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Granger causal time-dependent 
source connectivity in the 
somatosensory network
Lin Gao1,2, Linda Sommerlade3, Brian Coffman4, Tongsheng Zhang5, Julia M. Stephen4, 
Dichen Li2, Jue Wang1,2, Celso Grebogi3 & Bjoern Schelter3

Exploration of transient Granger causal interactions in neural sources of electrophysiological activities 
provides deeper insights into brain information processing mechanisms. However, the underlying 
neural patterns are confounded by time-dependent dynamics, non-stationarity and observational 
noise contamination. Here we investigate transient Granger causal interactions using source time-
series of somatosensory evoked magnetoencephalographic (MEG) elicited by air puff stimulation 
of right index finger and recorded using 306-channel MEG from 21 healthy subjects. A new time-
varying connectivity approach, combining renormalised partial directed coherence with state space 
modelling, is employed to estimate fast changing information flow among the sources. Source 
analysis confirmed that somatosensory evoked MEG was mainly generated from the contralateral 
primary somatosensory cortex (SI) and bilateral secondary somatosensory cortices (SII). Transient 
Granger causality shows a serial processing of somatosensory information, 1) from contralateral SI 
to contralateral SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral 
SI, and 4) from contralateral SII to ipsilateral SII. These results are consistent with established 
anatomical connectivity between somatosensory regions and previous source modeling results, 
thereby providing empirical validation of the time-varying connectivity analysis. We argue that the 
suggested approach provides novel information regarding transient cortical dynamic connectivity, 
which previous approaches could not assess.

The human brain can be seen as a multi-layered complex network, stimulated by external inputs, to 
process affective and cognitive information, thus instructing the execution of appropriate responses1–4. 
The exploration of stimulus-activated neural sources and their connectivity provides deep insights into 
the brain mechanisms of information processing within the complex brain network5,6. The human soma-
tosensory system is studied by means of functional magnetic resonance imaging (fMRI), magnetoen-
cephalography (MEG) or electroencephalography (EEG) with tactile sensory stimulation. Unilateral 
sensory stimulation reliably elicits contralateral somatotopic activation of the primary (SI) and secondary 
(SII) somatosensory cortex7–12. Some studies reported reliable activation of contralateral SI and bilateral 
SII in response to unilateral sensory stimuli13–21, and a few studies observed occasional ipsilateral SI 
activation22–26. Despite these numerous reports few studies have investigated the quantitative relationship 
of the cortical activations, let alone the time-dependent Granger causal connectivity. Thus appropri-
ate investigations remain to date rare and sometimes inconclusive. Consequently the information flow 
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among cortices involved in the somatosensory information processing is not well understood, especially 
the relationship between the contralateral somatosensory cortices (both SI and SII) and ipsilateral SII9,27.

In the neurosciences, functional connectivity of neural networks is usually estimated by classical 
methods, such as correlation and coherence, based on time- or frequency domain analysis in sensor 
space. These functional connective methods do not provide a direction of information flow. When 
dealing with brain functional data sets, ultimately the algorithms should be capable of dealing with 
truly multivariate data accounting for direct and indirect influences. The algorithms also need to cope 
with various noise sources, address both linear and nonlinear systems, and provide the strengths of 
the directed interactions for each sampling point. Furthermore, they need to provide a rigorous sta-
tistical framework. Until now a rigorous mathematical framework comprising all of these features was 
still lacking. Some methods could estimate time-dependent connectivity patterns without concern for 
observational noise and non-stationarity28,29. Other techniques that enable investigation of directional 
relationships on very short time scales from multiple realisations of short and transient noisy time series 
have been proposed30,31. An overarching framework for data-based modelling, combining state space 
modelling32–34 for autoregressive models with time-dependent autoregressive coefficients, enabling the 
estimation of time-resolved renormalised partial directed coherence in the frequency domain, fulfills all 
the above requirements. The approach quantifies the direction and strength of time-dependent network 
connectivity without relying on any prior assumption about the nonlinear, non-stationary and stochastic 
brain signals35,36. The performance of this novel approach has also been validated in a simulation study35.

In this paper, we apply the time-varying Granger causal connectivity approach to MEG data from 
healthy humans. We use reliable unilateral sensory paradigms to explore source connectivity patterns 
within the human somatosensory system in response to tactile stimulation by identifying time-dependent 
effective connectivity from high-density MEG recordings. We hypothesize that somatosensory activation, 
as measured by MEG in humans, should qualitatively and quantitatively reflect the effective connec-
tivity of the somatosensory network. The source locations and single-trial waveforms are estimated by 
Minimum Norm Estimation (MNE) to mitigate the field spread in MEG recordings, which compli-
cates the interpretation of cortical connectivity patterns at the sensor level. The time-dependent effective 
connectivity patterns among brain sources is calculated by the new approach combining renormalized 
partial directed coherence with state space modeling. We also employ a rigorous statistical evaluation 
procedure to guarantee the applicability to measured signals. This study demonstrates the effectiveness 
of the time-varying Granger causal connectivity to explore the brain effective connectivity in source 
space in MEG/EEG fields, which provides a new way to investigate the network interplay between 
stimulus-evoked cortical activations.

Results
The spatial distribution of the grand averages for the healthy subjects is illustrated in Fig. 1(a). We found 
that the evoked response to right index finger stimulation is most prominent in left central channels con-
sistent with activation from postcentral gyrus of the anterior parietal lobe, where primary and secondary 
somatosensory cortex (SI and SII) are located, and the averages over the other brain areas look like 
the non-phase locking activity in the background. Figure 1(b) shows the grand average somatosensory 

Figure 1.  (a) Spatial distribution of MEG averaged responses. At each sensor location, the traces illustrate 
signals recorded by two orthogonal gradiometers. (b) Group averaged waveforms from each channel are 
plotted in different colors and superimposed and scalp topographies at 71 ms and 201 ms peak latencies are 
displayed.
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MEG waveforms in all channels for the subjects, with the scalp distribution at the latencies of several 
typical MEG peaks (71 ms and 201 ms). Significant time points around the peak of somatosensory were 
selected by visual inspection of the waveform. The grand average MEG waveform consisted of a clear 
positive and negative peak at 71 ms followed by a negative peak at 201 ms. The scalp distribution at 71 ms 
extended towards temporal regions with negative maximum at the contralateral temporal region and the 
central region. The scalp topography at 201 ms showed a clear maximum at the ipsilateral central region. 
According to the results of the source distribution among all the subjects (Table  1), we selected three 
sources here. The source locations are SI-l (-35 mm, -29 mm, 47 mm), SII-r (41 mm, 1 mm, -8 mm), and 
SII-l (-41 mm, 1 mm, -8 mm) at the group level. The fitted sources explained the scalp distribution of 
MEG with RV of 5.5% and 10.8 ±  4.2% at the group level and single-subject level, respectively.

Figure 2 shows the locations and grand average time series of the representative sources (SI-l, SII-r 
and SII-l) of the subjects. The results indicate that (1) the sources explaining the peak at 71 ms are mainly 
located in contralateral SI (SI-l) and contralateral SII (SII-l), (2) the sources explaining the peak at 201 ms 
are mainly located in ipsilateral SII (SII-r). Post hoc comparisons by Fisher’s least significant difference 
(LSD) test revealed that (1) the peak latencies of SI-l are significantly shorter than the peak latencies of 
SII-r (P <  0.001), (2) the peak latencies of SII-l are significantly shorter than the peak latencies of SII-r 
(P <  0.001).

Single-trial data of somatosensory source waveforms (SI-l, SII-l and SII-r), including 120 to 180 trials 
for each source of each subject, obtained from source analysis, were used in the rPDC estimation to assess 
the relationship among sources. The rPDC order, p, selected using Akaike’s Information Criterion (AIC), 
ranged from 30 to 60; the order was selected for each analysis optimally using AIC. We also projected the 
data in the reference interval from -100 ms to 0 ms to the representative sources. Time-varying effective 

Source location
The number of 

subjects

Left primary somatosensory cortex 21

Right secondary somatosensory cortex 17

Left secondary somatosensory cortex 15

Left secondary auditory cortex 5

Right primary somatosensory cortex 5

Anterior cingulate cortex 2

Left supramarginal gyrus 2

Right premotor cortex 1

Right supramarginal gyrus 1

Colliculus 1

Thalamus 1

Left intraparietal sulcus 1

Medial prefrontal cortex 1

Right secondary auditory cortex 1

Left primary auditory cortex 1

Posterior cingulate gyrus 1

Table 1.   Source distribution of right somatosensory MEG.

Figure 2.  Representative source locations and the corresponding grand average source time courses of 
somatosensory MEG responses from all participants are presented.
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connectivity patterns among somatosensory sources for the subjects, represented as time-frequency 
regions that have significantly increased rPDC values compared with the reference interval (P <  0.01), 
are summarized into the following temporally distinct groups within the post-stimulus interval around 
0-320 ms (Fig. 3). Significant increases in effective connectivity are observed from SI-l to both SII-l (20-
230 ms, 5-25 Hz) and SII-r (20-230 ms, 5-25 Hz), from SII-l to SI-l (90-200 ms, 5-17 Hz) and from SII-l 
to SII-r (220-320 ms, 5-19 Hz). The time-resolved directed network structure can be inferred from Fig. 3 
and Table 2 (see also Fig. 4). The cortical information was mainly transmitted from SI-l to SII-l and to 
SII-r (20-230 ms, the latter one about 5 ms later than the former). Later during the post stimulus interval, 
the information flow was observed from SII-l to SI-l (90-200 ms) and then to SII-r (220-320 ms).

Discussion
In this study, we applied a novel source connectivity analysis method based on causality inference to 
assess the time-varying effective connectivity among stimulus-elicited neural sources for healthy par-
ticipants. The time-varying effective connectivity revealed that the cortical information flow of soma-
tosensory input at early latencies was processed through a complex pattern of both feedforward and 
feedback interactions between contralateral SI and bilateral SII: 1) from contralateral SI to contralateral 

Figure 3.  Time-frequency representations of rPDC as a measure of time-dependent Granger causal 
influences within the neural network between SI-l, SII-l and SII-r averaged across all the subjects. The 
regions circled by blue lines had significantly larger rPDC values than those in the reference interval from 
-100 ms to 0 ms (P <  0.01).

Source Mean STD

from SI-l to SII-l 0.17 0.01

from SII-l to SI-l 0.18 0.01

from SI-l to SII-r 0.16 0.01

from SII-r to SI-l 0.00 0.00

from SII-l to SII-r 0.17 0.02

from SII-r to SII-l 0.00 0.00

Table 2.   The mean and standard deviation (STD) of rPDC between SI-l, SII-l and SII-r of right 
somatosensory MEG responses of identified time-frequency regions in Fig. 3.
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SII, 2) from contralateral SI to ipsilateral SII, 3) from contralateral SII to contralateral SI, and 4) from 
contralateral SII to ipsilateral SII.

Detection of causal relationships between neural processes is commonly hampered by time-dependent 
dynamics and observational noise contamination. Time-dependent dynamics is of particular interest in 
EEG/MEG studies because electrophysiological information is believed to be transferred in part via short 
bursts of oscillatory brain activity37–39. Effective connectivity analysis based on the concept of Granger 
causality40 allows for the evaluation of the direction and strength of causality between neuronal activa-
tions, e.g., PDC41. However, Granger causality cannot reveal the dynamic effective connectivity for tran-
sient and markedly nonstationary neurophysiological processes42. In order to address these challenges, 
we employed a combination of renormalized partial directed coherence and non-linear state space mode-
ling allowing for the detection of time-dependent and eventually continuously changing causal influences 
in multivariate processes without relying on prior assumptions about the nonlinear, non-stationary and 
stochastic brain signals36. Schelter et al. demonstrated its performance in a simulation study and proved 
that it combines characteristics that others lacked so far35. In the present study, we used this novel 
approach to explore the causal influence empirically by testing the performance of the method with 
somatosensory evoked MEG responses of healthy subjects.

In neuroscience studies, the event-related experiment with different stimulation paradigms is a fun-
damental method to activate corresponding brain areas connected by underlying neuronal networks. The 
activated network is characterized by the evoked data in epochs, which are mixed with field spread. The 
field spread often complicates the interpretation of cortical connectivity patterns at the sensor level5,43. 
Carrying out connectivity analysis in source space is the best choice to disentangle the above problem, 
providing direct estimation of the interaction between neuronal sources and attenuating the effect of field 
spread5,44. As expected, we observed that somatosensory sources were mainly located at contralateral SI 
and bilateral SII after right index finger somatosensory stimulation when applying CSST and MNE to 
somatosensory MEG. We also found that peaks in MEG were mainly generated from these sources as 
shown in Fig. 1 and Fig. 2. Here, since no significant changes were observed in the post-stimulus interval 
after 320 ms, only source time courses in the post-stimulus from 0 to 320 were analysed. The validity of 
our approach is substantiated by three independent bits of evidence. First, the fitted dipoles explained the 
scalp distribution of MEG with RV of 5.5% and 10.8 ±  4.2% at the group level and single-subject level, 
respectively. Second, as shown in Fig. 2 the sources explaining the peak at 71 ms are mainly located in 
SI-l and SII-l, and the sources explaining the peak at 201 ms are mainly located in SII-r. Third, the results 
of source modelling are consistent with a large number of previous studies2,9,45.

Tactile events are accompanied by transient changes in mu (8-15 Hz) and beta (15-30 Hz) band oscil-
latory activity46,47. The time–varying effective connectivity shows patterns in exactly those frequency 
ranges. Note that there is no restriction to a frequency or frequency band imposed by the analysis 
technique. We therefore considered the frequency band from 5 Hz to 30 Hz for the connectivity analysis; 
both, previous findings about the tactile events and our analysis suggest this as the optimal frequency 
band.

In MEG studies of the somatosensory cortex, the tactile pulses elicit evoked responses within 50–80 ms 
originating from contralateral SI48–51. A study recently reported that contralateral SI was the earliest 
source activated by somatosensory stimuli with peaks at 63 ±  14 ms6. In our study, the initial response to 
the tactile stimulus was observed at around 70 ms, which is consistent with those previous findings. We 
also found that contralateral SI was the earliest activated source in response to somatosensory stimuli 
and that the connectivity from contralateral SI represented the earliest information flow (onset at about 
20 ms to contralateral SII), which is in agreement with many previous studies6,7,52–55. Unilateral sensory 
stimuli are transmitted to contralateral SI from primary afferent fibers of dorsal root ganglion or trigem-
inal sensory neurons, also supporting our results56. Contralateral SII was activated after receiving soma-
tosensory information from contralateral SI, which is consistent with a large number of studies6,9,13,27. 
Our results demonstrate that ipsilateral SII was activated after receiving somatosensory information from 
contralateral SI (onset at 20 ms) and then from contralateral SII (onset at 220 ms)6, 9. There is considerable 
anatomical and electrophysiological evidence for interhemispheric connections between the somatosen-
sory cortices via the corpus callosum. In particular the majority of SII neurons display bilateral receptive 

Figure 4.  Graph obtained from rPDC analysis applied to source time series located at SI-l, SII-l and SII-r 
for somatosensory evoked MEG.
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fields56–58. The activation of ipsilateral SII in our study is in accord with previous studies9,59. Our results 
indicate that functional information flow follows these anatomical pathways from contralateral SI to 
bilateral SII, from contralateral SII to SI, and finally from contralateral SII to ipsilateral SII in the soma-
tosensory information processing for healthy subjects.

In conclusion, a combination of renormalized partial directed coherence and state space modelling 
has been demonstrated to provide a reasonable estimation of time-varying effective connectivity among 
neural sources on the order of milliseconds from multi-channel MEG recordings. We showed that neu-
ral sources that responded to somatosensory stimuli displayed a complex pattern of connectivity that 
included both feedforward and feedback information flow consistent with current views of even sim-
ple sensory responses invoking a network of activity as opposed to sequential hierarchical activation 
of cortical regions. Our results confirmed that this analysis approach provides somatosensory network 
connectivity patterns consistent with previously reported anatomical and neurophysiological measures. 
Our empirical validation of this novel method provides feasibility for applying this method to clinical 
populations to identify biomarkers of disrupted network connectivity that represent the transitions from 
normal state to disease state, which is crucial for understanding the mechanism of numerous diseases.

Materials and methods
Human somatosensory MEG study.  The human somatosensory evoked MEG responses were col-
lected as a part of a separate study. Prior to the study, the written informed consent was provided by 
each subject. The experimental protocols were approved by the Human Research Review Committee at 
University of New Mexico Health Sciences Center, Albuquerque, New Mexico. The methods were carried 
out in accordance with the approved guidelines. The MEG data from twenty-one healthy subjects (12 
male, 9 female), aged from 12 to 20 years (15.2 ±  2.6, age ±  SD), were collected in a magnetically shielded 
room (Vacuumschmelze – Ak3B) at the Mind Research Network in Albuquerque using a 306-channel 
whole-head MEG system (Elekta Neuromag) with a sampling rate of 1000 Hz and a band pass filter 
between 0.1-330 Hz to avoid drifts and aliasing. Prior to the experiment, fiducial points (left and right 
preauricular points and nasion) and head shape data were collected and checked by the Polaris system. 
Participants sat upright during the task and were monitored at all times by an audio and video link 
between the magnetically shielded room and control room. The 306-sensor MEG system measured the 
magnetic field distribution around the whole head of the seated subjects. The system was fully equipped 
with real-time motion correction and artifact rejection software. As long as the subject’s head remained 
within the MEG helmet, movement could be corrected to an optimal head location using the movement 
correction algorithm provided with the Neuromag software package. This motion corrected dataset could 
then be further analysed in our study without concern of subjects’ movement across epochs. The stimuli 
were presented while the subjects were quietly sitting with the head situated in the MEG helmet. The 
somatosensory stimuli were generated by allowing a short pulse of compressed air to fill an air bladder 
that was attached to the subjects’ right index finger. The air pulse was controlled by the Presentation 
software and a compressed air regulator (located outside the shielded room). The air puff stimulus lasted 
50 ms with an ISI of 1.0–1.4 seconds. The air bladder pressure applied to the index finger was monitored 
and recorded simultaneously with MEG collection for offline analysis and interpretation of the results. 
We collected 120 to 180 trials for the right index finger of each subject.

The 60 Hz powerline noise was removed60. Raw MEG data were filtered for noise sources such as eye 
blinks and excessive movement, then corrected for head motion using the Neuromag MaxFilter soft-
ware61. Heartbeat artifacts were then removed by projecting electrocardiogram (ECG) data from MEG 
sensor waveforms using the signal-space projection (SSP) method62. The data for each stimulus condition 
were obtained from 100 ms prior to the onset of the stimulus to 600 ms following stimulus onset. The data 
were baseline-corrected and subjected to a 50 Hz low-pass filter during signal processing.

Structural MRI data acquisition.  Structural MRIs were obtained for use in mapping source loca-
tions from all the subjects. Sagittal T1-weighted anatomical MR images were collected using a Siemens 
TIM Trio 3 Tesla MRI system with a multiecho 3D MPRAGE sequence [TR/TE/TI =  2530/1.64, 3.5, 5.36, 
7.22, 9.08/1200 ms, flip ange =  7°, field of view (FOV) =  256 mm*256 mm, matrix =  256*256, 1 mm thick 
slice, 192 slices, GRAPPA acceleration factor =  2].

Source time courses calculation.  Sources were localised for each subject using cortical-start spati-
otemporal (CSST) multidipole analysis with integrated Multiple Signal Classification (MUSIC)63. CSST 
is an objective multidipole, multistart procedure in which initial dipole locations are randomly selected 
from a predefined cortical volume and a nonlinear simplex search is performed for each of these initial 
configurations. Initial dipole locations were selected from within a predefined head volume, which was 
defined by a subsample of points taken from within the cortical volume, as determined by coregistered 
structural MRI. The error is minimized using a reduced chi-square statistic to obtain a final set of dipole 
configurations which most fully explain the data63. CSST source localization was calculated using 3,4,5,6, 
and 7 dipole models, based on the averaged responses occurring between 0 ms and 320 ms after the onset 
of the stimulus for responses to somatosensory stimuli. A shorter time window after stimuli was used 
for dipole modeling of somatosensory responses to increase the power in order to detect somatosen-
sory evoked sources. The Nelder-Meade minimization procedure was carried out 1500 to 8000 times, 



www.nature.com/scientificreports/

7Scientific Reports | 5:10399 | DOI: 10.1038/srep10399

depending on the number of dipoles in the model, to help to ensure that the procedure would reach 
a global minimum. The dipole model that best explained the data was selected for source time course 
analysis.

Following the selection of the optimal source model, the single-trial waveforms of each dipolar source 
were calculated within a realistic head model with the minimum norm estimate (MNE) software64. The 
inverse solution yielded estimates of continuous time series of cortical currents. For each patient, the 
realistic cortical surface and three layers (inner skull, outer skull and skin) were reconstructed from the 
anatomical MRI images using the Freesurfer software (Compumedics, Charlotte, NC). The boundary 
element model (BEM) was then constructed with the reconstructed surfaces. The co-registration of MEG 
and MRI images was achieved by matching the recorded positions of three fiducial points (nasion, left 
and right preauricular points) with the locations of these points from the MRI images. The lead field 
matrix relating MEG sensors to the cortical distributed dipoles was computed with the BEM model using 
MNE. The dipole model, cortical surface and lead field matrix were then used in the MNE software to 
extract the single-trial timecourses of sources. MNE was applied before time-frequency decomposition 
here.

Renormalized partial directed coherence combined with state space modelling.  Here we 
briefly introduce the time-dependent Granger causal connectivity analysis method employed in this 
study. A time continuous multivariate dynamical process Z(t) can only be observed as a multivariate, 
time discrete sampled signal35.

η( ) = ( ( ), ) + ( ), ( )Y t g Z t v t 1i i i

where g(⋅ ) denotes the observation function with parameter set v; η(t) is a Gaussian distributed inde-
pendent measurement noise with a given variance. Assuming a linear observation function, we obtain 
the following model:

ε ε Σ( ) = ( ) ( − ) + ( ), ( ) ( , ), ( )
∼

~Z i A i Z i i i N1 0 2

ρ ρ Γ( ) = ( ) + ( ), ( ) ( , ), ( )
∼

~Y i CZ i i i N 0 3

for some appropriately chosen variances Σ∼ and Γ∼ that are optimally determined in the estimation pro-
cess and where C represents the linear observation matrix. A reasonable assumption is that the parame-
ter matrix A(i) should change more slowly than the (stochastic) dynamics itself. The model is then 
augmented to the over-arching state space model as following:

ς ς Ω( ) = ( − ) + ( ), ( ) ( , ), ( )
∼

~a i a i i i N1 0 4

ε ε Σ( ) = ( ) ( − ) + ( ), ( ) ( , ), ( )
∼

~Z i A i Z i i i N1 0 5

ρ ρ Γ( ) = ( ) + ( ), ( ) ( , ), ( )
∼

~Y i CZ i i i N 0 6

The a(i) are the matrix entries of A(i) rearranged into a vector. The causal influences can be represented 
as directed edges in a network, in which the nodes represent the processes. Thus the matrix A(i) contains 
the interactions between the components of the original process Z(t). The information about the network 
structure is also contained in this matrix. Since we do not make any assumption about the origin of Z(t), 
it can model the sensor space as well as the source space equally well.

In networks, influences with a certain delay are typically relevant. This can be accounted for in state 
space modelling by including previous time steps,

∑ ξ ξ Σ( ) =




 ( ) ( − ′)





 + ( ), ( ) ( , ),

( )

∼

′=
′ ~Z i A i Z i i i i N 0

7i

p

i
1

up to a maximum time lag p. This maximum p can be determined relying on a priori knowledge or 
based on model selection criteria, such as Akaike’s Information Criterion (AIC) used in our study35, 36. 
The higher order process can be rewritten as a first order process by introducing

( ) = ( ( ), ( − ), …, ( − + )) , ( )′Ẑ i Z i Z i Z i p1 1 8

ξ ξ Σ( ) = ( ) ( − ) + ( ), ( ) ( , ), ( )
∼ˆ ˆ ˆ ˆ ˆ ~Z i A i Z i i i N1 0 9

The matrix ( )Â i  assumes the specific structure
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In the above form, the trajectory of the Z(i) and the a(i) can be determined purely based on the 
observations Y(i). The dual Kalman filters rely on the knowledge of the exact dynamics, i.e., a precise 
knowledge of C, Ω, Σ, and Γestimated by expectation maximisation algorithm33,36. The expectation max-
imization algorithm is an iterative algorithm that converges in the sense of maximum likelihood to the 
best estimator of the underlying dynamical process Z(i) and the parameters a(i)65.

The renormalized partial directed coherence (rPDC) is derived as follows66:

λ ω ω ω ω( ) = ( )′( ( )) ( ), ( )←
−X V X 11u v uv uv uv

1

This is a frequency domain measure for Granger–causality66 that quantifies the direction and the 
strengths of network connections. Xuv(ω) =  [R(FT(Ai′,uv)), I(FT(Ai′,uv))]′ with R the real and I the imagi-
nary parts, FT the Fourier transform, and N the number of data points analysed. The normalization by 
(Vuv(ω)) − 1 is given by the inverse of N-times the covariance matrix

∑ω
ω ω ω ω
ω ω ω ω

( ) = ( , ) ⋅





′ ′ ′ ′
′ ′ ′ ′




 ( )′ , ′ =

′ , ′ ,V A A
i i i i
i i i i

cov
cos cos cos sin
sin cos sin sin 12

uv
i i

p

i uv i uv
1

1 2 1 2

1 2 1 21 2
1 2

of the estimates of X. The covariance matrix of the estimated parameters ( , )′ , ′ ,A Acov i uv i uv1 2
 is deter-

mined in the expectation maximization algorithm. The mathematical details were demonstrated in our 
previous work35,36.

Statistical analysis.  In order to test whether the rPDC within the stimulation period was signifi-
cantly different from the reference period, two populations were extracted for comparison: the collection 
of rPDC for the somatosensory stimulation period λs(n,f) at each time-frequency point (n,f) from 0 to 
320 ms with a sampling rate of 1000 Hz and the reference population λR(τ,f|τ∈reference period) from 
-100 to 0 ms for 21 subjects. The null hypothesis is that there is no difference between the means of the 
two populations.
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