−5 kg/s

am
accelerated velocity of the

translational frame 0 ∼ 1× 10−4 m/s2

C uniform velocity of the
translational frame 0~0.01 m/s

g gravitational acceleration 10 m/s2

h heat exchange coefficient 10~20 W/m2/◦C
K spring constant 1~3 N/m
L original length of fiber 0.1 m
m mass of the mass block 0.001 kg
R radius of the thin LCE fiber 1× 10−5 m
α thermal expansion coefficient −0.003~−0.005 1/◦C
β temperature gradient −0.002~0.002 ◦C/m

ρc
heat capacity of the fiber per

unit length 0.01 J/m2/◦C

Table 2. Dimensionless parameters.

Parameter K α β a0 a1 C am

Value 10~30 −0.3~−0.5 −2~2 0~0.5 0~0.5 0~0.01 0~0.001

3. Dynamics of the Fiber-Mass System with Zero Characteristic Time

In this section, we establish a thermally responsive fiber-mass system with zero
characteristic time, and formulate its corresponding governing equations based on the
constitutive model, to investigate its dynamical behaviors for three typical cases of the
frame at rest, uniform, and accelerating translation. By obtaining the dynamical behavior
of this translating thermally responsive fiber-mass system, we can provide some useful
recommendations for the design and motion control of micro-robots of various structures
and applications.

3.1. Governing Equation

We first study the dynamics of the fiber-mass system translating in a temperature
field varying linearly with position for zero characteristic time, τ = 0, which is sketched in
Figure 2. One end of the LCE fiber is attached to a mass block with a mass of m, and the
other end is connected to a frame that ignores gravity. Therefore, the governing equation
for the dynamical model of the mass block can be built as below:

m
..
w2(t)−mg + FL(t) + Fd

( .
w2
)
= 0, (19)

where Fd
( .
w2
)

is the damping force of the mass block due to the damping, mg is the gravi-
tational force of the mass block, and FL(t) is the tensional force from the fiber. We assume
that the damping force is linearly proportional to its velocity, which can be written as:

Fd
( .
w2
)
= a0

.
w2. (20)

where a0 is the damping coefficient. By defining Fd = Fd/mg and a0 = a0
m

√
L
g , and

submitting Equations (18) and (20) into Equation (19), the dimensionless form of the
governing equation can be obtained as:

..
w2(t) + a0

.
w2
(
t
)
+

Kαβ

eαβ − 1
w2
(
t
)
− Kαβeαβ

eαβ − 1
w1
(
t
)
+ K

(
αβ

eαβ − 1
− 1

)
− 1 = 0. (21)
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It can be seen from Equation (22) that the motion of the fiber-mass system is deter-
mined by the displacement, velocity, and acceleration of the mass connected to the end of 
the LCE fiber, as well as the displacement of the frame attached to the other end of the 
LCE fiber. With the help of Matlab software, we adopt the four-order Runge–Kutta 
method described in detail in [47,61] to solve the differential Equation (22) with variable 

Figure 2. Schematic of the fiber-mass system translating in a linear temperature field. (a) Reference
state; (b) Current state. A mass block with a mass of m is attached to the free end of the LCE fiber
connected to a frame that ignores gravity. The motion of the fiber-mass system is determined by the
displacement, velocity, and acceleration of the mass connected to the end of the LCE fiber, as well as
the displacement of the frame attached to the other end of the LCE fiber.

By defining ŵ2
(
t
)
= w2

(
t
)
+ eαβ−1

Kαβ

[
K
(

αβ

eαβ−1
− 1
)
− 1
]
, the governing equation can

be simplified as:

.̂.
w2
(
t
)
+ a0

.̂
w2
(
t
)
+

Kαβ

eαβ − 1
ŵ2
(
t
)
=

Kαβeαβ

eαβ − 1
w1
(
t
)
. (22)

It can be seen from Equation (22) that the motion of the fiber-mass system is determined
by the displacement, velocity, and acceleration of the mass connected to the end of the LCE
fiber, as well as the displacement of the frame attached to the other end of the LCE fiber.
With the help of Matlab software, we adopt the four-order Runge–Kutta method described
in detail in [47,61] to solve the differential Equation (22) with variable coefficients. In this
paper, we investigate the vibration behavior of the mass block for three typical cases of the
frame at rest, uniform, and accelerating translation.

3.2. Static Frame with
.

w1
(
t
)
= 0

In the case of a static frame with
.

w1
(
t
)
= 0, Equation (22) can be simplified as:

.̂.
w2
(
t
)
+ a0

.̂
w2
(
t
)
+

Kαβ

eαβ − 1
ŵ2
(
t
)
= 0. (23)

Equation (23) is the standard form of the damped free vibration differential equation.
By solving the equation, the solution can be analytically derived as:

ŵ2
(
t
)
= Ae−δt sin

(√
ω2

0 − δ2t + θ

)
, (24)

where the natural angular frequency ω0 =

√
Kαβ

eαβ−1
, δ = a0

2 , and the parameters

A =

√
x2

0 +
(v0+δx0)

2

ω2
0−δ2 and θ = arctan

(
x0
√

ω2
0−δ2

v0+δx0

)
are related to the system’s initial condi-

tion setting, especially, ŵ2(0) = x0 and
.̂

w2(0) = v0.
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The variation of the displacement of the mass with time for the initial condition of the
system setting as w2(0) = 0 and

.
w2(0) = 0 is plotted in Figure 3 by using Equation (24).

We set the system variables K = 20, α = −0.3, β = 1, and a0 = 0.01 for the numerical
calculations. It is demonstrated that the mass block vibrates up and down when subjected
to its own gravity and the tensional force of the fiber. Due to the damping consuming the
energy, the amplitude of the vibration reduces dramatically over time and rapidly decays
to zero.
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Figure 3. Variation of the displacement of the mass block with time during the damped free vibration
of the system in a linear temperature field with a static frame. The vibration of the mass block stops
in a static condition due to the damping consuming the energy.

3.3. Uniform Translational Frame with
.

w1
(
t
)
= C

We further investigate the dynamics of a system consisting of a fiber and a mass in
the case of a uniform translational frame with

.
w1
(
t
)
= C. By setting the dimensionless

parameters K = 10, α = −0.38, β = 1, and a0 = 0.45, Figure 4 plots the time histories of
the displacements and phase trajectories in the cases of

.
w1
(
t
)
= 0 and

.
w1
(
t
)
= 0.01. For

.
w1
(
t
)
= 0, due to the dissipation of damping, the vibration amplitude of the mass block

gradually decreases and the mass finally rests at the static mode, as shown in Figure 4a,b.
For

.
w1
(
t
)
= 0.01, the fiber-mass system also translates with the translating frame, as shown

in Figure 4c,d. However, the mass first vibrates and finally stops vibration due to the
damping dissipation. It is noted that the equilibrium position of the mass and the length
of the LCE fiber vary with time because of the variation of contraction of the LCE fiber
translating in the steady linear temperature field.

3.4. Uniformly Accelerated Translational Frame with
.

w1
(
t
)
= amt

Then, we analyze the dynamics of the fiber-mass system in the case of the frame
at uniformly accelerated translation with

.
w1
(
t
)
= amt. By setting the dimensionless pa-

rameters K = 10, α = −0.38, β = 1, a0 = 0.45, and the accelerated velocity am = 0.0001,
Figure 5 plots the time history and phase trajectory of the displacement of the fiber-mass
system with uniformly accelerated translational frame in a linear temperature field. A
similar conclusion is found in the cases of the frame at uniform translation as that shown in
Figure 4c,d. The mass first vibrates and finally stops vibration due to the damping dissi-
pation. Meanwhile, whether the frame is at uniform translation or uniformly accelerated
translation, the equilibrium position of the mass and the length of the LCE fiber vary with
time because of the variation of contraction of the LCE fiber translating in the steady linear
temperature field.
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4. Dynamics of the Fiber-Mass System with Small Characteristic Time

In this section, we utilize the constitutive model and asymptotic relationship to study
the dynamical behaviors of the translating fiber-mass system with small characteristic time
τ << 1 in the typical cases of the frame at rest, uniform, and accelerating translation.

4.1. Governing Equations

The translating fiber-mass system in a temperature field varying linearly with position
with a small characteristic time is represented by Figure 2. It is noted that the system only
has two modes for linear damping: converging or diverging [47]. In contrast, the system
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can continuously vibrate without diverging in practice. [47]. Only the nonlinear damping
would be considered in the current study, and it is assumed that:

Fd
( .
w
)
=
(
a0 + a1

∣∣ .
w
∣∣) .

w, (25)

where a0 and a1 are the corresponding damping coefficients. With the definition of the

dimensionless parameters Fd = Fd/mg, a0 = a0
m

√
L
g , and a1 = a1L

m , we substitute the
Equations (18) and (25) into Equation (19), and the governing equation for the mass block
can be rewritten as:

..
w2(t)− 1 + Kαβτ

1−eαβ+αβeαβ(
eαβ−1

)2

[ .
w2
(
t
)
− .

w1
(
t
)]

+ Kαβ

eαβ−1
w2
(
t
)
− Kαβeαβ

eαβ−1
w1
(
t
)
+ K

(
αβ

eαβ−1
− 1
)

+
(

a0 + a1

∣∣∣ .
w2
(
t
)∣∣∣) .

w2
(
t
)
= 0

(26)

By introducing ŵ2
(
t
)
= w2

(
t
)
+ eαβ−1

Kαβ

[
K
(

αβ

eαβ−1
− 1
)
− 1− Kαβτ

1−eαβ+αβeαβ(
eαβ−1

)2
.

w1
(
t
)]

,

Equation (26) can be rewritten as:

.̂.
w2(t) +

a0 + Kαβτ
1− eαβ + αβeαβ(

eαβ − 1
)2

 .̂
w2
(
t
)
+ a1

∣∣∣ .̂
w2
(
t
)∣∣∣ .̂

w2
(
t
)
+

Kαβ

eαβ − 1
ŵ2
(
t
)
− Kαβeαβ

eαβ − 1
w1
(
t
)
= 0. (27)

It can be seen from Equation (27) that when the damping coefficient is positive, it dis-
sipates energy during movement. When the damping coefficient is negative, it contributes
to the motion of the system because energy input from the environment compensates for
the damping dissipation [47,61]. Next, we study the dynamics of the fiber-mass system
for three typical cases of the frame at rest, uniform, and accelerating translation through
the proposed constitutive model and asymptotic relationship. In order to obtain the exact
solution, the constitutive model of Equations (11) and (12) is coupled with the governing
Equation (19), and then solved by utilizing the fourth-order Runge–Kutta method. In the
calculation of the asymptotic solution, the asymptotic relationship of Equation (27) can be
numerically calculated to obtain the relationship between the displacement and time of the
mass block and to analyze the translating fiber-mass system.

4.2. Static Frame with
.

w1
(
t
)
= 0

Figure 6 plots the variation of the displacement of mass with time in the fiber-mass
system with a static frame in a linear temperature field. In the numerical calculations, we
set the parameters K = 20, τ = 0.01, α = −0.3, β = 1, a0 = 0.01, a1 = 0.05, and the initial
state of w2(0) = 0 and

.
w2(0) = 0. The blue solid line in Figure 6 shows the asymptotic

solution with Equation (27) of the dynamics of the system. Meanwhile, the red dotted line
in Figure 6 represents its exact solution of the translating thermally responsive fiber-mass
system, which is solved by combining the constitutive model with Equations (11) and (12)
and the dynamics governing Equation (19). The comparation between the asymptotic
results and the exact numerical results is also presented. It is shown that the two solutions
are consistent with each other. As shown in Figure 6, the amplitude of the displacement
of the mass block is steady and the mass vibrates periodically in the linear temperature
field. This is because during the vibration, the LCE fiber contracts in high temperature
and relaxes in low temperature, which leads to continuous stretch or shrink of the LCE
fiber and eventually achieves a periodic self-sustained oscillation. During the process of
the self-oscillation, the fiber can absorb heat energy from its surrounding environment to
sustain its motion due to the compensation for damping dissipation.
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Figure 6. Variation of the displacement of the mass block with time during the self-sustained oscilla-
tion in a linear temperature field with a static frame. The LCE fiber in the linear temperature field can
stretch or shorten continuously and eventually develop into a periodic self-sustained oscillation.

Here, we take temperature gradient β = 1 to describe the linear temperature field
distribution, which indicates that the temperature increases from top to bottom. During
the movement of the fiber, the LCE fiber contracts in high temperature and relaxes in low
temperature, which leads to energy absorption and compensates for damping dissipation.
Consequently, the mass block is in the periodic self-excited motion. To further analyze
the influence of the temperature gradient, we set the temperature gradient β = −1, which
indicates that the temperature decreases from top to bottom. The relationship of the
displacement and the time of the mass in the fiber-mass system is shown in Figure 7. It
is found that the mass block no longer moves periodically and becomes stationary due to
energy dissipation, which is much different from the self-oscillation for the case of β = 1.
The different behaviors of the dynamic fiber can be understood by the proposed theoretical
model. For the case of β = −1, from Equation (27), the damping coefficient is positive, and
the fiber engine module represents the damper that dissipates energy during movement
and leads to a stationary mass. For the case of β = 1, from Equation (27), the damping
coefficient is negative, and the fiber engine module can absorb energy from the environment
and compensate for the damping dissipation like an engine during the movement, which
contributes to the self-oscillation of the system.
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4.3. Uniformly Translational Frame with
.

w1
(
t
)
= C

Next, we consider the dynamics of the translating LCE fiber in the case of a uniform
translational frame with

.
w1
(
t
)
= C. By setting the dimensionless parameters K = 20,

τ = 0.01, α = −0.3, β = 1, a0 = 0.02, a1 = 0.05, and the initial state of w2(0) = 0 and
.

w2(0) = 0, Figure 8 depicts time histories and phase trajectories of the displacement in the
cases of

.
w1
(
t
)
= 0 and

.
w1
(
t
)
= 0.005. Figure 8a,b show that the LCE fiber-mass system

first vibrates and eventually develops into periodic self-sustained oscillation for the frame
at rest. For the translating frame with

.
w1
(
t
)
= 0.005, the fiber-mass system also translates

with the frame, as shown in Figure 8c,d. However, the mass block can also self-oscillate



Polymers 2022, 14, 3185 12 of 18

due to the energy compensation between energy input and damping dissipation. Similarly,
the equilibrium position of the mass and the length of the LCE fiber also vary with time
because of the variation of contraction of the LCE fiber translating in the steady linear
temperature field.
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Figure 8. (a) Time history of the displacement and (b) phase trajectory of the self-oscillation in the
case of the frame at rest in a linear temperature field. (c) Time history of the displacement and
(d) phase trajectory of the self-oscillation in the case of the frame at uniform translation in a linear
temperature field. The equilibrium position of mass and the length of fiber depend on the translation
of the frame.

4.4. Uniformly Accelerated Translational Frame with
.

w1
(
t
)
= amt

Next, we investigate the case of the translating LCE fiber-mass system in the case
of a frame at uniformly accelerated translation with

.
w1
(
t
)
= amt. By setting the dimen-

sionless parameters K = 20, τ = 0.01, α = −0.3, β = 1, a0 = 0.02, a1 = 0.05, and the
accelerated velocity am = 0.0001, the time histories of displacement and phase trajectories
of self-oscillation are plotted in Figure 9. For the case of the frame at uniformly accelerated
translation, the mass block can also self-oscillate periodically due to the energy compensa-
tion between energy input and damping dissipation. Meanwhile, the equilibrium position
of the mass and the length of the LCE fiber both vary with time. This is because the LCE
fiber translates in the steady linear temperature field and its contraction varies with time.
These results are similar to the cases of the frame at uniform translation, as shown in
Figure 8c,d.
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5. Dynamics of the Fiber-Mass System with Finite Characteristic Time

The asymptotic relationship of Equation (27) and the constitutive model of
Equations (11) and (12) have been used to analyze the dynamical behaviors of the translat-
ing LCE fiber-mass system with zero τ or small τ in a temperature field varying linearly
with position in the above study. In this section, by considering the different finite charac-
teristic times, we study the dynamical behaviors of the translating LCE fiber-mass system
in the typical cases of the frame at rest, uniform, and accelerating translation. Since the
characteristic time τ is not small, the asymptotic relationship is no longer applicable, and
we will only adopt the constitutive model for the numerical calculations.

Figures 10–12 plot the time histories of the displacement of mass in the fiber-mass
system translating in a linear temperature field for different finite characteristic times τ.
Three typical cases of the frame at rest, uniform, and accelerating translation are considered
in the numerical calculations, by setting the dimensionless parameters K = 20, α = −0.3,
β = 1, and a0 = 0.02, as well as a1 = 0.05. For the fiber-mass system with a static frame in a
linear temperature field, when the characteristic time τ increases, the equilibrium position
and frequency are unaffected, while the amplitude first increases and then decreases
obviously, as shown in Figure 10. Hence, there exists an optimal characteristic time for the
maximum of amplitude, which can provide convenience and guidance for engineering
applications. Similarly, the conclusion can also be found in the case of the frame at uniform
translation, as shown in Figure 11, and the case of the frame at uniform accelerating
translation, as shown in Figure 12.
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temperature field for (a) finite characteristic times τ = 0.1, (b) τ = 0.3, and (c) τ = 0.7. The amplitude
first increases and then decreases obviously with the increasing characteristic time.
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translational frame in a linear temperature field for (a) finite characteristic times τ = 0.1, (b) τ = 0.3,
and (c) τ = 0.7. The amplitude first increases and then decreases obviously with the increasing
characteristic time.
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Figure 12. Time histories of the displacement of the fiber-mass system with uniformly accelerated
translational frame in a linear temperature field for (a) finite characteristic times τ = 0.1, (b) τ = 0.3,
and (c) τ = 0.7. The amplitude first increases and then decreases obviously with the increasing
characteristic time.
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For a given finite characteristic time, by comparing Figure 10a, Figure 11a, and
Figure 12a of the three cases of the frame at rest, uniform, and accelerating translation, the
fiber-mass system remains in the period of self-excited oscillation by the energy input from
the ambient linear temperature field to compensate for damping dissipation. Meanwhile,
for the frame at uniform translation or uniformly accelerated translation, the equilibrium
position of the mass varies with time, which is different from the case of the frame at rest.
A similar conclusion is also found in Figure 10b, Figure 11b, and Figures 12b and 10c,
Figure 11c, and Figure 12c for different finite characteristic times. These results mean that
the finite characteristic time and the frame translation do not affect the self-oscillation.

6. Conclusions

Self-oscillation of a LCE fiber translating in an inhomogeneous temperature field
is worth investigating to widen its applications. In this paper, we proposed a theoretic
constitutive model and the asymptotic relationship of a LCE fiber translating in a tem-
perature field varying linearly with position and investigated the dynamical behaviors
of a fiber-mass system translating in a linear temperature field. The main conclusions
are summarized as follows: (i) For zero characteristic time, the LCE fiber-mass system in
the linear temperature field vibrates freely and cannot develop into self-oscillation in the
three typical cases of the frame at rest, uniform, and accelerating translation. (ii) For a
small characteristic time, the LCE fiber-mass system in the linear temperature field can
self-oscillate by absorbing energy from the surrounding temperature field to compensate
for the damping dissipation. (iii) For a finite characteristic time, the amplitude of the self-
oscillation of the LCE fiber-mass system increases first, then decreases as the characteristic
time increases, and at an optimal characteristic time, the amplitude can attain the maximum
value. (iv) In the three cases of the frame at rest, uniform, and accelerating translation, the
equilibrium position of the self-oscillation is different, while its amplitude and frequency
are the same. The results are expected to provide some useful recommendations for the
design and motion control of micro-robots, motors, and active machines with various
structures and applications.
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Nomenclature

a0 first damping coefficient of the mass block
a1 second damping coefficient of the mass block
am accelerated velocity of the translational frame
A initial amplitude of the free vibration of the mass block
C uniform velocity of the translational frame
Fd
( .
w2
)

damping force of the mass block
FL(t) tensional force of the translating LCE fiber
g gravitational acceleration
h heat exchange coefficient between the LCE fiber and the environment
K spring constant of the LCE fiber
L original length of the LCE fiber
m mass of the mass block
R radius of the thin LCE fiber
t time
T(X, t) temperature field of the LCE fiber
Text(x) environment temperature field
TL environmental temperature at x = L
Tr reference temperature in reference state
u(X, t) instantaneous displacement of a material point
w1(t) displacement of the translating frame
.

w1(t) velocity of the translating frame
w2(t) displacement of the free end of the LCE fiber
.

w2(t) velocity of the free end of the LCE fiber
X Lagrangian coordinate of the LCE fiber
x Eulerian coordinate
x(X, t) instantaneous position of a material point
α thermal expansion coefficient of the LCE fiber
β temperature gradient of the external temperature field
δ damping coefficient of the free vibration of the mass block
ε(X, t) one-dimensional strain of the LCE fiber
εT(X, t) thermally induced strain of the LCE fiber
θ initial phase angle of the free vibration
ρc heat capacity of the LCE fiber per unit length
τ heat transfer characteristic time
ω0 natural angular frequency of the free vibration
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