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Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule
involved in different biological processes, such as cell proliferation, angiogenesis, and
wound healing, as well as multiple pathologies, such as tumor development and tissue
fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood,
a commonly accepted theory is that the interactions between different protein domains
in CTGF and other various regulatory proteins and ligands contribute to its variety of
functions. Here, we highlight the structure of each domain of CTGF and its biology
functions in physiological conditions. We further summarized main diseases that are
deeply influenced by CTGF domains and the potential targets of these diseases. Finally,
we address the advantages and disadvantages of current drugs targeting CTGF and
provide the perspective for the drug discovery of the next generation of CTGF inhibitors
based on aptamers.
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INTRODUCTION

Connective Tissue Growth Factor (CTGF) and CCN Family
CTGF, also known as CCN2, is a 38 kDa, cysteine-rich (22 cysteines in the N-terminal and 16
cysteines in the C-terminal region) (Boes et al., 1999), extracellular matrix protein that belongs
to the CCN family of proteins (Abreu et al., 2002). The term ‘connective tissue growth factor’
was introduced to describe a novel polypeptide growth factor that stimulated DNA synthesis and
chemotaxis in fibroblast (Bradham et al., 1991). There are other five CCN gene family genes:
CCN1 (Cyr61), CCN3 (NOV), CCN4 (WISP1), CCN5 (WISP2), and CCN6 (WISP3) (Holbourn
et al., 2008). The CCN acronym was introduced from the names of the first three members of the
family to be discovered: Cyr61 (cysteine-rich protein 61), CTGF (connective tissue growth factor)
and NOV (nephroblastoma overexpressed gene) (Bork, 1993). Expression of CTGF is crucial to
embryonic development in childhood (Jun and Lau, 2011), for example, mice with CTGF knockout
have multiple skeletal dysmorphisms and perinatal lethality (Lambi et al., 2012). Also, abnormal
expression of CTGF was detected in several adulthood diseases including fibrosis and malignancy
in major organs and tissues (Ramazani et al., 2018).
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Expression Profiles for CTGF in Human
Connective tissue growth factor expression was initially
discovered in endothelial cells and fibroblasts associated with
connective tissue regeneration and wound healing, and then
was detected in many tissues (Bradham et al., 1991; Uhlen
et al., 2015). Here, we illustrate the expression of CTGF in
different organisms based on gene expression data from the
Genotype-Tissue Expression (GTEx) project (Figure 1). The
project contains expression data obtained from 54 non-diseased
tissue sites across nearly 1000 individuals (Battle et al., 2017).
CTGF expression is higher in blood vessels and lungs compared
to other organs or tissues, which emphasize the role of CTGF in
the development of blood vessels and lungs. Low expression of
CTGF mRNA was observed in brain tissues by GTEx project,
however, the previous study showed that the adult cerebral cortex
strongly expresses CTGF mRNA (Heuer et al., 2003).

The proper expression of CTGF is essential for the
physiological process of multiple organs such as bone,
brain, heart, and lung. CTGF knockout mice demonstrated
developmental skeletal malformations (Ivkovic et al., 2003).
High expression of CTGF will negatively regulates myelination
during development, which has been implicated in a range
of neurodevelopmental disorders (Ercan et al., 2017). CTGF
mRNA was highly expressed in developing blood vessels and
large blood vessels of the adult heart, suggesting that it may be
involved in the maintenance of blood vessel integrity during
adulthood (De Sousa Lopes et al., 2004). The absence of CTGF
and/or its protein product, CTGF, may induce pulmonary
hypoplasia by disrupting basic lung developmental processes
(Baguma-Nibasheka and Kablar, 2008).

Protein Domains in CTGF
CTGF (6q23.2) is a relatively short gene and consists of 5 exons
that code for a 349-amino acid protein, the first exon codes

FIGURE 1 | The expression of CTGF in different tissues. The expression data
was downloaded from GTEx database and a total of 7313 samples (blood
vessel: 1335; Brain: 2642; Colon: 779; Heart: 861; Kidney: 89; Liver: 226;
Lung: 578; Muscle: 803) from normal human tissues were plotted.

for a signal peptide (for secretion) and exons 2–5 code for
each of the four different domains (Arnott et al., 2011). The
four functional domains are insulin-like growth factor binding
protein (IGFBP), von Willebrand factor type C repeat (VWC),
thrombospondin type-1 repeat (TSP1 or TSR), and cysteine knot-
containing domain (CT) (Figure 2). IGFBP and VWC domains
constitute the N-terminal half of CTGF which is separated from
the C-terminal half that contains TSP1 and CT domains by a
‘hinge’ region (Anna et al., 2015). In this study, the boundaries
for domains were defined by ‘P29279’ of UniProtKB database
with IGFBP domain (GLN27-LYS98), VWC domain (ALA101-
ASP167), TSP1 domain (ASN198-GLU243), and CT domain
(CYS256-PRO330).

The functions of CTGF domains are different because of
their distinct bindings with specific proteins in various signaling
pathways (Figure 2). Since these binding proteins participate
in a number of physiological processes, CTGF has been shown
to regulate a wide range of important functional pathways,
including adhesion, mitogenesis, and chemotaxis, cell survival,
differentiation, angiogenesis, chondrogenesis, tumorigenesis, and
wound healing (Holbourn et al., 2008). Although some biological
functions are directly related to an individual functional domain,
many functions are demonstrated to be the consequence of
domains acting in concert. For example, truncated CTGF
domains (N-terminal fragment and C-terminal fragment),
can function independently to stimulate differentiation or
proliferation of fibroblast and to increase collagen synthesis
(Gary and Matthew, 2005).

Connective tissue growth factor protein contains 38 fully
conserved cysteine residues, which are evenly spread throughout
the protein (1 in signal peptide region, 11 in IGFBP, 10 in VWC, 6
in TSP1, and 10 in CT) except for a cysteine free-region between
Asp167 and Asn198 (‘hinge region’) (Brigstock, 1999). Disulfide
bond was formed by a reaction between the sulfhydryl side
chains of two cysteine residues, and had an essential role in the
stabilization of peptide and protein structures and modulation
of biological activities (Wiedemann et al., 2020). In CTGF, the
functions of disulfide bond can be summarized: (1) To stabilize
the structure of CTGF by linking the secondary structures such
as β-sheets (Holbourn et al., 2008). (2) To form the ‘cysteine
knot’ in CT domain of CTGF, and the cysteine knot is crucial
for dimerization of proteins and binding with other receptors or
growth factors (Holbourn et al., 2008).

THE STRUCTURE AND BIOLOGICAL
FUNCTIONS OF CTGF DOMAINS

Three-dimensional (3D) structure of the protein is crucial for
its interaction with other molecules and biological functions.
Currently, there is no accurate structural information about the
CTGF. Homology modeling is a computational method and
predicts reliable 3D structure of a query protein through the
sequence alignment of template proteins (Meier and Soding,
2015). In current study, we predicted 3D structures of individual
domains of CTGF by using Modeller (Webb and Sali, 2016). The
amino acid sequence of CTGF was retrieved from NCBI and
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FIGURE 2 | The domains of CTGF protein. CTGF domains interact with a variety of molecules, including cytokines, growth factors, receptors, and matrix proteins.
These interactions regulate multiple signaling pathways in physiological and pathological processes. The arrow and horizontal line correspond to promotion and
counteraction, respectively.

the accession number ‘CAG46534.1’ was selected for the present
study. The templates for predicting the structure of domains
were searched by Swiss-model server and then listed in Table 1
(Waterhouse et al., 2018). For each domain, 50 structures were
created by the Modeller and the predicted structure with lowest
dope value was considered the highest quality and then selected
for structure evaluation (Supplementary Figures S1A–D). The
structure evaluation was done by the Ramchandran plot in
PROCHECK, and the results showed a good quality of structure
since all residues were located in the allowed area (Table 2).

IGFBP Domain
The first domain of CTGF, named as IGFBP domain, is coded
by the exon 2 of CTGF and located in the sequence of Gln27-
Lys98. The name of IGFBP domain comes from its similar
structure with IGFBP family proteins which contain a conserved
motif ‘GCGCCXXC,’ thus CTGF has been characterized as
a member of the IGFBP superfamily (Krupska et al., 2015).

TABLE 1 | Summary of the templates for the prediction of CTGF domains.

Template Protein Targeting domain Coverage Sequence similarity

3TJQ HtrA1 IGFBP 0.76 0.40

1WQJ IGFBP4 IGFBP 0.79 0.34

3ZXB SIBD-1 IGFBP 0.81 0.34

5NB8 CCN3 VWC 0.99 0.52

1U5M Collagen IIA VWC 0.82 0.33

5NIR Collagen 2A VWC 0.82 0.33

6RK1 CCN3 TSP1 0.98 0.57

3GHN ADAMTS13 TSP1 0.91 0.38

3T5O CC6 TSP1 0.89 0.39

2K8P Sclerostin CT 0.80 0.34

4NT5 CTCK CT 0.84 0.34

4X1J NBL1 CT 0.81 0.32

There are two major sub-domains in the CTGF-IGFBP domain
(Figure 3A), and the first sub-domain (SD1) is constituted by
a 2-stranded β-sheet and two disulfide bonds in the N-terminal
of IGFBP domain. The β-sheet, disulfide bond, and conserved
‘GCGCCxxC’ motif, forms a rigid base that supports the binding
of CTGF and IGF (Sitar et al., 2006). The second sub-domain
(SD2) consists of a globular sub-domain centered around a
2-stranded anti-parallel β-sheet in the C-terminal of IGFBP
domain. The site for binding insulin-like growth factors (IGFs)
is located in the SD2 (Sitar et al., 2006).

IGFBP family proteins exert critical roles in a variety of cellular
functions including amino acid and glucose uptake, cell cycle, cell
proliferation, cell differentiation, and immune response through
its binding with IGFs (Jones and Clemmons, 1995). As a member
of IGFBP family proteins, the specificity of binding between IGFs
and CTGF is further confirmed by competitive affinity binding
assays using unlabeled IGF-I and IGF-II (Kim et al., 1997).
However, the affinity of CTGF-IGFs interaction is only about one
percent of the affinity of other IGFBP family proteins (IGFBPI-
VI) to IGFs (Yang et al., 1998). The lower affinity of CTGF with
IGFs which is thought to be the consequence of the lack of
C-terminal of IGFBP family proteins (Kim et al., 1997). This low
affinity makes CTGF promote IGFs’ function by prolonging the
circulating half-life of IGFs and increasing the bioavailability of
IGFs (Lam et al., 2003), unlike other classic IGFBPs which block
the interaction between IGFs and their receptors due to their
high affinity to IGFs (Wang et al., 2001; Allard and Duan, 2018).
For example, overexpression of CTGF enhances the expression
of IGFs, activates IGFs mediated proliferation and proteoglycan
synthesis in cultured chondrocytes (Tomita et al., 2013). CTGF
is also found to bind with IGFs and contributes to the matrix
accumulation in tubulointerstitial fibrosis (Lam et al., 2003).
Apart from IGF-dependent manner, IGFBP domain enables the
linkage of CTGF to fibronectin, a prominent component of
extracellular matrix (ECM), and enhances cell adhesion and
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TABLE 2 | Ramachandran plot analysis.

Ramachandran Plot Calculation IGFBP % VWC % TSP1 % CT % FL-CTGF %

Residues in most favored regions 81.5 96.2 87.8 75.0 80.2

Residues in additional allowed regions 13.0 3.8 9.8 20.3 16.2

Residues in generously allowed regions 5.6 0.0 2.4 4.7 3.6

Residues in disallowed regions 0.0 0.0 0.0 0.0 0.0

FIGURE 3 | Homology modeling of structures of CTGF domains and full length CTGF using MODELLER. (A) IGFBP domain; (B) VWC domain; (C) full length CTGF;
(D) TSP1 domain; (E) CT domain. (C) Domains were represented by different colors (IGFBP domain: deep blue; VWC domain: light blue; linkage region: gray; TSP1
domain: light red; CT domain deep red). In the structure of each domain, secondary structures were represented by colors (β-sheets: red; coil: blue; α helix: brown;
disulfide bond: green).

matrix deposition which leads to liver fibrosis (Pi et al., 2008).
Taken together, the main functions of IGFBP domain of CTGF
include: (a) To stimulate proliferation of chondrocytes; (b) To
increase matrix accumulation in both IGF-dependent and IGF-
independent manner.

VWC Domain
The second domain presented in the N-terminal of CTGF is
VWC domain which is coded by the exon 3 of CTGF and located
in Ala101-Asp167. This domain, also known as the chordin-like
cysteine rich (CR) repeat which has been shown to bind members
of the transforming growth factor-β (TGFβ) superfamily, is found
in more than 500 ECM proteins (Zhang et al., 2007). There are
two sub-domains in the VWC domain of CTGF (Figure 3B).

The first sub-domain (SD1) is more structured and consists of
a short 2-stranded anti-parallel β-sheet followed by a 3-stranded
anti-parallel β-sheet in the N-terminal part of VWC domain.
The 3-stranded anti-parallel β-sheet is supported by a disulfide
bond between its second and third strand, and another disulfide
bond forms between short 2- stranded β-sheet and 3-stranded
anti-parallel β-sheet. The second sub-domain (SD2) is comprised
of random coils with no secondary structure elements in the
C-terminal part of VWC domain. SD2 is devoid of regular
secondary structure, although it is tethered by one disulfide bond
within itself and one disulfide bond to SD1 (O’Leary et al., 2004;
Xu et al., 2017).

The cellular function of VWC domain may come from the
interaction with TGFβ and bone morphogenetic proteins (BMPs)
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(Abreu et al., 2002). CTGF binds TGFβ with low affinity and
functions as a chaperone to escort TGFβ to its receptors (Abreu
et al., 2002). CTGF can strengthen the profibrotic functions of
TGFβ in particular proliferation of fibroblasts and secretion of
ECM proteins by the fibroblasts. The strengthened TGFβ induces
the higher expression of CTGF, which forms a positive feedback
loop (Abreu et al., 2002). This partnership has been implicated
in many diseases (e.g., cancers and fibrotic diseases) (Brigstock,
2010). Besides, CTGF acts via glial-derived TGFβ, whose
activity it potentiates, promoting SMAD-dependent apoptosis of
newborn neurons in the glomerular layer of brain (Khodosevich
et al., 2013). VWC domain also exists in crossveinless-2 (CV2),
and the similarity of VWC domain in CTGF to CV2 is 31.8%.
The SD1 of VWC domain of CV2 is responsible for CV2-
BMP2 binding (Zhang et al., 2008), implying CTGF might also
bind to BMP2 by SD1 of VWC domain. Binding of CTGF-
VWC domain to BMPs inhibits BMPs signaling by preventing
the binding of BMPs to their cognate receptors (Abreu et al.,
2002). To date, BMP family proteins, such as BMP-2 (Mundy
et al., 2014), BMP-4 (Abreu et al., 2002), BMP-6 (Falke et al.,
2016), and BMP-7 (Nguyen et al., 2008) have been demonstrated
to be negatively influenced by CTGF in different cell types.
The previous study found that CTGF knockout increased BMP
signaling and overexpression of CTGF decreased BMP signaling
in osteoblasts (Mundy et al., 2014).

Taken together, the major functions of VWC domain of
CTGF may include: (a) To interact with TGFβ to induce fibrosis
and apoptosis of newborn neurons; (b) To bind with BMPs to
suppress the differentiation of chondrocytes and osteoblasts.

The exon 3 of CTGF not only encodes the VWC domain
but also a region devoid of cysteines that may serve as a ‘hinge’
connecting the N-terminal and C-terminal halves of CTGF.
This ‘hinge’ region is unique to each CCN family member
and contains an abundance of charged amino acids. Matrix
metalloproteinases (MMPs) have been shown to cleave CTGF
in the unstructured hinge region between VWC domains and
TSP1 domain (Hashimoto et al., 2002). The cleavage of hinge is
very crucial for CTGF’s function. Since the N-terminal fragment
conceals the binding site of C-terminal fragment of CTGF in
intact CTGF, the full length of CTGF is an inactive precursor
(Kaasboll et al., 2018). The cleavage of the CTGF hinge by
MMPs releases the C-terminal fragment which is responsible for
activation of Akt and the ERK pathway (Kaasboll et al., 2018).

TSP1 Domain
The third domain of CTGF, also known as TSP1 domain,
corresponds to the sequence of Asn198-Glu243. TSP1 domain
was firstly identified in human endothelial cell thrombospondin-
1 protein and then turned out to be one of the most common
motifs in a variety of extracellular proteins (Lawler and Hynes,
1986). CTGF-TSP1 domain contains six cysteines and an
identical motif ‘CSXXCG’ to TSP1 domain of thrombospondin-
1 protein (Tucker, 2004). The main character of TSP1 domain
of thrombospondin-1 protein is the three anti-parallel strands,
placing the N- and C-termini at opposite ends of domain. And
strand I is more irregular since it does not form a regular

β strand, while strands II and III form a regular antiparallel-
sheet (Tan et al., 2002). However, in the structure of CTGF-
TSP1 domain, none of the strand I (Cys199-Gly214), strands II
(Ser218-Asn223) and strands III (Lys232-Cys237) form a regular
β-sheet (Figure 3D). CTGF-TSP1 domain is more open, with
strand I, strand II and strand III are more separate from each
other, which makes it less possible to form H-bonds, disulfide
bonds, and β-sheets.

The main binding proteins of TSP1 domain include
integrin α6β1, low density lipoprotein receptor-associated
protein (LRP), vascular endothelial growth factor (VEGF). CTGF
could bind with integrin α6β1 by ‘CLVQTTEWSACSKTCGM’
(Cys199-Met215) in TSP1 domain, evidenced by the inhibited
collagen deposition in fibroblasts caused by exogenous CTGF
peptide (Cys199-Met215) treatments (Heng et al., 2006). In
addition, CTGF could bind with LRP by ‘TEWSACSKTCG’
(Thr204-Gly214) in TSP1 domain, evidenced by a 50%
decrease in hepatic stellate cell adhesion by exogenous CTGF
peptide (Thr204-Gly214) treatments (Gao and Brigstock, 2003).
However, the accurate binding site of TSP1 domain to VEGF
remains unknown.

Integrin α6β1 is a well characterized laminin receptor and
participates in ECM interactions (Koivisto et al., 2014). CTGF
mediates collagen deposition by the binding between TSP1
domain and integrin α6β1 (Heng et al., 2006). LRP acts as
a signaling receptor and can regulate diverse processes such
as repair, remodeling, and embryonic development (Gao and
Brigstock, 2003). Hepatic stellate cells (HSCs) adhesion, which
is a critical event in hepatic fibrosis (March et al., 2007), is
promoted by CTGF through its binding to LRP in CTGF-TSP1
domain (Gao and Brigstock, 2003). VEGF is a strong angiogenic
mitogen and plays an important role in angiogenesis under
various pathophysiological conditions (Inoki et al., 2002). CTGF
inhibits the function of VEGF through the binding between TSP1
domain and VEGF, which leads to the decreased angiogenic
activity (Inoki et al., 2002). The main function of TSP1 domain
can be concluded: (a) To promote collagen deposition by integrin
α6β1; (b) To increase HSCs adhesion by LRP; (c) To inhibit
angiogenesis by VEGF.

CT Domain
The fourth domain which is located in Cys256-Pro330 and
encoded by exon 5 of CTGF. This domain contains a ‘cystine knot’
(CT) structure, therefore this domain is named as CT domain.
The CT domain is also presented in growth factors including the
TGFβ superfamily, platelet derived growth factor (PDGF) and
nerve growth factors (NGFs) (Schlunegger and Grutter, 1993).
Cysteine knot is an 8-residues ring based around a two-stranded
anti-parallel β-sheet (with each strand at least 4 residues long)
linked by disulfide bonds (Molesini et al., 2017). In the structure
of CTGF-CT domain, cysteine knot consists a two-stranded anti-
parallel β-sheet and two disulfide bonds (Figure 3E). The CT is
highly conducive to protein stability which can be attributed to
conformational rigidity endowed by disulfide bonds of the CT
(Sherbet, 2011). The CT also probably has a role in dimerization
of proteins and may be involved in receptor binding of growth
factors (Sherbet, 2011).
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Cystine knot domain has been reported to bind with ECM
proteins (e.g., fibronectin), integrins (e.g., α5β1 and αvβ3) and
LRP6. CT domain enables the linkage of CTGF to fibronectin,
and promotes cell adhesion and migration (Pi et al., 2008).
Integrin α5β1 is involved in the interaction of CT domain with
the fibronectin which contributes to the ECM accumulation
in fibrosis disorders (Gressner and Gressner, 2008). CTGF
enhances integrin-fibronectin binding and their function by
forming a ternary complex (Hoshijima et al., 2006). The sequence
‘GVCTDGR’ (Gly285-Arg291) mediates the binding between CT
and integrin α5β1 and promotes cell adhesion and migration.
Integrin αvβ3 plays important roles in regulating cell adhesion
and migration, as well as angiogenesis (Babic et al., 1999).
CTGF-CT domain can bind with αvβ3 and promote the above
functions of αvβ3 in the sequence of ‘IRTPKISKPIKFELSG’
(Ile257–Gly272) (Gao and Brigstock, 2004). LRP6 is a key
protein in Wnt pathway and contributes to pericyte migration,
myofibroblast differentiation, and matrix accumulation (Ren
et al., 2013). It has been widely reported that CTGF can bind
with LRP6 and further regulates Wnt signaling (Rooney et al.,
2011; Yang et al., 2015; Johnson et al., 2017). However, the actual
role of CTGF-LRP6 interaction in regulating Wnt signaling is
still unclear. Most studies showed that CTGF could activate
Wnt signaling (Rooney et al., 2011; Yang et al., 2015; Johnson
et al., 2017). Whereas it also has been reported that CTGF
competes with Wnt family members for binding to LRP6 in
Xenopus laevis embryos (Mercurio et al., 2004). The main
function of CT domain includes: (a) To induce ECM deposition
by fibronectin; (b) To promote cell adhesion and angiogenesis
by integrins α5β1 and αvβ3, respectively; (c) To regulate Wnt
signaling by LRP6.

Full Length CTGF
Homology modeling of full length CTGF (FL-CTGF) could
not be performed due to the lack of acceptable templates for
FL-CTGF. Thus, a strategy of predicting the structure of FL-
CTGF by assembling the structures of domains (Ganugapati and
Akash, 2017) was adopted in this research. The 3D structure
files of these four domains and the alignment files were used as
templates for Homology modeling to predict the 3D structure
of FL-CTGF. The predicted structure with the lowest dope
value was chosen for the best structure of FL-CTGF, and the
structure assessment by Ramachandran plot indicated the good
quality of FL-CTGF structure since none of the residues were
located in disallowed regions (Table 2). We calculated the root-
mean-square deviation (RMSD) (Maiorov and Crippen, 1994) to
measure the similarity between structures of individual domain
and FL-CTGF, and the results showed that the FL-CTGF retained
the same architecture as of individual domain since zero RMSD
were found. We also found that there were some interactions
between domains. In this study, a pair of residues were defined
to be in contact when the distance between their C-beta atoms
(C-alpha in the case of glycine) was less than 8 Angstroms
(Adhikari and Cheng, 2017). The result indicated 60 pairs of
interacted residues between VWC and TSP1 domain, and 31
pairs of interacted residues between VWC and CT domain
(Supplementary Table S1).

MOLECULAR UNDERSTANDINGS OF
CTGF IN DISEASES

As introduced above, CTGF has important roles in many
biological processes, including cell adhesion, migration,
proliferation, angiogenesis, skeletal development, and
tissue wound repair. Meanwhile, it is critically involved in
various diseases, including cancers, fibrotic diseases, and
inflammatory diseases.

Cancers
Key roles for CTGF are to promote myofibroblast differentiation
and angiogenesis. Similar mechanisms are active in different
cancers where CTGF is expressed. To date, 30 types of
human cancers have been linked to deregulated aberrant
expression of CTGF (Table 3). Cancers can be divided into 3
categories according to the role of CTGF in tumor development:
tumor promotion (Group I), suppression (Group II), and
both (Group III).

In Group I, CTGF expression is positively associated with poor
survival outcomes and clinicopathological findings, including
advanced stage, larger tumor size, and increased metastasis.
Epithelial to mesenchymal transition (EMT) is the process where
epithelial cells acquire a mesenchymal cell phenotype which
is more prone to migrate and invade (Tsai and Yang, 2013).
CTGF and its binding proteins TGFβ are major initiators of
EMT process and contribute to the tumor progression in tumors
such as breast cancer (Wendt et al., 2010; Zhu et al., 2015).
Another key role of CTGF in tumor development is angiogenesis.
The high expression level of CTGF enhances angiogenesis in
breast cancer and osteosarcoma by integrin αvβ3 (Shimo et al.,
2001; Wang L. H. et al., 2017). Integrin αvβ3 plays a role in
angiogenesis mostly by sprouting endothelial cells, therefore
promotes invasion and metastasis in cancers such as glioma and
breast cancer (Lorger et al., 2009). Taken together, CTGF interacts
with TGFβ and integrin αvβ3, respectively, and contributes to
cancer development in Group I. The binding domain of CTGF
for TGFβ is VWC domain, and CT domain is responsible for the
binding of CTGF to integrin αvβ3.

In Group II, CTGF may act as a tumor suppressor. In these
cases, the expression level of CTGF is usually lower in the
tumor tissues compared with adjacent normal tissues. CTGF
expression is suppressed in non-small cell lung cancer cells,
and the decreased expression of CTGF may play a role in
lung tumorigenesis by allowing IGF-I to have greater progrowth
activity (Chien et al., 2006), which is different from the pro-
IGF function in physiological endochondral ossification process.
In addition, CTGF can inhibit lung adenocarcinoma growth
in vitro and in vivo by reducing VEGF gene expression and its
subsequent angiogenic effects (Chang et al., 2006). Depressed
CTGF triggers non-canonical Wnt pathway-mediated intestinal
cancer progression through an increase in cancer stemness and
acquisition of chemoresistance (Lin et al., 2005; Kim et al.,
2020). Taken together, IGFBP, TSP1, and CT domains of CTGF
are responsible for interaction with IGF-I, VEGF, and LRP6,
respectively, to regulate the cancer progression in Group II.
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TABLE 3 | Summary of the relationship between CTGF expression and tumor progression.

Cancer type Correlation with tumor progression.

Group I Tumor promoter

Acute lymphoblastic leukemia Higher CTGF expression corresponds to the worsening of overall survival (Sala-Torra et al.,
2007).

Glioma Positive correlations exist between CTGF mRNA levels versus tumor grade, gender, and
pathology (Xie et al., 2004).

Breast cancer Elevated levels of CTGF in primary breast cancers are associated with more advanced
features (Xie et al., 2001).

Gastric cancer Patients with elevated CTGF expression have more lymph node metastases and shorter
survival time (Liu et al., 2008).

Hepatocellular carcinoma The expression of CTGF is associated with poor survival (Xiang et al., 2012).

Ileal carcinoid CTGF in carcinoid tumors is significantly increased versus normal carcinoids (Jacobson and
Cunningham, 2012).

Melanoma CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration
(Braig et al., 2011).

Mesothelioma Elevated expression of CTGF promotes mesothelioma growth (Ohara et al., 2018).

Esophageal cancer Forced expression of CTGF significantly increases tumor formation (Deng et al., 2007).

Pancreatic cancer CTGF antibody therapy inhibits pancreatic tumor growth and metastasis (Dornhofer et al.,
2006).

Prostate cancer CTGF promotes prostate carcinoma to metastasize in the bone (Zhang et al., 2018).

Thyroid cancer CTGF is overexpressed in papillary thyroid carcinoma and promotes the growth of papillary
thyroid cancer cells (Cui et al., 2011).

Head and neck squamous cell carcinoma (HNSCC) Up-regulation of CTGF is observed in tumor specimens from patients with HNSCC (Mullis
et al., 2008).

Cervical cancer CTGF is upregulated in late stage cancer compared to early stage cancer (Wong et al., 2006).

Rhabdomyosarcoma Inhibition of CTGF induces rhabdomyosarcoma cell death and decrease tumor angiogenesis
(Croci et al., 2004).

Myofibroblastic tumor Myofibroblastic tumor expresses CTGF in both endothelial cells and vimentin-positive tumor
cells, particularly those around the blood vessels (Kasaragod et al., 2001).

Renal cell carcinoma CTGF is found to be over-expressed in the renal cell carcinoma tissues (Chintalapudi et al.,
2008).

Endometrial cancer The expression of CTGF is significantly higher in endometrial cancers compared to normal
tissues (Li et al., 2019).

Bladder cancer Down-regulation of CTGF suppresses proliferation, migration, and invasion of bladder cancer
cells in vitro and targeting of CTGF decelerated xenograft growth in vivo (Wang X. et al., 2017).

Osteosarcoma CTGF induces osteosarcoma metastasis via the αvβ3 integrin/FAK/PI3K/Akt/NF-κB signaling
pathway (Hou et al., 2018).

Group II Tumor suppressor

Colorectal cancer Patients with low CTGF expression have shorter survival time (Lin et al., 2005).

Lung cancer Low CTGF levels correlate with high tumor stage and metastasis (Chen et al., 2007).

Oral squamous cell carcinoma CTGF suppresses tumor cell growth in a human oral squamous cell carcinoma-derived cell
line (Moritani et al., 2003).

Meningioma CTGF mRNA levels are lower in recurrences compared to the primary tumor (Perez-Magan
et al., 2010).

Chondrosarcoma CTGF expression is negatively correlated with proliferation and tumor grade of
chondrosarcoma (Shakunaga et al., 2000).

Intrahepatic cholangiocarcinoma Low CTGF expression predicts the recurrence of intrahepatic cholangiocarcinoma (Gardini
et al., 2005).

Nasopharyngeal carcinoma (NPC) Reduced expression of CTGF promotes cell proliferation, migration, invasion in NPC (Zhen
et al., 2014).

Group III Complex correlation

Ovarian cancer CTGF mRNA is reduced in ovarian cancer cell lines compared with the normal cells. However,
CTGF expression was higher in the advanced stages of ovarian cancer (Kikuchi et al., 2007).

Wilms tumor CTGF is activated in early tumorigenesis, while its expression decreases with tumor
progression (Zirn et al., 2006).

Gallbladder cancer CTGF is found to be overexpressed in primary gallbladder cancer, compared with
non-neoplastic gallbladder epithelium. But gallbladder cancer with high CTGF expression has
a favorable survival (Alvarez et al., 2008).
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In Group III, CTGF can act both positively and negatively in
tumorigenesis and tumor progression. CTGF expression is lower
in ovarian cancer cell lines compared to normal ovarian cells,
whereas CTGF expression has a higher expression in advanced
stages (stages III and IV) than earlier stages (stages I and II)
(Kikuchi et al., 2007). The expression of CTGF is higher in
primary gallbladder cancer compared with normal gallbladder
tissue, however, CTGF expression in advanced gallbladder cancer
is reduced to the levels of normal gallbladder epithelium. High
CTGF expression correlates with a better survival outcome in
advanced gallbladder cancer (Alvarez et al., 2008). To date,
the detailed functions and mechanisms of CTGF in Group III
cancers remain unclear.

Therefore, whether CTGF has a positive or negative
correlation with tumor growth is related to the type and stage
of cancer. The bindings between proteins with CTGF domains
which exert distinct effects on tumor development may lead
to the different functions of CTGF in cancers (Jun and Lau,
2011). For example, CTGF expression can inhibit tumor growth
by reducing VEGF mediated angiogenic effects through TSP1
domain (Inoki et al., 2002; Chang et al., 2006) and enhance
angiogenesis and osteosarcoma through the binding between
CT domain and integrin αvβ3 (Shimo et al., 2001; Wang L. H.
et al., 2017). However, current investigations for CTGF in cancers
have been conducted in different subjects including cell lines,
animals, and patients, which may cause inconsistent conclusions.
Moreover, some limitations such as small sample size might
compromise the results. Therefore, more investigations for the
functional roles and underlying mechanisms of CTGF in different
cancers are required.

Despite CTGF shows different functions in tumorigenesis,
targeting CTGF has shown therapeutic promises in specific
cancers such as breast cancer and pancreatic cancer (Jun and
Lau, 2011). In breast cancer, blocking CTGF by its VWC domain
greatly decreased osteolytic bone metastasis and angiogenesis
(Shimo et al., 2006). In pancreatic cancer, tumor cell growth can
be dramatically reduced by using genetic inhibition of CTGF
(Bennewith et al., 2009). For these cancers, the VWC domain
and CT domain of CTGF has a critical role in promoting tumor
progression, which could be the potential targets.

Fibrotic Disorders
Fibrosis is defined by the pathological accumulation of ECM
proteins, which is in essence an exaggerated wound healing
response that interferes with normal organ function (Neary
et al., 2015). Fibrosis contributes to the morbidity and
mortality associated with organ failure in a variety of chronic
diseases affecting the lung, kidneys, eyes, heart, liver, and skin
(Wang X. et al., 2011). High expression of CTGF is induced
by many cytokines (e.g., TGFβ, VEGF, and integrins) and
conditions associated with pathophysiology in fibrotic tissue
(Oliver et al., 2010). CTGF activates myofibroblast formation
by transdifferentiating other cells, such as resident fibroblasts,
and epithelial cells (Lipson et al., 2012). CTGF also increases
the expression of different cytokines, including TGFβ, VEGF,
and integrins, which in turn further increase CTGF expression,
resulting in positive feedback loops (Yang et al., 2010). Among

various fibrotic diseases, CTGF has been extensively studied in
pulmonary fibrosis (Allen and Spiteri, 2002), Cardiac fibrosis
(Dorn et al., 2018), liver fibrosis (Gressner and Gressner,
2008), renal fibrosis (Toda et al., 2018), Duchenne muscular
dystrophy (DMD) (Morales et al., 2011), and ocular disorders
(Kubota and Takigawa, 2015).

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive,
and fatal pulmonary fibrotic disease with unknown etiology
(Puglisi et al., 2016). Excessive ECM disposition and fibrosis
due to the imbalance between the profibrotic and antifibrotic
events is the primary event of IPF. Plasma CTGF levels
are significantly higher in patients with IPF than healthy
volunteers (Kono et al., 2011). CTGF-deficient animals have
fewer myofibroblasts and ECM disposition, indicating that CTGF
is necessary for the induction of fibrosis in these animals (Liu
et al., 2011). Overexpression of CTGF, in cooperation with TGFβ,
is profibrotic and exacerbates ECM production in animal lung
tissue (Sonnylal et al., 2010). The severity of alveolitis and fibrosis
in the mouse model of lung fibrosis was markedly attenuated by
CTGF inhibition (Wang X. et al., 2011).

COVID-19 (Coronavirus disease 2019) is caused by a
novel coronavirus, named as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), and has emerged as a pandemic
and a public health crisis of global proportions (Harapan
et al., 2020). The pathological changes of severe COVID-19
include diffuse alveolar damage and multi-organ dysfunction
(Li et al., 2020). Lung fibrosis is deeply involved in COVID-19
development. Pulmonary fibrosis was observed in patients with
COVID-19 (Ye et al., 2020) and in the fatal cases of COVID-
19 (Delpino and Quarleri, 2020; George et al., 2020). About 40%
of patients with COVID-19 develop acute respiratory distress
syndrome (ARDS) that results in lung fibrosis as a long-term
outcome (Gibson et al., 2020). CTGF and TGFβ were found to
be increased in the alveolar epithelial cells inoculated with SARS-
CoV-2 (Xu et al., 2020). As a potential therapeutic target of
fibrosis, the anti-CTGF therapies are desirable to mitigate lung
fibrosis in severe COVID-19 and facilitate COVID-19 recovery.

Chronic liver disease can lead to the permanent loss of
hepatocyte mass and replacement by fibrotic tissue, which can
ultimately lead to severe architectural disturbance (Ramazani
et al., 2018). CTGF is highly expressed in fibrotic livers and
its level in sera correlates significantly with fibrogenic activity
(Gressner and Gressner, 2008). Although a lot of attention has
gone to the collaboration of TGFβ and CTGF to pro-fibrotic
effect, CTGF may also contribute to the ECM accumulation
in fibrotic tissues by direct molecular interactions with matrix
components (Gressner and Gressner, 2008). For example, CTGF
induces adhesion of activated HSCs by the interaction between
CT domain to integrin αvβ3 and heparan sulfate proteoglycans
(HSPGs) (Gao and Brigstock, 2004). Some studies have shown
that CTGF inhibition could reduce liver fibrosis in experimental
and clinical settings (Han et al., 2012; Schippers et al., 2017).

Cardiac fibrosis is a common pathologic consequence of stress
insult to the heart and often occurs in the context of hypertension
and diabetes mellitus. Cardiac fibrosis is characterized by
abnormal deposition of fibrotic ECM that compromises cardiac
function (Dorn et al., 2018). The abundance of mRNA for
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CTGF is positively correlated with myocardial fibrosis areas in
diastolic dysfunction patients (Koitabashi et al., 2007). Serum
response factor (SRF), a transcription factor that could promote
the proliferation of cardiac fibroblasts, induced the expression
of CTGF in mouse cardiomyocytes (Angelini et al., 2015).
CTGF deletion effectively inhibited TGFβ-induced collagen
production in mouse embryonic fibroblasts (Dorn et al., 2018).
Administration of the CTGF-antibody significantly improved
cardiac fibrosis and enhanced left ventricular function in the
mouse model (Koshman et al., 2015). However, CTGF inhibition
for the treatment of heart diseases has not been studied in
clinical trials.

Kidney fibrosis is a final common pathway of chronic
kidney disease (CKD) irrespective of etiology. The excessive
deposition of ECM in the interstitial compartment leads to
scar tissue formation. Upon injury, tubule epithelial cells may
undergo EMT which results in tubular function impairment,
triggers cell cycle arrest and promotes the release of CTGF
(Zhou and Liu, 2016). Thus, overexpression of CTGF has
been observed in many renal fibrotic disorders including
diabetic nephropathy (DN), chronic allograft nephropathy, IgA
nephropathy (Yin and Liu, 2019). CTGF derived from proximal
tubule epithelial cells (PTC) mediated both renal fibroblast
proliferation and myofibroblast differentiation. Moreover, it
was shown that CTGF expression was induced in primary
PTC, through a myocardin-related transcription factor (MRTF)
and SRF pathway (Sakai et al., 2017). Apart from TGFβ and
integrins, CTGF could also interact with LRP6 and activate Wnt
pathway to enhance collagen expression in tubular epithelial
cells in vitro (Yang et al., 2015). CTGF inhibition significantly
ameliorates the development of renal interstitial fibrosis in vivo
(Yokoi et al., 2004).

In DMD and the mdx mouse model, the resultant myofibre
degeneration and necrosis caused by the absence of the
cytoskeletal protein dystrophin lead to a progressive loss of
muscle mass, increased fibrosis and ultimately fatal weakness
(Morales et al., 2013). Elevated levels of CTGF mRNA is
found by RT-PCR analysis in the muscles of DMD patients
(Sun et al., 2008). And CTGF activity in the DMD model is
positively correlated with the number of necrotic-regenerative
foci and mRNA levels of fibrotic markers (Morales et al.,
2018). TGFβ inhibition or CTGF suppression can reduce the
fibrotic phenotype in the mdx mouse model (Taniguti et al.,
2011; Morales et al., 2013). CTGF causes accumulation of
ECM through ERK phosphorylation possibly via the interaction
with HSPGs (Ramazani et al., 2018). Anti-CTGF treatment
shows better muscle strength in isolated muscles and reduced
skeletal muscle impairment, apoptotic damage, and fibrosis
(Morales et al., 2013).

A number of ocular diseases such as diabetic retinopathy,
myopia, and glaucoma are shown to be associated with aberrant
CTGF expression (Winkler et al., 2012; Yan and Chaqour, 2013).
In diabetic retinopathy, increased CTGF contributes to the
increased levels of TGFβ, retinal cell apoptosis, and the number
of myofibroblasts (Yang et al., 2010). Synergistically with TGFβ,
CTGF causes cellular changes (myofibroblastic phenotype) and
ECM accumulation in myopia and glaucoma (Yan and Chaqour,

2013). In glaucoma, pre-treatment of human cribrosa cells
with anti-CTGF antibody reduced ECM production such as
fibronectin and fibrillin-1 (Wallace et al., 2013)

In summary, CTGF is a central mediator of tissue remodeling
and fibrosis. It could interact with protein TGFβ through VWC
domain and integrin αvβ3 through CT domain to accumulate
ECM and promote fibrosis (Lipson et al., 2012). Moreover,
integrins could further promote TGFβ interaction with its
receptors, implying VWC domain and CT domain have a
synergetic effect in fibrosis (Henderson and Sheppard, 2013).
Meanwhile, multiple positive feedback loops of CTGF-TGFβ

and CTGF-integrins could enhance the fibrosis progress (Lipson
et al., 2012). CTGF could be a promising therapeutic target for
fibrosis diseases. CTGF inhibition could enable organs to restore
their normal wound healing response and their normal structure
and function.

Inflammatory Diseases
Inflammation is a normal reaction of organs and tissues to protect
themselves against a variety of toxic or pathological intrusions
(e.g., bacterial infections). The inflammation enables the immune
system to efficiently remove the injurious stimuli and initiate
the healing process (Chen et al., 2018). In contrast, uncontrolled
or sustained inflammation is the underlying cause of many
inflammatory diseases such as rheumatoid arthritis (RA) and
osteoarthritis (OA). The most common functions of CTGF in
inflammatory diseases are to promote the recruitment of immune
cells, the production of cytokines, and angiogenesis.

Rheumatoid arthritis is a chronic inflammatory disorder and
characterized by leukocyte infiltration, neovascularization,
articular cartilage destruction, and synovial membrane
inflammation associated with pain and loss of joint function
(Kular et al., 2011). Previous studies found that the expression
level of CTGF was significantly increased in the fibroblasts and
synovial fluid of RA patients compared with the healthy (Wang
et al., 2012; Yang et al., 2017). The contribution of CTGF to
the pathogenesis of RA comes from the interaction of CTGF
domains with its binding proteins. CTGF can enhance pathologic
proliferation of T cells and production of interleukin 17 (IL-17)
in mouse models through CT domain (Nozawa et al., 2013;
Rodrigues-Diez et al., 2013). Apart from pro-inflammatory
function, CTGF also causes articular damage by increasing
osteoclastogenesis (Nozawa et al., 2009). CTGF could enhance
osteoclastic function through the activation of integrin αVβ3
mediated pathways such as ERK1/2 (Nozawa et al., 2009).
Multiple CTGF antibodies have shown the ability to neutralize
osteoclastogenesis and formation of tubular networks, which
indicates that CTGF might serve as a potential therapeutic agent
in the treatment of RA (Miyashita et al., 2016).

Osteoarthritis is the most prevalent joint disease and a
common cause of joint pain, functional loss, and disability
(Robinson et al., 2016). The pathogenesis of OA involves the
degradation of cartilage, hypertrophy, and ectopic growth of
bony structures in the joints, and the inflammatory cells in the
surrounding tissues (Itoh et al., 2013). CTGF has been found to
be the most abundantly expressed growth factor in chondrocytes
of human patients with severe OA (Zhang et al., 2002). CTGF
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is usually up-regulated in synovial fluid of OA that stimulates
the production of inflammatory cytokines, such as IL-6, which is
induced by CTGF-αvβ5-JNK pathways (Liu et al., 2012; Tu et al.,
2019). In vivo, deletion of CTGF increased the thickness of the
articular cartilage and protected mice from OA (Tang et al., 2018).
However, administration of recombinant CTGF into defective
articular cartilage could regenerate the cartilage in the OA model
(Nishida et al., 2004). IGFBP and CT domains have been involved
in chondrogenesis (Takigawa, 2013), which might contribute to
the protective role of CTGF in OA.

Alzheimer’s disease (AD) is characterized by the deposition
of amyloid-β peptide (Aβ) which triggers pro-inflammatory
pathways and secrete inflammatory cytokines, and this
inflammatory response can become toxic and harmful to
neuronal cells (Frost et al., 2019). Elevated CTGF expression is
observed in brain neurons and astrocytes from AD patients, and
its expression level positively correlates with the progression of
clinical dementia (Ueberham et al., 2003). CTGF could facilitate
the production of cytokines and chemokines by astrocytes and
enhance the recruitment of immune cells such as mononuclear
cells, leading to locally augmented immune response (Lu et al.,
2019). CTGF also plays important roles in other brain diseases,
such as Parkinson’s disease, brain injury, glioblastoma, and
cerebral infarction (Mann et al., 2017). However, the underlying
mechanisms of CTGF in brain disorders remains unclear.

In inflammatory disorders, CTGF exerts pro-inflammatory
functions mostly via interaction with integrin αvβ3 and αvβ5, in
which CT domain might be responsible for this function.

CURRENT THERAPEUTIC STRATEGY
TARGETING CTGF

Connective tissue growth factor is considered as a therapeutic
target to combat cancer, fibrosis and other related disorders in a
variety of organs, and tissues. There are many approaches such as
antibodies, synthetic peptides, small interfering RNAs (siRNAs),
and antisense oligonucleotides (ASOs), targeting CTGF to exert
therapeutic effect (Table 4).

Antibodies and Peptides
Humanized monoclonal antibodies are particularly well suited as
blocking agents for CTGF activities and thus hold promise as
potential therapeutics. Currently, multiple antibodies targeting
different domains of CTGF have been studied. FG-3019
(pamrevlumab), the most widely studied antibody, is a fully
human recombinant DNA-derived CTGF-targeted monoclonal
antibody (Brenner et al., 2016). FG-3019 targets VWC domain
of CTGF and directly against the sequence (Cys142–Gly157)
that is not conserved between CCN family members (Wang Q.
et al., 2011). FG-3019 could reduce fibrosis in the liver,
pancreas, lung, and skeletal muscles (Gonzalez et al., 2018)
and block the progression of tumors including mesothelioma,
acute lymphoblastic leukemia, ovarian cancer, melanoma and
pancreatic cancer in animal studies (Leask, 2020a; Sgalla et al.,
2020). FG-3019 has been granted Orphan Drug Designation by
the U.S. Food and Drug Administration in several diseases such

as IPF and DMD (Leask, 2020b). FG-3019 researches have been in
phase 3 clinical trial for the treatment of IPF and locally advanced
unresectable pancreatic cancer (LAPC), and in phase 2 clinical
trial for the treatment of DMD and acute COVID-19 disease,
respectively (Barbe et al., 2020; Herbelet et al., 2020; Sgalla et al.,
2020). The proportion of IPF patients with disease progression
is significantly lower in the FG-3019 group than in the placebo
group (10.0 vs. 31.4%), and FG-3019 demonstrates a safety profile
similar to that of placebo (Richeldi et al., 2020). There have been
other antibodies in the pre-clinical stage such as FG-3149 and
three self-developed antibodies which target VWC, CT, TSP1,
and VWC domain of CTGF, respectively, and have shown anti-
fibrosis effects (Tong and Brigstock, 2006; Ikawa et al., 2008;
Wang X. et al., 2011; Koshman et al., 2015).

It has been reported that CTGF could be inhibited by
other CCN family members such as CCN3, and CCN3
could be a potential anti-fibrotic treatment (Peidl et al.,
2019). Although the exact mechanism of CTGF inhibition
by CCN3 is unclear, two modified synthetic peptides derived
from CCN3 (BLR-100 and BLR-200) have shown a promising
inhibitory effect on CTGF expression and are evaluated in
pre-clinical studies (Resovi et al., 2020). BLR-100 and BLR-
200 could reduce tumor angiogenesis, fibrosis, and necrosis in
pancreatic ductal adenocarcinoma (PDAC) model, which alters
the tumor microenvironment and increases the tumor response
to chemotherapy (Resovi et al., 2020).

siRNAs and ASOs
The other strategies, siRNAs and ASOs, which have a high
specificity to the target gene, have also been used in CTGF-
targeted therapies. RXI-109 is a new class of stable, CTGF-
targeted, self-delivering siRNA (Byrne et al., 2013; Martinez et al.,
2015). Intradermal injection of the RXI-109 results in robust,
dose-dependent, long-lasting reduction of CTGF in a rodent
model of dermal wound healing. Silencing of CTGF also impacts
both fibrotic markers, myofibroblast differentiation, and collagen
deposition (Libertine et al., 2014). A phase 2 clinical study was
conducted with RXI-109 to evaluate its impact on the reduction
of hypertrophic scar formation after scar revision surgery. The
study successfully meets the primary effectiveness objective with
statistically significant outcomes for improved visual appearance
for RXI-109 treated scar over control. RXI-109 also meets the
secondary objective as it is shown to be safe and well tolerated
(Barefoot et al., 2018). Another two siRNA drugs, OLX-101 aim
at hypertrophic scar is currently under phase I clinical trial.
OLX-201 aims at IPF is being evaluated in pre-clinical studies
(Nikam and Gore, 2018).

An antisense oligonucleotide (EXC-001) has been developed
to inhibit CTGF production and reduce CTGF-driven collagen
deposition and scar formation (Jensen et al., 2018). The
mechanism of EXC-001 action is to bind to CTGF mRNA
and inhibit the expression of CTGF protein. In a randomized,
double-blind, placebo controlled study, significant reductions
in scar severity were observed following treatment with EXC-
001 (Jensen et al., 2018). EXC-001 was well tolerated, with no
serious adverse effects and no changes in laboratory parameters
considered related to the study drug (Jensen et al., 2018).
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Current therapeutic strategies targeting CTGF mentioned
above have shown moderate to promising results in different
diseases. However, there still have some concerns for these
strategies. Firstly, anti-CTGF monoclonal antibodies are likely
to be rapidly cleared and therefore need to be administered
at higher doses and/or more frequently (Brenner et al., 2016).
Secondly, the higher rate of infection was observed in FG-3019
group compared to the placebo group (respiratory tract infection:
30% vs. 21%; Urinary tract infection: 20% vs. 8%) (Richeldi
et al., 2020), which might suggest that anti-CTGF antibodies
have a negative effect on the immune system. Thirdly, anti-CTGF
antibodies may exert negative effects on skeletal development
since treatment with CTGF antibodies inhibited chondrogenesis
in vitro (Arnott et al., 2011). In terms of siRNAs and ASOs,
there are some limitations including: (i) low specificity that
can lead to toxicities, (ii) poor cellular delivery as a result
of difficulties in biological membrane crossing (Chery, 2016;
Setten et al., 2019). Although they have shown promising results
in anti-scarring, more investigations are needed to test the
therapeutic promise in tumors and severe fibrotic disorders
such as IPF.

THE PERSPECTIVE FOR THE DRUG
DISCOVERY OF THE NEXT GENERATION
OF CTGF INHIBITORS

Structural Elements for CTGF-Targeted
Therapies
Through the interaction of CTGF domains with a variety
of proteins, the deregulation of CTGF expression or activity
contributes to the pathobiology of various diseases including
cancers, fibrotic disorders, and inflammatory diseases. In cancers
and fibrotic disorders, both CT domain and VWC domain
contribute to the development of diseases, and these two

domains may have a synergic role. For example, tumor
migration can be activated by the EMT process from the
binding between VWC domain with TGFβ (Wendt et al.,
2010; Zhu et al., 2015), and the angiogenesis from the binding
between of CT domain with integrin αvβ3 (Wang L. H.
et al., 2017). Moreover, both interactions of CTGF(VWC)-
TGFβ and CTGF(CT)-αvβ3 contribute to the ECM accumulation
in fibrotic disorders (Gao and Brigstock, 2004; Lipson et al.,
2012). Multiple domains should be taken into consideration
for the maximizing the anti-fibrosis or anti-tumor effects. The
targeting sequence needs to be carefully selected since the
interaction of CT domain and LRP6 contributes to skeletal
development (Kanaan et al., 2006). CTGF shares an identity
of 30–50% in amino acid sequence with other CCN family
proteins which have demonstrated critical biological functions
(Schild and Trueb, 2004). The drugs targeting CTGF should
not interfere with the function of other CCN family members,
therefore, the less conserved motif in CTGF is a better choice
for drug discovery.

New Technology for Drug Discovery
Targeting CTGF
Although antibodies are now established as a key therapeutic
modality for a range of diseases, their limited stability,
complicated in vivo production, and typically undefined cross-
reactivity are challenges to overcome (Voskuil, 2014). Aptamers
are short (20–70 bases) single stranded oligonucleotides that bind
to their targets through 3D conformational complementarities
with high affinity and specificity (Yu et al., 2016). The aptamer-
based drug ‘Macugen’ was approved by the Food and Drug
Administration in 2004 for the treatment of neovascular age-
related macular degeneration and a series of aptamer-based
drugs are in clinical pipelines (Zhang et al., 2020). Aptamers are
considered to be strong chemical rivals of antibodies due to their
inherent advantages over antibodies. Compared to antibodies:
(i) aptamers can be produced using cell-free chemical synthesis

TABLE 4 | Summary of drugs targeting CTGF.

Drug name Indication Development stage Molecule type Mechanism

FG-3019 IPF Phase III Antibody Targeting VWC domain (Sgalla et al., 2020)

FG-3019 LAPC Phase III Antibody Targeting VWC domain (Sgalla et al., 2020)

FG-3019 DMD Phase II Antibody Targeting VWC domain (Sgalla et al., 2020)

FG-3019 COVID-19 Phase II Antibody Targeting VWC domain (Sgalla et al., 2020)

FG-3149 DCM Pre-clinical Antibody Targeting VWC domain (Koshman et al., 2015)

Unnamed Pulmonary fibrosis Pre-clinical Antibody Targeting CT domain (Wang X. et al., 2011)

Unnamed Liver fibrosis Pre-clinical Antibody Targeting TSP1 domain (Tong and Brigstock, 2006)

Unnamed Systemic sclerosis Pre-clinical Antibody Targeting VWC domain (Ikawa et al., 2008)

BLR-100/BLR-200 PDAC Pre-clinical Peptide Synthetic peptides derived from an endogenous inhibitor
(CCN3) of CTGF (Resovi et al., 2020)

RXI-109 Hypertrophic scar/Retinal Scar Phase II/Phase II siRNA Silencing CTGF (Barefoot et al., 2018)

OLX-101 Hypertrophic scar Phase I siRNA Silencing CTGF (Nikam and Gore, 2018)

OLX-201 Pulmonary fibrosis Pre-clinical siRNA Silencing CTGF (Nikam and Gore, 2018)

EXC-001 Hypertrophic scar Phase II Antisense oligonucleotide Silencing CTGF (Jensen et al., 2018)

IPF, idiopathic pulmonary fibrosis; LAPC, locally advanced unresectable pancreatic cancer; DMD: Duchenne muscular dystrophy; COVID-19, coronavirus disease 2019;
DCM, dilated cardiomyopathy; PDAC, pancreatic ductal adenocarcinoma.
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and are therefore less expensive to manufacture, (ii) aptamers
exhibit extremely low variability between batches and have
better controlled post-production modification, (iii) aptamers
are minimally immunogenic, (iv) aptamers are more stable at
room temperature and longer shelf life, and (v) aptamers are
small in size and could bind to regions which are inaccessible
to antibodies (Kaur et al., 2018). Moreover, aptamers could
specifically target a specific protein from family proteins with
highly similar structures (Yu et al., 2016).

In summary, CTGF has four domains that interact with a
variety of proteins such as growth factors, integrins, and matrix
proteins. These interactions affect multiple signaling pathways
and make CTGF a key regulator and potential therapeutic target
in fibrotic, inflammatory diseases, and cancers. A variety of
CTGF antagonistic strategies have been developed in numerous
experimental systems to reverse these diseases. Novel CTGF-
targeted therapeutic strategies, such as aptamer-based CTGF-
targeted strategies, are desired for the treatment of these diseases.
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