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Abstract

Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part
because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant
sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by
prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can
strategically delay decision onset to increase response accuracy. To address this question we measured the time course of
selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these
measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed
for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that
subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a
free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the
decision process that can be adjusted to effectively improve decision accuracy.
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Introduction

Humans have the remarkable ability to make fast and accurate

decisions in a seemingly endless number of different tasks [1–3].

However, in some situations it may be unnecessary, undesirable or

even counterproductive to initiate a decision. Despite intense

investigation of virtually every other component of the decision

process, it still not clear whether decision onset is under cognitive

control, or whether decisions are initiated automatically by the

presence of an appropriate sensory stimulus. Here we tested

whether humans will delay the onset of a decision process to

increase response accuracy in a situation when it is beneficial to

ignore the initial pulse of sensory evidence that can be dominated

by salient rather than task-relevant information.

Most decisions are based on a subset of stimuli that appears in

close temporal and/or spatial proximity to other, task-irrelevant

information. Often, the irrelevant stimuli interfere with the

processing of the relevant stimuli especially when the distractors

are physically salient [4–7] and/or are associated with behavioral

responses that are similar to those of the current task [1,2]. Thus,

accurate decision-making critically depends on top-down attention-

al selection that enhances task-relevant and/or suppresses irrelevant

information [8,9]. The engagement of selective attention takes time

[10,11], and it has been suggested that errors occur in part because

the decision process (evidence accumulation) is initiated before

selective attention has isolated task-relevant sensory information

from salient but irrelevant distractors [11]. Nevertheless, it has never

been suggested that subjects might increase accuracy by delaying

the onset of the decision process (the onset mechanism, Figure 1). This

possibility is not precluded by the generally accepted finding that

subjects trade speed for accuracy by increasing the amount of

evidence that will trigger a response (the threshold mechanism) [12–15],

as both mechanisms could be used in parallel.

Many studies of decision-making have presented an isolated

stimulus on a uniform background. The lack of distractors

minimizes the need for selective attention and allows the simplifying

assumption that the rate of evidence accumulation (i.e. drift rate)

stays constant over the time course of the decision. In such

conditions, the onset of the decision process does not affect response

accuracy and cannot be distinguished from factors that influence

non-decision time. Decision onset only has an effect on accuracy if

the quality of the sensory information changes over time, as may

happen when selective attention gradually isolates the relevant

information from among distractors. The more salient the distractor

and the longer it takes to re-allocate attention to the target stimulus,

the more beneficial it will be to delay decision onset.

To test whether subjects are able to delay decision onset, it is

necessary to (1) use a task in which drift rate is known to change

over time and (2) explicitly measure its time-course in order to

predict the effects of decision onset on accuracy. While it is

generally accepted that selective attention leads to changes of drift

rate in Stroop-like response interference tasks [11,16,17], explicit

quantitative measurements of the time course of selective attention

within these tasks have been difficult to acquire. Without these

measurements, it is not possible to quantify the effects of decision

onset and test whether subjects delay decision onset to increase

response accuracy.

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e89638

http://creativecommons.org/licenses/by/4.0/


In the current set of experiments we present two novel methods:

(1) a motion interference task which requires feature-based

selective attention and has a non-stationary drift rate and (2) the

cyclic deadline paradigm which allows us to estimate the time-

course of selective attention and the resulting changes in drift rate.

This enabled us to answer two main questions regarding the role

of decision onset for optimal decision-making: (1) Is delaying

decision onset an effective way to increase response accuracy? (2)

Do humans delay decision onset when asked to stress decision

accuracy over speed? The answers will shed light on an important

but rarely studied aspect of the decision process, namely its

initiation. In particular, it will show whether decisions are initiated

automatically by the presence of appropriate stimuli, or whether

the time of decision onset can be controlled to meet task

requirements.

Methods

Ethics Statement
All participants provided written signed informed consent after

explanation of study procedures. Experiments and study protocol

were approved by the Institutional Review Boards of Columbia

University and New York State Psychiatric Institute.

Experimental overview
Our goal was to determine whether decision onset is under

cognitive control and used to adjust speed and accuracy. We

developed a motion interference task in which two sets of moving

dots were spatially superimposed. This task requires that feature-

based selective attention identify the direction of motion of the

target dots, while ignoring a set of more salient distractor dots. Our

study was divided into three parts. First, we measured reaction

times (RT) and accuracy when subjects were asked to stress either

speed or accuracy (RT paradigm). Second, using a novel

response signal paradigm (cyclic deadline or CD paradigm, see

below), we measured accuracy as a function of how much time

subjects were allowed to process the stimulus before being forced

to respond. Using a modified diffusion model, data from the CD

paradigm allowed us to estimate the duration of the stimulus

selection process as well as drift rate as function of time from

stimulus onset. Third, using the time-dependent drift rate

estimated from the cyclic deadline paradigm, we modeled RT

and accuracy that was previously observed in the RT paradigm.

Figure 1. represents a simplified schematic of the problems that arise when decisions are made in the presence of salient but
irrelevant distractors. The lowest panel represents a quick overview of the relevant processing stages. The time-course of the sensory
representation is determined by afferent delays, the time it takes for sensory evidence to develop stimulus-selective responses, and the time it takes
selective attention to extract the relevant sensory information from salient distractors. The timing of the decision-making stage is determined by the
onset of the integration process and its termination. The duration of the last stage of processing is determined by the efferent delays. For the current
purposes, we assume that the afferent delays as well as the delay for stimulus-selective sensory information to reach the decision stage is hard-wired
and cannot be changed through cognitive control. However, we test the possibility that the onset of the decision process may be under cognitive
control. The middle panel provides a more detailed look at the mix of momentary sensory information available to the decision process as a function
of time: the initial phase is dominated by random internal fluctuations or the first pulse of sensory information that is not stimulus selective (grey), the
second phase is dominated by physically salient stimuli (orange) and the third phase is dominated by the task-relevant stimuli, regardless of salience
(blue). The time of transition from the first to the second phase is determined by afferent delays, the transition from the second to the third phase
depends on how quickly selective attention can be allocated to the target. The top panel examines the effects of adjusting decision onset: if the
decision process is initiated early, it will integrate information from physically salient stimuli that may or may not be relevant for the current task. If
decisions are initiated late, response latencies may be prolonged unnecessarily.
doi:10.1371/journal.pone.0089638.g001
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Our results show that the onset mechanism can be a more effective

way to trade speed for accuracy than the threshold mechanism

and that subjects implement both mechanisms during perceptual

decision-making.

Experimental setup
The experiments were performed on two MacBook Pro

computers, with 13 and 17-inch screens. Individual subjects were

tested consistently in one of the two setups. The task was

programmed and executed with Matlab2009a (www.mathworks.

com) using Psychtoolbox3 (www.psychtoolbox.org). Experiments

were conducted in a dark experimental room. Screen resolution

was set to 1280 by 800 pixels. Viewing distance was 24 inches.

Subjects
A total of 13 subjects performed the RT paradigm. One of the

13 subjects was an author of the study. The other 12 subjects were

naı̈ve to the purpose of the study. Six of these subjects (1 author

and 5 naı̈ve subjects) went on to the cyclic deadline paradigm. In

addition, a seventh subject (another one of the authors) performed

the cyclic deadline task without participating in the RT paradigm.

In summary, a total of seven human subjects (1 female, 5 naı̈ve),

between 22 and 41 years old (mean: 30 years), participated in the

cyclic deadline paradigm. Subjects 1 and 2 corresponded to two of

the authors of the study, subjects 3-7 were naı̈ve. A smaller

number of subjects was used in the CD paradigm because (1) data

collection in this task is very time-intensive and (2) there was less

variability between subjects, thus reducing the need for a bigger

sample. Results from the CD paradigm may be less variable

because the paradigm minimized the range of available strategies

and their impact on the results.

The motion-interference task
Subjects viewed stimuli that consisted of two spatially superim-

posed streams of moving random dots. One stream was darker,

and the other brighter than the uniform grey background [18].

Prior to stimulus onset, a luminance cue indicated which dot-

stream was to be attended. The subjects indicated the direction of

motion of the target dots with a button press of the left or the right

index finger while ignoring the distractor dots. The distractor dots

moved either in the same direction (congruent condition), the

opposite direction (incongruent condition), or orthogonal to the

target dots (neutral condition). For all trials, the distractor dots had

higher contrast relative to background than the target dots. This

ensured that the distractor motion was more salient than the target

motion [19,20], making selective attention necessary for the

successful performance of the task. The task was presented to the

subjects both in the context of the cyclic deadline paradigm and as

a free reaction time task.

Stimuli. The physical parameters of the dots were set such that

the task could be performed with greater than 99% accuracy in the

absence of distractor dots. Luminance value of the background

was set to the mean luminance of the monitor. The luminance of

the target dots was either 32% above (‘‘white’’ dots) or below

(‘‘black’’ dots) the mean luminance. Distractor dots had luminance

values equal to the maximum (‘‘white’’) or minimum (‘‘black’’)

luminance of the monitor. Motion coherence was set to 1.0 for

both target and distractor dots. Each dot stream consisted of 50

dots. All dots had a lifetime of 30 frames. Dots were presented

within a 128 pixel wide circular aperture. Any dot that moved

outside the aperture was replotted within the aperture at a

randomly selected position. A stationary, constantly illuminated

fixation dot was presented in the center of the aperture.

Free reaction time (RT) paradigm. In the free reaction

time version of the task (RT paradigm), subjects were asked to

perform the motion-interference task either as quickly as possible

(speed instruction) or as accurately as possible (accuracy instruction).

Subjects performed 2 blocks of 162 trials each for the two speed-

accuracy instructions. The order of the speed and accuracy block

was randomized between subjects. It is important to note that in

both conditions, subjects were free to respond at any time after

stimulus onset.

Cyclic deadline (CD) paradigm. In the cyclic deadline

paradigm, trials were presented at regular intervals once every two

seconds (Figure 2, see also [21]). The cyclic nature of the task was

conveyed to the subjects by regular clicks that occurred once every

second. The cue indicating which stimulus to attend coincided

with the first click. The dot stimuli appeared at varying times prior

to the second click and disappeared in time with the second click.

Subjects were required to respond at the time of the second click,

without regard to how long the stimulus had been on the screen.

Viewing duration was manipulated between blocks of 60 trials

lasting from 1 to 30 frames (16.7–500 ms).

Training. Prior to the RT paradigm, subjects performed one

practice run to acquaint them with the task. The cyclic deadline

paradigm was more challenging and required several training

sessions. In the initial training sessions they learned to perform the

task with very long viewing times (500 ms) until reaching a

criterion of more than 95% correct responses for all trial types.

Subsequent training sessions were performed with very short

viewing times (#83 ms) to accustom subjects to respond at the

required deadline even when they could not acquire sufficient

information to perform the task correctly. In this case, subjects

were required to respond randomly with either the left or right

index finger. Training continued until the standard deviation of

the response was ,50 ms. In the final stage of training, subjects

performed the task with viewing times ranging from 16.7 to

500 ms.

Definitions
In the cyclic deadline task, intended processing time was defined as

the duration that subjects were allowed to process the stimulus

before being required to respond. This value was identical to the

duration of the stimulus on the screen. Actual processing time (PT) was

defined as the time of the response minus the time of stimulus

onset. Thus, PT represents the intended processing time plus trial-

to-trial variability in response time. In the free reaction time

version of the task, we use the term reaction time (RT) when referring

to the same quantity, i.e. the time between stimulus onset and

response. The use of different abbreviations is meant to emphasize

whether response time was under the subject’s (RT) or experi-

menter’s (PT) control. Trials were grouped according to the

direction of the distractor dots relative to the target dots

(congruent, incongruent, and neutral). Trials with processing

times outside a window of 6. two standard deviations around the

mean processing time for the corresponding condition were

excluded from the analysis.

The biased competition model of decision-making
Overview. We used a simple, physiologically inspired com-

putational model with 6 free parameters to fit the behavioral data

from the cyclic deadline paradigm (Figure 3 and Table 1). After

determining several key variables based on the fits to the cyclic

deadline paradigm, the model was expanded to explain accuracy

and RT distributions in the RT paradigm. The model consisted of

rate-coding units distributed in four layers that could be grouped

into two luminance and two direction-of-motion channels.
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Computational units in the input layer were selective for

luminance contrast and had temporal impulse responses that

converted the boxcar inputs into realistic neural dynamics. The

second layer simulated biased competition between the two

luminance channels. Units in the third layer were grouped into

two motion channels that received inputs from both luminance

channels. Information from the two luminance channels was

combined within each motion channel and passed through a non-

linearity. The fourth layer integrated the difference of the output

of the two motion channels over time. The input to the fourth

layer could be shunted by a gate that restricts the flow of

information to the integrator units (temporal gating). Overall, the

model is conceptually similar to other existing models of

interference tasks [22] with the exception that the time course of

competition between the luminance channels is directly deter-

mined by three explicit model parameters rather than indirectly

through the weights and temporal dynamics of recurrent

connections. Our modeling efforts are most closely related to a

recent model by White and colleagues [16]. The key difference is

the presence of the temporal gate that was not present in the

White model. With few exceptions [23,24], the majority of

decision models do not include a gating parameter. In the

particular case of decision-making under conflict, we are not

aware of any model that uses temporal gating.

Layer 1 – temporal dynamics. The units in layer 1 received

input from the two streams of dot-motion that were modeled as

box-car functions representing the presence or absence of the dots

on the screen. The amplitude of the boxcar was set to the absolute

value of the luminance contrast. Following standard procedure

[25] the visual input was smoothed by convolution with a gamma

kernel. For the gamma kernel we chose a shape parameter of 7

and scale parameter of 6 ms to provide a qualitative approxima-

tion to response properties of sensory neurons in early visual cortex

[26]. These values (as well as all other fixed parameter values

Figure 2. Cyclic Deadline Task. (A) A cue instructed subjects to attend to one of two streams of coherently moving random dots and report its
direction of motion by pressing a button with their left or right index finger. The relevant stream of target dots was either lighter than the
background, in which case the distractor was black, or darker than the background, in which case the distractor was white. The distractor dots could
move either in the same or opposite direction as the target (congruent and incongruent condition). In addition, the distractor could move upwards,
i.e. orthogonal to the axis of motion of the target dots (neutral condition). (B/C) The task was performed in a cyclic manner requiring a response from
the subject once every 2 seconds. The time of the intended response was indicated by an auditory click. Clicks were presented once every second to
convey a stronger sense of rhythm, but responses were only required on every other click, following the cue and stimulus presentation. Stimulus
duration was randomized between blocks of trials.
doi:10.1371/journal.pone.0089638.g002
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Figure 3. Biased competition model. The model combines two basic neural mechanisms: stimulus selection via biased competition between
different luminance channels (layer 2) and the reduction of noise by integrating over time (layer 4) with a total of 6 free parameters: 3 describing
biased competition, 1 describing the non-linear neural contrast response function, 1 scaling parameter, and 1 parameter describing non-decision
related delays. (Layer 1) The input to the system consists of two boxcar functions that indicate the presence of the two moving random dot patterns
with positive (white arrows) and negative luminance contrast (black arrows). In the first stage these inputs are filtered with a gamma-kernel to yield
realistic temporal dynamics for the encoding of visual information by sensory neurons. (Layer 2) Biased competition between mutually inhibitory
luminance channels is implemented as multiplicative weights s(t) for the target luminance and 1 - s(t) for the distractor where 0#s(t)#1. Prior to
stimulus onset, the weights of both luminance channels are equal (i.e. 0.5). To simulate the development of the biased competition in favor of the
target luminance (black-and-white inset in layer 2), the weight of the target stimulus increases from 0.5 to an asymptote. Three parameters determine
the time course of the competition: the time of the transition (t), the speed of the transition (s), and the asymptote (a). (Layer 3) The information from
each luminance channel is routed to both motion channels. A stimulus elicits activity only if it matches the preferred direction of the motion channel
(i.e. leftward or rightward motion). Activity from both luminance channels is summed within each motion channel. To simulate physiological neuronal
responses, the activity is passed through a non-linear, Naka-Rushton contrast response function. (Layer 4) The input to the integration stage is the
difference of the output of the right and leftward motion channel. In addition, neural noise is added in the form of a continuous Gaussian white noise
with a standard deviation of 1 arbitrary unit per second. The percentage of correct responses as a function of time is calculated as the mass of the
integrator above zero. When modeling the free reaction time version of the task, upper and lower response thresholds are included in the model. A
decision is aborted and considered correct/incorrect when the diffusion process reaches the positive/negative bound. In addition, the time of
integration onset t0 is assumed to be variable and under cognitive control.
doi:10.1371/journal.pone.0089638.g003

Table 1. List of the 10 parameters of the biased competition model of decision-making.

Cyclic deadline
paradigm

Reaction time
paradigm Valid Range Description

Non-decision time, ndt [ms] free free 0–500 Afferent and efferent delays in the system. Difference in non-
decision time between tasks/conditions were assumed to be
caused by differences of efferent delays

Onset of stimulus
selection process t [ms]

free fixed from CD paradigm 0–500 Defines when selective attention starts isolating the target
stimulus

Duration of stimulus
selection process s [ms]

free fixed/free (in some
versions)

0–500 Defines how long selective attention needs to isolate the target
stimulus

Asymptote of stimulus
selection process a

free fixed from CD paradigm 0.5–1 Defines how thoroughly selective attention will isolate the target
stimulus

Contrast response
parameter Iin

free fixed from CD paradigm 0–1 Defines the semi-saturation point of the contrast response function

Shape parameter of contrast
response, q

fixed/free in one
variant

fixed from CD paradigm 0.01–10.0 Defines the shape of the contrast response function. Fixed to 2
unless mentioned otherwise

Signal-to-noise ratio free fixed from cyclic task 0–100 Scalar that scales signal strength to the arbitrarily chosen noise
level of 1 au2/sec

Starting point variability,
Var[X(t0)]

0 fixed/free (in some
versions)

0–1 The variability of the integrator unit at the time of decision onset

Response threshold B NA free 0–10 Threshold for response initiation – the threshold mechanism

Decision onset t0 [ms] NA free 0–500 Onset of integration of sensory evidence – the onset mechanism

By default, six parameters were used to model the data from the CD paradigm. The top four bold-faced parameters are the core components of the model that define
how drift rate changes as a function of time from stimulus onset. The lower two bold-faced parameters were introduced to model behavior in the RT paradigm. Two
additional parameters (q and Var[X(t0)]) were allowed to vary in certain exploratory analyses.
doi:10.1371/journal.pone.0089638.t001
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described below) were never subjected to any optimization

procedure and were selected prior to the actual data analysis.

Layer 2 – biased competition. Layer 2 consisted of units

selective for either positive or negative luminance contrast and

mediated the biased competition between them. To that aim,

activity in units coding the target luminance was multiplied by the

attentional selection term s(t) with 0,s(t),1; activity in units

preferring the distractor luminance were multiplied by 1 - s(t).

Whenever s(t) was equal to 0.5, both luminance channels were

weighted equally. By setting s(t) to 1, the output of layer 2 was

determined exclusively by the target stimulus. This operation was

used to mimic biased competition between the two luminance

channels and can be thought of as a time-dependent weighting of

the two luminance channels. Note that the overall sum of the two

weights always added to 1. This is reminiscent of neurons in early

visual cortex that respond with intermediate firing rates when two

stimuli in their receptive field receive are attended to different

degrees [10].

Of particular importance was the time course of the selection

term s(t). By default s(t) was set to 0.5 at the beginning of a trial,

but it was allowed to increase towards an asymptote 0#a#1 over

the time course of each trial. The transition from 0.5 to a was

modeled by a Gaussian distribution function W that was scaled by

the term a - 0.5 and offset by 0.5:

s(t)~0:5z(a{0:5)W
t{t

s

� �
ð1Þ

In equation (1), t indicates the halfway transition point between

no and full stimulus selection, and s determines how fast the

transition occurs. The asymptote a determines how completely the

target stimulus is selected during the biased competition. We are

certain that other functions can also be used to model the temporal

dynamics of the selection process. Most likely, any sigmoidal

function with three parameters (asymptote, mean, and width)

would provide a reasonably good fit. Though we could have

estimated the three parameters of the selection process using the

single cell data of Desimone and colleagues [10], the evidence in

favor of the biased competition approach would be much stronger

if we were able to recover similar selection parameters directly

from our behavioral data. We also experimented with asymmetric

four-parameter sigmoidal functions, but were not convinced that

our data allowed us to fit the fourth parameter with sufficient

reliability.

Layer 3 – motion processing. Layer 3 consisted of two units

selective for left- and rightward motion, respectively. An implicit

third unit selective for upward motion was not explicitly modeled,

as in our simple framework its activity would not affect the

integrator unit in Layer 4 and hence, would not affect the output

of the model. The units in each motion channel received input

from both of the layer 2 luminance channels. The inputs were

filtered with a simplistic direction-selective receptive field: if the

direction of motion of the dots matched the preferred direction of

the unit, its activity was multiplied by 1; otherwise it was multiplied

by 0. The model could easily be expanded to include more realistic

speed-tuning profiles. However, at this point we tried to keep the

model as simple as possible and we do not believe that adding

realistic tuning curves would change the main results and

conclusions. Consequently, each stream of dots elicited activity

in one of the four joint direction and contrast-selective input

pathways to layer 3. The activity of the two luminance channels

was summed within each motion channel. The activity within each

motion channel was then divisively normalized using a Naka-

Rushton function:

Y (t)~
½y(t)q�
½y(t)q�zIin

ð2Þ

The Naka-Rushton function is a standard non-linear term used

to model the cortical gain control in a variety of settings

[25,27,28]. The exponent determines the shape of the non-

linearity, typically taking a value of ,2 [25]. To simplify the model

and reduce the number of free parameters, we fixed q to a value of

2. In one follow-up analysis we fit q to the population data and

recovered a value of 1.31. Using this value rather than q = 2, did

not change the main findings regarding decision onset; thus for all

remaining analyses we allowed q to remain fixed. The divisive

inhibition term Iin was a free parameter of the model. (Iin)
1/q

controls the midpoint of the saturation and is also referred to as the

semi-saturation point. The smaller Iin, the earlier the neurons

saturate their firing rate. The output of layer 3 and the effect of Iin

is illustrated in Figure S1.

Layer 4 – integration of evidence. Layer 4 consisted of a

single integrator unit that received input from the two layer 3

units. The inputs from the two layer 3 units had opposite signs.

The sign of the unit selective for the direction of motion of the

target was arbitrarily set to +1 and vice verse. The output of the

layer 4 unit was determined as integration over time of the two

inputs plus a noise term:

X (t)~

ðt
t0

j YT (t){YTð Þzn(t)dt ð3Þ

In equation (3), the subscripts Tand �TTdenote units with

direction preference equal and opposite to the direction of motion

of the target dots. The noise term n(t) was modeled as a white noise

process with mean 0 and standard deviation of 1 au/sec. j is a

scalar gain term that adjusts the amplitude of the inputs to the

arbitrarily chosen variability of the noise term. j is one of the free

parameters of the model. For a summary of all parameters of the

model see Table 1.

Equation 3 describes a straightforward extension of the standard

drift diffusion model (DDM) to situations with time-dependent

drift rate. The only new component that is not present in the

standard DDM is the variable t0, which refers to the time at which

the integrator starts its integration process and can be thought of as

a gate that regulates the flow of information to the integrator

indicating when the decision process is initiated. Alternatively, t0
can represent the time at which the value of the integrator is reset.

This reset may be related to the dip in firing rate that can be

observed in LIP neurons immediately after the onset of the

relevant sensory information [29]. The effect of the reset was

modeled by setting the state of the integrator at time t0 equal to a

Gaussian distribution with mean 0 and standard deviation sigma.

In the cyclic deadline paradigm, subjects could anticipate the

onset of the relevant stimuli and were encouraged to make the

most use of the available sensory information thereby allowing us

to assume that they began integrating information at the earliest

possible time. To model data from the cyclic deadline task, the

decision onset (t0) was therefore set to the time at which stimulus

selective information first reached the integrator unit. This

assumption is consistent with many diffusion models that do not

have an explicit gate parameter t0, but implicitly assume that

Optimal Decision-Making and Decision Onset
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integration starts as soon as information is available. Starting-point

variability was set to zero to model the data from the cyclic

deadline paradigm.

To model response accuracy in the cyclic deadline paradigm,

we made two assumptions: (1) the decision variable X(t) is not

bounded by a decision threshold, and (2) subjects have access to

the decision variable even though the integration has not

terminated at a response threshold. This was implemented by

allowing the model to choose the correct response when X(t) was

greater than zero at the time of the forced response, and the

incorrect response when X(t) was less than zero [30,31]. The

percentage of correct responses as a function of time was

calculated from the expected value and variance of X at time t:

PCor(t)~P X (t)w0ð Þ~W
{E½X (t)�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Var½X (t)�

p
 !

ð4Þ

where W is the distribution function of the normal distribution.

The variance of X(t) is given as the variance of the integrated white

noise process plus the variance of X(t) at the time t0 :

Var X (tjtwt0)½ �~(t{t0)Var½n�zVar X (t0)ð Þ~

(t{t0)zVar X (t0)½ �
ð5Þ

For the cyclic deadline task Var[X(t0)] was set to zero (see above).

The expected value of E[X(t)] was calculated from equation (3)

while setting the noise term n(t) to zero. In summary, response

accuracy in the cyclic deadline task as a function of processing time

was predicted with 6 free parameters. Table 1 provides a summary

of all free variables. Four of the free parameters determine drift

rate as a function of time during the trial. One parameter

determines non-decision time and the last parameters scales

stimulus strength relative to the noise amplitude that was

arbitrarily set to 1 au2/sec.

The model was fit to the data either for each subject separately,

or by combining all 7 subjects that performed the cyclic deadline

task. In order to combine subjects, we first fit the model to each

subject individually to estimate non-decision time. Before com-

bining data across subjects, we subtracted individual non-decision

time from processing time and added the mean non-decision time

averaged across all subjects. This allowed us to combine subjects

with different non-decision time.

Three general comments are in order to place these modeling

efforts into context. (1) We make no claim that our model is

superior to existing models when it comes to describing the

temporal dynamics of the stimulus selection/drift rate over time in

the cyclic deadline paradigm. Other models with a similar number

of free parameters will probably provide similarly good fits.

Rather, we use this specific model because its parameterization is

very descriptive on the level of abstraction that is relevant for our

analysis. (2) The key question that we try to answer with this model

is whether or not the temporal gating parameter, i.e., decision

onset, is necessary to model human behavior in the RT paradigm

(see below). (3) The key parameter of interest (decision onset in the

RT paradigm) is independent of the specific model that is used to

estimate drift rate from the cyclic deadline paradigm.

Modeling speed-accuracy tradeoff in the RT paradigm
The model as described above was used to predict the data from

the cyclic deadline paradigm where the termination of the decision

process was under experimental control. This variant of the model

never terminates a decision process by itself and hence could not

be used to predict reaction time distributions. In order to predict

reaction time distributions in the RT paradigm, we added a

mechanism that allowed the model to abort the decision process

(i.e. a decision threshold or bound, B) based on the amount of

differential evidence accumulated by the integrator unit. The

decision was terminated when the decision variable X(t) reached a

positive or a negative bound at 6B.

In a series of simulations, we allowed several parameters of the

model to vary in order to provide a satisfactory fit to the speed and

accuracy condition of the RT paradigm (for an example fit see

Figure S3). All 4 parameters that determine drift rate as a

function of time, as well as the scaling parameter j, were fixed to

the values estimated from the cyclic deadline task. Because not all

of the subjects in the RT paradigm had completed the cyclic

deadline paradigm, we decided to use the parameters from the

combined group-based fit, rather than the individual subject fits.

The use of the group-level parameters is supported by the finding

that all subjects had similar drift rate estimates.

In the RT paradigm, twelve of the subjects showed unimodal

RT distributions. In eight of these subjects it was not necessary to

remove any outliers. In four of these subjects, we removed a small

fraction of trials (,2%) with either untypically short or long RTs.

The remaining subject showed bi-modal RT distributions with a

clearly defined cluster of anticipatory responses that was larger in

the speed (10%) than accuracy condition (4%). These anticipatory

trials were excluded for the fitting of the RT distributions.

Some parameters were either not present in the cyclic deadline

model (decision bound B, and decision onset t0), or might take on

different values in the RT paradigm (non-decision time, starting-

point variability, stimulus selection time). The additional param-

eters in the RT paradigm had either one degree of freedom (same

value for both speed and accuracy condition) or two degrees of

freedom (different values for speed and accuracy condition). We

initiated the fitting process using the simplest model possible, in

which only Bound was allowed to vary between the speed and

accuracy condition. This model provided an unsatisfactory fit to

the data (data not shown) and it became clear that it was necessary

to allow non-decision time to vary between the two paradigms.

The resulting fits revealed that non-decision time was significantly

longer in the RT paradigm. This was true for all variants of the

model that we tested. A more detailed interpretation of this finding

can be found in the Discussion.

Model implementation, fitting routines, and model
evaluation

All computations were discretized at a temporal resolution of

2 ms and simulated numerically using in-house software pro-

grammed with the statistical software package R (Version 2.13).

Fitting was performed with the genoud function that combines a

genetic search followed by a standard gradient descent [32]. By

default, we used a limited genetic search to identify a good starting

point for the gradient descent method. The limited genetic search

consisted of 10 generations with 500 individuals in each

population. We used the default settings of the genoud function

regarding the proportion of different operators (Cloning: 65

individuals; Uniform Mutation, Boundary Mutation, Non-Uni-

form Mutation, Polytope Crossover, Simple Crossover, While

Non-Uniform Mutation, Heuristic Crossover: 62 individuals each).

After a burn-in period of 5 generations, a gradient descent was

conducted on the best individual of each generation using a quasi-

Newton method with enforced boundary conditions (L-BFGS-B).

In some instances we used a more extensive optimization

algorithm to test whether the limited search provides the best fit.
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The extensive optimization algorithm consisted of 100 generations

of 1000 individuals each with a burn-in period of 50 generations.

In all instances, the results from the full and limited search were

numerically identical. This is evidence that the limited genetic

search was sufficient to find the best possible fits. Hence, we used

the limited search in all remaining fitting procedures.

The goal of the fitting procedure was to minimize a log-

likelihood of the data given a particular set of free parameters. For

each of the 6 RT distributions for correct responses (congruent,

neutral, incongruent in the speed and accuracy condition), we

measured the 10th, 30th, 50th, 70th and 90th percentiles. We then

determined the probability that the model placed in each of the 6

RT bins, and calculated the log-likelihood of the data given a

specific set of parameters. Due to the limited number of trials in

the error condition it was not feasible to get good RT quantile

estimates for the error RT distributions. Hence, we used the limits

from the correct RT distributions to bin the RT distributions on

error trials of the corresponding distribution. In earlier efforts, we

calculated log-likelihoods using the 2 ms native temporal resolu-

tion of our model. We discontinued the use of 2 ms bins since the

fits were more sensitive to outliers. However, the initial fits that

were done using the 2 ms binning provided the same qualitative

results as the quantile binning procedure.

We used three different approaches to assess model fits: (1)

Wilkes chi-square tests for nested models, (2) Bayesian Information

Criterion (BIC) for non-nested models and (3) paired t-tests to

compare parameter estimates in the speed and accuracy condition.

(1) The Wilkes chi-square test for log-likelihood ratios uses a

test-statistic proportional to the difference between log-likelihood

of two nested models, and compares this value to a Chi-square

distribution with the number of degrees of freedom equal to the

difference between the two models. We used this test on each

subject as well as on the population. To extend the test to the

population, we summed the log-likelihood values and the

differences in the number of degrees of freedom across all subjects.

(2) The BIC enables the comparison of non-nested models with

different degrees of freedom by penalizing the log-likelihood for

the number of free parameters in the model. In our case, most

comparisons of interest involved either nested models, or non-

nested models with identical numbers of free parameters. Hence,

the BIC was of limited use and included only because it is a

commonly used measure. (3) The tests outlined above provide a

measure of whether a specific parameter can help improve the fit

of a model. However, they do not test if the parameter in question

differs systematically across the entire population. To test this, we

used population-based paired t-tests of parameter estimates from

the speed and the accuracy conditions.

Assumptions about non-decision times in the system
The data analysis and the modeling efforts critically depend on

several key assumptions regarding the delays in the system. In the

following we make these assumptions explicit. (1) Non-decision

time comprises afferent and efferent delays. (2) Afferent delays can

further be split into two components: conduction delays that

model the time from stimulus presentation to the first detectable

increase of activity above baseline, and the additional time it takes

before neural activity becomes stimulus selective, distinguishing

the different directions of motion. (3) The afferent delays are not

under cognitive control and will always be constant as long as the

properties of the stimulus (contrast, spatial frequency, etc) do not

change. (4a) The time it takes to select the relevant sensory

information via feature-based selective attention has a physiolog-

ically defined lower limit, and subjects achieve this lower limit in

the cyclic deadline paradigm. (4b) Stimulus selection time is

constant in all paradigms and across speed-accuracy instructions.

With the exception of assumption 4b, all assumptions are

necessary for our interpretation of the data. In one of the follow-

up analyses we relaxed assumption 4b to test if this can provide a

better fit to the data.

Results

Speed-accuracy instructions in the RT paradigm.
In Experiment 1, subjects performed four blocks of the RT

version of the motion-interference task in which they were

required to stress either speed or accuracy. In line with the

instructions, accuracy and RTs were significantly higher in the

accuracy compared to the speed condition (Acc: 9861%; Spd:

9066%, mean6std; one-sided paired t-test, df = 12, t = 25.7,

p,10211; Acc: 593687 ms; Spd: 498666 ms; one-sided paired t-

test, df = 12, t = 8.2, p,1025). The aim of the current study was to

model both accuracy and the RT distributions in order to

understand the contribution of the threshold and onset mecha-

nisms to the observed speed-accuracy tradeoff. In line with

previous studies [16,17] we used a modified version of the

standard diffusion model that allows systematic variations of drift

rate over the time course of an individual trial. There are two main

differences that distinguish our approach from previous ones. (1)

We added a temporal gating parameter to the modified diffusion

model that prevents the integration of evidence until a particular

predetermined time t0. This allows us to test the role of decision

onset in speed-accuracy tradeoff. (2) We set out to explicitly

measure the time course of drift rate using an independent

experiment (see below) rather than fitting the time course post-hoc

to the data from the RT paradigm itself. These independent

measurements of drift rate from the response signal task form the

basis of our modified version of the standard diffusion model that,

if our assumptions and measurements are accurate, should provide

a plausible fit to the data in the RT paradigm. This approach of

using two independent experimental paradigms was recently

pioneered by Ratcliff [33] and, albeit challenging, is arguably the

most informative way to analyze reaction time data. So far,

however, it has not been applied successfully to understand

decision-making under conflict. The following sections describe

the response signal experiment that uses our novel cyclic-deadline

paradigm to measure the time course of drift rate over the course

of an individual trial. After that, we will return to the modeling of

the data from the RT paradigm with the new modified diffusion

model.

Evaluating the cyclic deadline paradigm
In Experiment 2, subjects were required to respond at the

anticipated time of the auditory response cue without regard to

when or what kind of stimulus was presented. The cyclic deadline

(CD) paradigm reliably induced significant differences in process-

ing time (see Methods) between conditions that differed in

duration by as little as 16.7 ms (Figure 4A). To further quantify

how well subjects were able to follow the timing requirements of

the cyclic deadline task we measured (1) variability of processing

times around the mean (random errors), and (2) systematic

deviations of the mean from the intended processing time

(systematic errors). Random error was calculated as the standard

deviation of single trial processing times after subtracting the mean

for each block and stimulus condition. The smaller the standard

deviation, the tighter the processing times are distributed around

the mean. The results of this analysis are summarized in Table 2.

Seven of nine subjects that were trained in the cyclic deadline

paradigm had random errors that met our criterion of 50 ms or
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less. Based on this analysis, two subjects were excluded from

participation in the main cyclic deadline experiment because they

failed to meet the criterion during the training phase.

To quantify systematic errors, mean processing times were

calculated for each block of trials and distractor congruency. For

each subject we modeled mean observed processing time as a

function of block number – a proxy for intended processing time

that was varied in blocks – and congruency. The results indicate

that between 84 and 98% of the variability in mean processing

time was explained by intended processing time, and hence under

experimental control (see Table 3). In six of seven cases, less than

1% of the variability was due to congruency of the stimuli.

Subjects 6 and 7 exhibited the weakest timing performance (see

also Figure S2). However, the quantitative results are comparable

to the other subjects. This can be taken as evidence that moderate

violations from the instructions still provide interpretable results.

We re-ran the main analyses excluding these two subjects. This led

to small quantitative, but no qualitative, differences (see below).

In RT paradigms, accuracy and reaction time typically increase

after error responses [34]. A somewhat more complex pattern is

observed after incongruent trials: accuracy and reaction time

differences between congruent and incongruent trials are reduced

[17]. Changes in reaction time and accuracy can be explained at

least in part as adjustments in cognitive control that change the

threshold for triggering a motor response. The aim of the CD

paradigm was to force subjects to respond at a particular point in

time, rendering their behavior independent of such adjustments.

To test independence, we fit a linear model to the accuracy and

processing times for each subject as functions of intended

processing time and congruency of the current trial, as well as

congruency and accuracy of the previous trial (Table 4 and 5).

Tables 4 summarizes the effects of accuracy and response conflict

in the previous trial on processing time in the current trial. We

observed a significant increase in processing time after error trials

for only one of the seven subjects. On the population level there is

no systematic increase in processing time after error trials (t-test,

df = 6, t = 21.34, p = 0.88).

Similarly, processing times were not significantly affected by

response conflict on the previous trial (t-test, df = 6, t = 20.56,

p = 0.71). Tables 5 summarizes the effects of accuracy and

response conflict in the previous trial on accuracy in the current

trial. We observed a significant increase in accuracy after error

trials for two of seven subjects. In one subject we found a

significant decrease in accuracy. On the population level, we failed

to find a significant increase in accuracy as a function of accuracy

on the previous trial (t-test, t = 0.18, df = 6, p = 0.43). Similarly, we

failed to find a significant increase of accuracy as a function of

response conflict on the previous trial (t-test, t = 0.17, df = 6,

p = 0.44). In summary, neither congruency nor error on the

previous trial had significant effects on accuracy or processing

time, consistent with the idea that the cyclic deadline task

neutralizes serial order effects.

Figure 4. Processing times of all subjects as a function of stimulus duration, i.e. intended processing time in (A). The box and whiskers
indicate mean 6one and two standard deviations, respectively. The brackets over two adjacent stimulus durations indicate significant differences at
p,0.01. An additional asterisk above the bracket indicates a p-value below 0.001. In nearly all cases, a 16.7 ms increase in intended processing time
resulted in a significant difference in observed processing time. (B) Percent correct responses are plotted as a function of mean processing time and
stimulus congruency. Each dot describes a block of trials with a particular intended processing time and congruency (green-congruent; black-neutral;
red-incongruent). The x-value of the dots corresponds to the mean observed processing time and the y-value corresponds to the mean proportion of
correct responses. In the congruent and neutral conditions response accuracy increases monotonically as a function of RT. For the incongruent
condition, in contrast, there is an initial dip with accuracy decreasing significantly below chance. The solid lines correspond to the maximum-
likelihood fit of the data with the biased competition model. The left-hand vertical dotted lines correspond to the total non-decision times in the
system. The right-hand dotted vertical line corresponds to the time at which the stimulus selection process has finished. (C) Time-resolved estimates
of drift rate that give rise to the model predictions in (B). For all three conditions, drift rate converges to the same asymptote. This feature is not hard-
coded into the model, but arises from the fit to the data. It indicates that attention selects the target stimulus in a winner-take-all fashion (a= 1), such
that in the steady state, the identity of the distractor no longer affects drift rate. Drift rate in (C) is determined by four parameters of the biased-
competition model.
doi:10.1371/journal.pone.0089638.g004

Table 2. Timing accuracy in the cyclic deadline task.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7

sd (residual PT)
[ms]

27 34 44 41 40 43 48

Timing accuracy in the cyclic deadline task measured as standard deviation of
single trial processing time from the mean processing time in each block and
condition.
doi:10.1371/journal.pone.0089638.t002
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Cyclic deadline paradigm – measuring and modeling
response accuracy

Having established that the subjects perform the timing

requirements of the cyclic deadline paradigm, we analyzed their

choice behavior. Figure 4B shows the proportion of correct

responses as a function of normalized mean processing time and

distractor congruency for all subjects. As expected [11], accuracy

on incongruent trials dropped below chance for medium

processing times. This effect began to reverse at ,330 ms,

suggesting that momentary sensory evidence tipped in favor of the

less salient target stimulus.

To quantitatively relate these findings to the dynamics of

selective attention, we developed a simple computational frame-

work that we refer to as the biased competition model of decision-making

(Figure 3 and Table 1). The model combines two well-

established neural principles: stimulus selection via biased compe-

tition in sensory cortex [10] and decision making as the integration

of noisy sensory information over time [30]. The model assumes

that decisions are based on a time-continuous stochastic process

with a starting point of zero and non-stationary Gaussian

increments. The mean of the increments, i.e. the drift rate, varies

as a function of distractor congruency and the ongoing dynamics

of the attentional selection process. The proportion of correct

responses as a function of processing time and distractor

congruency is predicted by the mass of the stochastic process

above zero [30,31]. Three key parameters of the model determine

how strongly attention selects the target over the distractor as a

function of time from stimulus onset (Figure 3, black-and-white

inset in layer 2). The fourth parameter of the model determines the

saturation point of the non-linear contrast response function

(Figure 3, inset layer 3, Figure S1). In combination with the

stimulus parameters, i.e. contrast and direction of motion of the

target/distractor, these four variables determine the precise time

course of drift rate for a given trial. A fifth parameter scales drift

rate to the amplitude of the white-noise process with an arbitrarily

chosen variance of 1 au2/sec. The sixth parameter models all

efferent and afferent non-decision related delays of the system.

Using a maximum-likelihood method we fit 6 free parameters of

the biased competition model (Table 1) to the data either

separately for each subject (Figure S2) or pooled over all subjects

(Figure 4B). The fits not only capture the qualitative properties of

the data, in particular the initial dip in the incongruent condition,

but also provide an excellent quantitative approximation. Our

simulations indicated that attention finalizes the selection of the

target in a winner-take-all fashion approximately 150 ms after the

onset of the decision process (Table 6). This suggests that

systematic errors observed in the incongruent condition are

caused by evidence accumulated during the first 150 ms of the

decision process, allowing the possibility that delaying decision

onset can improve response accuracy. In a follow-up analysis we

re-ran the population fit while excluding subjects 6 and 7 that

exhibited the weakest timing performance. The fits were similar

with the exception of small quantitative differences. In particular,

stimulus selection times were markedly shorter (,120 ms rather

than ,150 ms when all 7 subjects were included). Using the

population fit based on the 5 best subjects rather than all seven

subjects did not change the main conclusions regarding decision

onset in the CD paradigm.

Additional analyses showed that the data from the CD

paradigm can also be explained if perfect integration is replaced

with leaky integration. However, the main conclusions regarding

the duration and selectivity of the stimulus selection process were

not affected. Similarly, it is likely that other network architectures

building on race processes [15] or leaky competing accumulation

[31] may be able to predict the data from the cyclic deadline task.

Hence, it is not our intention to make strong claims that the

proposed model is the only one that can be used to fit the data.

Rather, we conclude that it is one model that can capture the

temporal dynamics of drift rate with sufficient quantitative detail

and a very low number of free parameters that explicitly map onto

core concepts such as the duration of the stimulus selection

process. However, for the purposes of the current study, the scope

of models under consideration was limited to perfect integration of

differential evidence.

Table 3. Determinants of processing time.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7

Intended PT 97.39 (***) 96.65 (***) 88.53 (***) 91.96 (***) 92.54 (***) 86.38 (***) 84.83 (***)

Congruency 0.07 (ns) 0.29 (**) 0.52 (**) 0.15 (ns) 0.10 (ns) 0.97 (**) 1.10 (**)

Interaction 0.03 (ns) 0.22 (**) 0.15 (ns) 0.14 (ns) 0.09 (ns) 0.28 (**) 0.83 (*)

Percent variance of mean processing times explained by the experimental manipulations (intended processing time, congruency, and their interaction). Asterisks in
brackets indicate the significance levels: (*): p,0.05, (**): p,0.01, (***):p,10210.
doi:10.1371/journal.pone.0089638.t003

Table 4. Trial history effects: processing time.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7

Effect of previous trial error on
processing time [ms]

2.7 (***) 21.5 (ns) 23.7 (***) 22.1 (*) 23.5 (***) 210.7 (***) 1.6 (ns)

Effect of previous trial response
conflict on processing time [ms]

20.02 (ns) 20.30 (ns) 23.51 (***) 0.80 (ns) 0.95 (ns) 24.48 (**) 2.96 (ns)

Top row: Effect of previous trial error on current trial processing time in ms. Positive values indicate slower responses after an error trial, and vice verse. Bottom row:
Effect of previous trial response conflict on current trial processing time. Positive values indicate slower responses after an incongruent compared to a congruent trial.
doi:10.1371/journal.pone.0089638.t004
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RT paradigm – modeling the speed-accuracy tradeoff
To understand whether humans can use the onset and/or

threshold mechanism to trade speed for accuracy when free to

respond at any time, we extended the 6-parameter biased

competition model to include a response threshold in the form

of two absorbing boundaries (+B and –B) and a decision onset (t0).

The model terminates a decision as soon as the stochastic process

reaches one of the two boundaries and is considered a correct

response if it reaches the positive boundary. These boundaries

allowed the model to terminate a decision process and generate

RT distributions for correct and error trials that can be used to fit

the observed data. By varying decision onset, the model can

actively choose when to initiate the evidence accumulation

process.

In theory, decision onset could be controlled online, on a trial-

by-trial basis depending on the presence of stimulus and/or

response interference (interference-dependent gating). Alter-

natively, decision onset can be predetermined such that integra-

tion starts at a fixed point in time relative to the onset of the

stimulus. The delay between stimulus onset and integration onset

could be predetermined, for example, based on task requirements

that stress either speed or accuracy (task set-dependent gating).

Task set-dependent gating would operate in the form of a speed-

accuracy tradeoff: delaying decision onset will increase accuracy

(mainly for incongruent trials) while increasing response latencies

for all three trial types. Interference-dependent gating, in contrast, would

delay decision onset only when necessary (incongruent trials) and

would not cause increased reaction times for the other trial types.

However, the implementation of an interference-dependent gating

mechanism would be costly, if at all possible, and add another

layer of complexity to the decision process. The fact that the data

in the cyclic-deadline paradigm could be fit with a model that

assumes identical decision onset regardless of stimulus congruence,

is strong evidence against interference-dependent gating. Based on

the above considerations, we allowed decision onset to vary as a

function of speed-accuracy instruction in the same way as response

threshold.

Task-set dependent temporal gating
In the following we tested whether task-set dependent gating,

i.e., the onset mechanism, can be a more effective way to trade

speed for accuracy. Based on the estimates of time-dependent

drift-rate that was measured in the CD paradigm (Figure 4C), we

simulated mean RT and accuracy as a function of the response

threshold and decision onset. This allowed us to estimate the

benefit of both mechanisms for the very specific task in question.

In the presence of certain task requirements (e.g. ‘‘99% correct

responses’’), it is possible to define the optimal decision strategy as

the strategy that achieves 99% correct responses while minimizing

mean reaction time. Based on this definition, the implementation

of an optimal decision strategy typically involves changes of

decision onset (Figure 5). For example, our model predicts that

an average response accuracy of 99% can be achieved by setting

response threshold to ,1.4. This setting leads to mean reaction

times around 570 ms. However, if we delay decision onset by

,80 ms the model can achieve the same accuracy for average

mean reaction times around 370 ms. Note that decision onset is

always reported relative to the time at which the first stimulus-

selective information is believed to reach the integrator stage.

Overall, the two mechanisms exhibit large and systematic

differences over a wide range of the sampled parameter space

(Figure 5): for a given increase in response latency, delaying

Table 5. Trial history effects: accuracy.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7

Effect of previous trial error on
accuracy [au]

20.172 (**) 0.034 (**) 0.098 (**) 0.006 (ns) 20.020 (ns) 0.055 (ns) 0.031 (ns)

Effect of previous trial response
conflict on accuracy[au]

20.023 (ns) 20.034 (ns) 0.168 (*) 20.010 (ns) 20.095 (ns) 0.079 (ns) 20.047 (ns)

Top row: Effect of previous trial error on current trial accuracy. Positive values indicate higher accuracy after an error trial and vice verse. Bottom row: Effect of previous
trial response conflict on current trial accuracy. Positive values indicate higher accuracy after an incongruent compared to a congruent trial.
doi:10.1371/journal.pone.0089638.t005

Table 6. Model fit of the biased competition model to the cyclic deadline task.

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5 Subj 6 Subj 7 Mean of Fits Subj 1-7 combined

Non-decision time [ms] 277 259 272 253 255 239 254 259613 252.5

Contrast response
parameter Iin

0.149 0.156 0.256 0.086 0.094 0.293 0.057 0.15660.089 0.159

Onset of stimulus
selection process [ms]

0 0 0 43 4 56 44 21625 0

Duration of stimulus
selection process [ms]

113 138 124 62 118 62 76 105630 149

Asymptote of stimulus
selection process

1.0 1.0 1.0 1.0 1.0 1.0 0.97 160.01 1

Signal-to-noise ratio 7.34 7.98 8.13 5.13 5.82 9.93 6.99 7.3361.58 6.57

The first seven columns show the results of the individual subjects. The column entitled ‘‘mean’’ presents the mean 6 standard deviation of the values averaged over all
seven subjects. The last column depicts the results on a population level. To that aim, all experimental blocks from subjects 127 were pooled after correcting
processing times for individual differences in non-decision time.
doi:10.1371/journal.pone.0089638.t006
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decision onset leads to larger improvements in accuracy than

raising response threshold.

In the absence of any task requirements, a strategy can be

defined as optimal if it provides the highest rate of information

transfer measured in bits per second. We chose bits per second rather

than other possible metrics such as reward per unit time because the

latter is subjective and depends on current task demands, i.e. how

valuable/costly a correct/wrong response is assumed to be. The

benefit of delaying decision onset becomes particularly obvious

when analyzing speed and accuracy in terms of information

transfer (Figure 5C). High rates of information transfer above 2

bits/sec can only be found for a low response threshold (,0.7) and

late decision onset (.60 ms). Our simulations also show that the

threshold mechanism by itself is not a very effective way to trade

speed for accuracy in the current task. If the decision onset is

always initiated at time 0, information transfer reaches only very

moderate levels of 1.25 even if threshold is increased to around

2.1. The low rate is mainly due to the high costs in terms of RT

that are incurred when increasing response threshold.

Note that this finding is in clear contrast to situations with

constant drift rate. In such situations, the threshold mechanism has

long been shown to be the optimal way to trade speed for

accuracy. However, in conditions with changing drift rate that can

be encountered for example in interference tasks, delaying decision

onset would be a more effective way to trade speed for accuracy.

In the following we tested whether subjects make use of the onset

mechanism, or if their behavior can be explained by a suboptimal

implementation of the threshold mechanism.

To test the role of decision onset and response threshold to the

speed-accuracy tradeoff, we fit a series of models to the data of

each subject. Except for the implementation of task set-dependent

gating, we used standard drift-diffusion models with variable drift

rate that was determined by modeling the data in the CD

paradigm (Figure 4C). To that aim we fixed five of the six

variables to the values obtained from the CD paradigm. Non-

decision time, though estimated in the CD paradigm, was allowed

to be a free parameter for two reasons. First, our simulations

revealed that non-decision times were significantly longer in the

RT compared to the CD paradigm (for a detailed interpretation of

this finding see Discussion). Second, we allowed non-decision time

to vary between speed-accuracy instructions, because it is possible

that motor execution times (efferent delays) differ when subjects

stress either speed or accuracy. Note that all of our models assume

that afferent delays are outside of cognitive control and hence

independent of speed-accuracy instructions. In addition to

threshold, decision onset, and non-decision time, we allowed

stimulus selection time and starting-point variability of the

integrator unit to vary between speed-accuracy instructions to

test alternative accounts of our data.

Threshold and Non-decision time model (TN_22)
The simplest model that we will discuss in detail included 2

parameters: response threshold, and non-decision time with two

degrees of freedom each. As a shorthand we refer to this model as

TN_22. The letters are abbreviations of the two variables

(Threshold and Non-decision time) and the number refer to the

degrees of freedom for each of the two variables. Figure 6A–D
displays the fits of the TN_22 model to the RT distributions and

accuracy in the speed and accuracy version of the RT paradigm.

Because of the limited number of errors, we display the fits to the

error RT distribution only for incongruent trials of the speed block

(though all of the error distributions were used for the fitting

process). One of the 13 subjects had substantially longer RTs and

higher accuracy, an effect that was consistently captured by all

variants of the model as a higher response threshold (Figure 6D).

The quality of the fits for this subject were similar to those of other

subjects. However, the inclusion of this subject increased the radii

of the confidence ellipses (Figure 6A–C) to a point where, due to

overlap, they were no longer visually informative. Hence, for

visualization purposes only, we excluded this subject from the data

Figure 5. Properties of the onset mechanism. In the biased competition model, speed and accuracy can be manipulated in two independent
ways — adjusting response threshold and/or decision onset. The simulations are based on the fit of the biased competition model to the data of the
CD paradigm combined across all 7 subjects (Figure 3). Simulated response accuracy (A), response latency (B) and rate of information transfer (C)
are depicted as functions of response threshold on the x-axis and onset of the decision process on the y-axis. The dotted line at 0 ms in each panel
indicates the average non-decision time across all subjects. Our null-hypothesis states that decision onset is fixed and coincides with this time-point.
Delaying decision onset increases response accuracy and RT. Increasing response threshold has the same effects, but the effect on response accuracy
is weaker while the effect on RT is stronger. P1 denotes the threshold that is necessary to achieve 99% response accuracy if decision onset is fixed at
0 ms. P2 denotes a second set of parameters that leads to the same accuracy of 99% but allows decision onset to deviate from 0. Note that P1 is
associated with mean reaction times around 570 ms. In contrast, P2 achieves the same accuracy with a mean RT of 370 ms. This shows that decision
onset can be a very effective way to trade speed for accuracy.
doi:10.1371/journal.pone.0089638.g005
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that generated the confidence ellipses. Note that the estimated

model parameters for this subject were included in all analyses.

Overall, the TN_22 model provides a good approximation to

the data. We dropped individual degrees of freedom from the

model to test if all four parameters are necessary (drop-one

routine). The resulting sub-models are TN_21 and TN_12. Using

a test for nested models, we show that removing one degree of

freedom from threshold significantly decreases the accuracy of the

fit (Population-based Wilkes Chi-square test for log-likelihood of

nested models, df = 13, X2 = 184, p,10210). Using the same test

on the single subject level, 9 out of 13 subject showed a significant

effect at p,0.01. Similarly, we show that the second degree of

freedom for non-decision time is necessary (df = 13, X2 = 246,

p,10210, individual subjects: p,0.01 for 9/13).

Figure 6D shows the parameter estimates for threshold and

non-decision time as a function of speed-accuracy instruction. As

expected, response threshold was significantly higher for the

accuracy condition (acc: 0.9460.51 ms, spd: 0.6960.41 ms;

paired t-test, df = 12, t = 5.72, p,1024). In addition, non-decision

times were longer in the accuracy condition (acc: 366641 ms, spd:

323637 ms; paired t-test, df = 12, t = 4.33, p,1023). The increase

of non-decision time is not necessarily expected. Ideally, non-

decision time represents fixed delays in the system. However, it is

possible that efferent non-decision times are somewhat longer in

the accuracy condition if subjects were to respond more cautiously,

and hence, with less vigor. Qualitatively, the observed effect can

certainly be interpreted in this way, but the effect size (,41 ms)

seems large given the short distance that needs to be covered in

order to press a button.

Despite the reasonable fit to the data, there was one systematic

modeling error. The model predicted higher than observed

accuracy in the speed-condition, and lower than observed

accuracy in the accuracy condition. This effect is particularly

visible for the neutral and incongruent stimuli (Figure 6B&C).

Taken together, these results show that subjects were able to

improve accuracy more effectively, i.e., by investing less extra RT,

than the TN_22 model predicted. This implies that subjects can

make use of an additional mechanism that allows them to trade

speed for accuracy more effectively than predicted by only

increasing the response threshold. We focused on three plausible

Figure 6. Fit of the threshold and non-decision time (TN_22) model to the data from the RT paradigm in (A–D). The first three panels
represent RT distributions as a function of accuracy from the congruent, neutral and incongruent condition. Note that the x-axis covers different
ranges in the incongruent panel in order to include the error trials. The empirical results are represented as 95% confidence ellipses around 5
different RT quantiles as a function of accuracy (green/red: correct/error trials speed instruction, blue: correct trials accuracy instruction). The model fit
for the same quantiles is represented as the axes of the 95% confidence intervals. The rightmost panel displays the model parameters (green:
accuracy instruction; red: speed instruction). Data-points from each subject are connected by a line. Results of a paired t-test are indicated above the
data (bracket: ns; one star: p,0.05; two stars: p,0.01; three starts: p,0.001). The current model used 4 parameters (bound and non-decision time
two parameters each) to fit the data. Note that the model fails to capture some key properties of the data. (E–H) Fit of the threshold, decision-onset
and non-decision time (TON_222) model to the data from the RT paradigm. Conventions as in panels A–D. Note that the model provides a much
better fit to the data. Speed-accuracy tradeoff is mediated through response threshold and decision onset. There are no systematic differences of
non-decision time between the two conditions.
doi:10.1371/journal.pone.0089638.g006

Optimal Decision-Making and Decision Onset

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e89638



mechanisms that could explain this unaccounted increase in

accuracy: the onset mechanism as discussed above, and two

alternatives: a novel mechanism based on the noise-floor of the

integrator unit and a previously proposed mechanism that focuses

on stimulus selection time [17].

Threshold, Onset and Non-decision time model
(TON_222)

The TON_222 model adds two degrees of freedom to the

TN_22 model by allowing decision onset to vary as a function of

speed-accuracy instruction. The resulting model has 6 degrees of

freedom and provides a significantly better fit to the data

(Figure 6E–H; Population-based Wilkes Chi-square test for log-

likelihood of nested models, df = 26, X2 = 490, p,10210). For 12

out of 13 individual subjects the Wilkes Chi-squared test for log-

likelihood in nested models is significant at a level of 0.01 or lower.

As with the TN_22 model, we used the ‘‘leave-one-out’’ method to

test if all 6 degrees of freedom are necessary. The accuracy of the

fit was significantly reduced by dropping a degree of freedom from

threshold (Wilkes Chi-square, df = 13, X2 = 295, p,10210, indi-

vidual subjects: p,0.01 for 12/13), decision onset (df = 13,

X2 = 212, p,10210, individual subjects: p,0.01 for 9/13), as well

as non-decision time (df = 13, X2 = 83, p,10210, individual

subjects: p,0.01 for 4/13).

We then tested whether speed-accuracy instructions have a

systematic effect on decision-onset across all subjects by comparing

the parameter estimates of decision onset in the speed and

accuracy conditions. We found a significant delay of decision onset

in the accuracy condition (acc: 30629 ms, spd: 227641 ms;

paired t-test, df = 12, t = 5.4, p,1023). Due to the right-skewed

nature of the distribution (one outlier, see Figure 6H), median

decision onset values may be more representative of true decision

onset (acc: 39 ms; spd: 214 ms). Note that zero represents the

time point at which stimulus selective information first reaches the

integrator unit. Thus, when t0,0, decision onset occurs before any

stimulus selective information is present i.e. the integrator

processes noise until t0 = 0. In line with the TN_22 model we

find a significantly higher response threshold in the accuracy

condition (acc: 0.9460.47 ms, spd: 0.6360.37 ms; paired t-test,

df = 12, t = 7.7, p,1025). In contrast to the TN_22 model, the

TON_222 model did not detect a significant increase of non-

decision time in the accuracy condition (acc: 347634 ms, spd:

342628 ms; paired t-test, df = 12, t = 0.5, p = 0.6).

Threshold, Onset, Non-decision time and Starting-point
variability model (TONS_222X)

We further tested if it is necessary to include one (TONS_2221)

or two (TONS_2222) additional degrees of freedom by allowing

the starting-point variability of the integrator unit, Var[X(t0)], to be

a free parameter. Presumably, starting point variability determines

the noise level of the integrator prior to stimulus onset. Hence,

there is no a priori reason to believe that this should be affected by

speed-accuracy instructions. However, it is possible that the noise

level is unequal to zero (in contrast to what was assumed in all

previous models). In addition, it is possible that attention is needed

to maintain a low noise level in the integrator unit, and that speed-

accuracy tradeoff is mediated in part by reducing this noise level.

This assumption is particularly relevant, since decision onset may

operate in a similar fashion: if decision onset is initiated too early

(before stimulus-selective information hits the integrator), this

would increase the noise level at the time at which stimulus-

selective information reaches the integrator and deteriorates

performance.

The simulation results showed that the TONS_2221 model

(Figure 7) provided a significant improvement over the

TON_222 model (Wilkes Chi-square, df = 13, X2 = 41, p,1024,

individual subjects: p,0.01 for 4/13). Further, the TONS_2222

model did not significantly improve the TONS_2221 model by

adding another degree of freedom to starting-point variability

(Wilkes Chi-square, df = 13, X2 = 10 p = 67, individual subjects:

p,0.01 for 1/13). At the same time, decision onset was still

significantly different in the two speed-accuracy conditions

(TONS_2221; acc: 42616 ms, spd: 28630 ms; paired t-test,

df = 12, t = 5.6, p,1023; TONS_2222; acc: 43615 ms, spd:

26631 ms; paired t-test, df = 12, t = 5.3, p,1023). This indicates

that the effect of decision onset is not mediated indirectly by

affecting the noise level of the integrator at the time stimulus-

selective attention reaches the integrator. Rather decision onset

mediates its effect by reducing the impact of information from the

salient but task-irrelevant distractor. In addition, it shows that

subjects do not reduce the integrator noise level as a mechanism to

increase accuracy.

The main difference between the parameters of the TON_222

and TONS_2221 model is decision onset in the speed condition.

The TON_222 model produces an earlier decision onset, most

likely due to the fact that an earlier decision onset is used to

emulate starting-point variability in some subjects. After allowing

an additional parameter for starting-point variability, decision

onset became more homogenous across the population with values

that were within a physiologically plausible range for all subjects.

Unless mentioned otherwise, the TONS_2221 model is our

preferred model and the basis for reporting parameter estimates of

decision onset in the Discussion.

Threshold, Non-decision time and Starting-point
variability model (TNS_222)

The previous analyses show that integrator noise is not

necessary to model speed-accuracy tradeoff. However, the model

used to test this assumption included decision onset. Hence, it is

possible that the presence of decision onset prevented us from

detecting an effect of integrator noise. To fully confirm the idea

that integrator noise is not sufficient to explain speed-accuracy

tradeoff, we constructed a model that drops decision onset

completely and replaces it with staring-point variability

(TNS_222, Figure 8 E–H). As expected, the TNS_222 model

allows a speed-accuracy tradeoff by increasing starting-point

variability in the speed condition (acc: 0.027616 ms, spd:

0.126630 ms; paired t-test, df = 12, t = 24.43, p,1023). Al-

though the TNS_222 model provides a significant improvement

over the TN_22 model (Wilkes Chi-square test, df = 26, X2 = 188,

p,10210, individual subjects: p,0.01 for 5/13 subjects), it

provides a less accurate fit than the TON_222 model (BIC

TNS_222: 51,672; BIC TON_222: 51,067).

Threshold, Attentional selection speed, and Non-decision
time model (TAN_222)

Yeung and colleagues have presented an alternative account for

speed-accuracy tradeoff in interference tasks [17]. The alternative

account states that subjects increase top-down cognitive control in

the accuracy condition. Higher cognitive control speeds up the

stimulus selection process. Conversely, this leads to the counter-

intuitive proposal that subjects increase response speed by

deliberately slowing down the stimulus selection process. However,

both accounts, the attentional selection speed and the decision

onset account, improve accuracy in a very similar manner, namely

by reducing the duration for which information from the salient
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distractor is affecting the decision process. The aim of the current

simulation was to test whether one of the two accounts provides a

numerically better fit to the data.

We emulated Yeung’s model by allowing stimulus selection

speed to vary between the two speed-accuracy instructions. The

resulting model is referred to as the TAN_222 model. The

selection speed model was designed to be as similar as possible to

the TON_222 model. In particular, it contained the same number

of free parameters (6). Four of those six parameters are shared

between the two models: 2 degrees of freedom for non-decision

time and 2 degrees of freedom for the response threshold. The

remaining two degrees of freedom for decision onset were replaced

with two degrees of freedom for stimulus selection speed.

Figure 8A–D shows the fits of the stimulus selection model to

the data. Based on visual inspection, the model provides a

reasonably good fit to the data. Because the two models are not

nested, we could not use the standard Wilkes Chi-square test.

Hence, we calculated an alternative metric, the Bayesian

Figure 7. Fit of the threshold, onset, starting-point variability and non-decision time (TONS_2221) model to the data from the RT
paradigm in (A–D).
doi:10.1371/journal.pone.0089638.g007

Figure 8. Fit of the threshold, selection-speed and non-decision time (TAN_222) model to the data from the RT paradigm in (A–D).
(E–H) Fit of the threshold, non-decision time and starting-point variability model (TNS_222).
doi:10.1371/journal.pone.0089638.g008
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Information Criterion (BIC). Given that the two models have the

same number of degrees of freedom, a comparison of the BIC

values is very similar to the comparison of the underlying log-

likelihood values. Based on the BIC comparison, the decision onset

model provides a numerically better fit to the data (TAN_222:

51,350; TON_222: 51,067). It is also important to note that the

TAN_222 model achieves the fit using very fast attentional

selection times in the accuracy condition (acc: 84629 ms, spd:

158646 ms; paired t-test, df = 12, t = 24.8, p,1023), a value

substantially lower than that measured in the CD paradigm. Given

that subjects had more training with the task by the time they

perform the CD paradigm, it is surprising that they should be less

effective at selecting the relevant target stimulus. Furthermore, the

attentional selection speed account makes a second counterintu-

itive prediction – that selection speed should be faster in the

condition with slower reaction times.

‘‘From-Scratch’’ models
One of the main strengths of our approach is that we leverage

the CD paradigm to predict RT and accuracy in the RT

paradigm. In this way, our estimate of the input to the decision

unit (time-dependent drift rate, Figure 4C), is independent of our

estimate of how the decision unit chooses to use this information

(response threshold and decision onset). However, if for some

reason, the CD paradigm provides erroneous estimates of drift

rate, this could lead to erroneous conclusions from the RT

paradigm. We thus tested whether the main effect of decision onset

is dependent on the parameter estimates from the CD paradigm or

whether the main effect could be replicated by allowing previously

fixed parameters to be free parameters in the model. To that aim,

we took the TON_221 model and allowed 5 parameters that were

previously fixed to the values estimated from the CD paradigm to

vary. In addition to the 5 degrees of freedom in the TON_221

model, the new model had another 5 degrees of freedom. We refer

to this model as the CD_TON_221. To test if it is necessary to

keep decision-onset in the model, we compared the

CD_TON_221 model to a sub-model that did not include

decision onset. This model is an equivalent extension of the

TN_21 model, and will be referred to as CD_TN_21.

The two new models allow us to answer two main questions: (1)

can we confirm the role of decision onset for speed-accuracy

tradeoff in this alternative analysis that does not depend on the CD

paradigm, and (2) can we confirm the parameters that were

estimated from the CD paradigm using the RT paradigm? To

answer the first question, we compared the quality of the fits in the

CD_TN_21 model with the fit of the CD_TON_221 model. Our

results show that including the two degrees of freedom for decision

onset provides a significant improvement to the fit (Wilkes Chi-

square, df = 26, X2 = 456, p,10210, individual subjects: p,0.01

for 9/13). At the same time, decision onset was still significantly

different in the two speed-accuracy conditions (decision onset in

CD_TON_221; acc: 29622 ms, spd: 231630 ms; paired t-test,

df = 12, t = 5.2, p,1023). The same effect was present if we

included an additional degree of freedom for non-decision time

(Figure 9, decision onset in CD_TON_222; acc: 25623 ms, spd:

236630 ms; paired t-test, df = 12, t = 5.2, p,1023). These

analyses show that our main finding regarding decision onset is

not specific to the drift-rates estimated from the CD paradigm.

In the next step we tested whether including the additional

degrees of freedom for the CD parameters improved the fit. To

that aim we compared the fit of the two CD_TON models with

the fit of the two TON models. In both cases, we found a

significant improvement of fit accuracy if the 5 additional CD

parameters were included (TON_221 vs CD_TON_221:Wilkes

Chi-square, df = 65, X2 = 255, p,10210, individual subjects:

p,0.01 for 6/13; TON_222 vs CD_TON_222:Wilkes Chi-

square, df = 65, X2 = 256, p,10210, individual subjects: p,0.01

for 7/13). We then compared the parameters estimated from the

CD_TON_222 fit with the parameters estimated from the CD

paradigm (Figure 9D). In particular, we were interested if the

increased improvement of fit was achieved by systematic or

random deviations from the parameters estimated from the CD

paradigm. For two parameters, we found systematic changes: the

onset and duration of the stimulus selection process (selection

onset: one-sample t-test, df = 12, t = 2.8, p,0.05; duration of

selection process: df = 12, t = 24.8, p,1023). Based on the

CD_TON_222 model, the stimulus selection process was estimat-

ed to begin ,10 ms later, and be 40 ms shorter than estimated

from the CD paradigm. Overall, the stimulus selection process was

estimated to end approximately 120 ms after the first pulse of

stimulus-selective information hit the integrator unit. Interestingly,

this is the same number that was recovered from the CD paradigm

if subjects 6 and 7 that exhibited the weakest timing performance

were dropped from the sample. It is particularly important to note

that even with the shorter attentional selection times of the

CD_TON model, it was still necessary to allow decision onset to

be a function of speed-accuracy instruction.

Optimality of human decision strategies
Based on our simulations, we concluded that the high rates of

information transfer (.2 bit/sec) can be achieved by low response

thresholds (,0.7) and late decision onset (.60 ms). The results of

our simulations allowed us to test whether subjects picked optimal

or close to optimal decision parameters. Figure 10B plots

threshold and onset estimates from the TONS_2221 model on top

of the map of information transfer. With the exception of one

instance, none of the subjects reached high values .2 bit/sec. The

majority of subjects increased the rate of information transfer in

the accuracy condition. However, all subjects could have

improved performance by using more optimal decision strategies:

delaying decision onset and lowering response threshold. These

adjustments could have been implemented without sacrificing the

desired level of response latency or accuracy.

To estimate the contributions of the different mechanisms, we

used the TONS_2221 model to predict changes in mean RT and

accuracy if subjects had increased either decision threshold or

delayed decision onset. The observed value was then normalized

to the total value that was predicted based on the estimated

adjustment of both response threshold and decision onset. Note

that these analyses are approximations only and implicitly

assumed a perfect fit of the model to the data. On average, the

increase of decision threshold alone explained 73616%

(mean6std) of the increase in RT and 56617% of the increase

in accuracy. Decision onset alone explained 31618% of the

increase in RT and 75623% of the increase in accuracy. Overall,

decision onset was a much more effective way of trading speed for

accuracy.

Discussion

The current study examined the role of decision onset for

optimal decision-making when selective feature-based attention is

needed to reduce interference from salient but irrelevant

distractors. Our study provides the first explicit measurements of

how strongly feature-based selective attention biases the flow of

sensory information on a millisecond time-scale over the time-

course of a decision. Our results suggest that it takes ,120 to

150 ms before the less salient but task-relevant target stimulus
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Figure 9. Fits of one of the ‘‘From-Scratch’’ models (CD_TON_222) to the data from the RT paradigm. Allowing the parameters of the CD
model to vary provided a significant improvement to the fits. Three of the CD parameters were not significantly different from the values recovered
from the CD paradigm. Two parameters (stimulus selection speed and stimulus selection onset) did show significant differences. Nevertheless,
decision onset was needed to explain the speed-accuracy tradeoff.
doi:10.1371/journal.pone.0089638.g009

Figure 10. Parameter estimates for decision onset and response threshold. (A) Time dependent drift rate as estimated from the CD
paradigm. The arrows indicate decision onset in the speed and accuracy condition as estimated from the TONS_2221 model. (B) Rate of information
transfer as a function of response threshold on the x-axis and onset of the decision process on the y-axis. Overlaid are the parameter estimates for
decision onset and response threshold from the TONS_2221 model. The lower left point on each line represents the parameters in the speed
condition, the upper right point represents the parameters in the accuracy condition. All subjects delayed decision onset and increased response
threshold in the accuracy condition. However, none of the subjects performed optimally. Information transfer in both conditions could have
improved by further delaying the onset of the decision and lowering response threshold.
doi:10.1371/journal.pone.0089638.g010
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exclusively determines the input to the decision process. Based on

the time-course of selective attention, we predicted that subjects

could trade speed for accuracy by delaying decision onset, and that

the onset mechanism could be more effective than the established

threshold mechanism. The third part of our study shows that

human subjects indeed use the onset mechanism to trade speed for

accuracy: they automatically delay decision onset until selective

attention can begin to isolate the relevant target when they are

required to stress response accuracy over speed. The estimated

delay of decision onset is substantial (50632 ms), significant

(p,1024), and highly consistent across all subjects. On average,

the observed 50 ms delay of decision onset alone would have

accounted for an estimated 75% of the observed improvement in

response accuracy while incurring only 31% of the cost in the form

of longer response latencies.

Alternative accounts: Attentional selection speed
It has been suggested that subjects stress accuracy by increasing

cognitive control in order to minimize distractor interference,

thereby accelerating the stimulus selection process [17]. In our

case, this account would require that subjects were capable of

accelerating the stimulus selection process beyond what was

explicitly measured in the cyclic deadline task. This is unlikely

because subjects were well-trained and motivated to perform

optimally in all task conditions, especially the cyclic deadline

version. If one were to assume that subjects were not performing

optimally on the cyclic deadline task, such that greater cognitive

control could and would have accelerated the selection process,

then stimulus selection should be faster on trials following errors

and incongruent stimuli, conditions believed to trigger cognitive

control [17]. The lack of such an effect (Table 4 and 5) provides

strong support for the argument that the speed of stimulus

selection measured in the cyclic deadline task indeed forms a lower

limit for the accuracy condition.

Alternatively, it is possible that the CD paradigm overestimated

the time it takes to select the relevant stimulus. Two observations

suggest that some overestimation could exist: (1) if the two subjects

with the weakest overall timing performance (subjects 6 and 7,

Tables 2 and 3) are excluded from the sample, stimulus selection

times based on data collapsed across the remaining 5 subjects are

reduced from ,150 to ,120 ms; (2) if the stimulus selection

parameters are fit directly to the data from the RT paradigm,

stimulus selection times are estimated to be ,110 ms. In both

cases, the termination of the stimulus selection process was

estimated to occur 120 ms after stimulus onset. This is still

significantly later than the 85 ms that are necessary to explain

speed-accuracy tradeoff according to the attentional selection

speed account (TAN_222 model).

A second argument against the attentional selection speed

account is its somewhat un-intuitive main assumption: greater

cognitive control and faster attentional selection result in slower

responses in the accuracy condition, and less cognitive control and

slower attentional selection result in faster responses in the speed

condition. First, it is unclear why subjects would choose to invest

less effort and cognitive control for the speed condition. After all,

subjects are never instructed to use less effort in the speed

condition; they are merely asked to stress a different aspect of the

task. The speed-condition provides a very engaging experimental

setting that should not go along with reduced effort. Second, faster

attentional selection would be equally if not more helpful for the

speed condition.

Overall, we believe that the onset mechanism provides a more

intuitive account of the data: accuracy is increased by delaying the

onset of the decision process to a more beneficial point in time;

speed is emphasized by advancing decision onset to a less

beneficial point in time. The subjects’ motivation to do the best

possible job in both conditions is reflected by the fact that the

amount of cognitive control, and hence attentional selection speed,

is assumed to be the same in both conditions. Because both

mechanisms can mimic each other and provide similar overall

effects in terms of accuracy and mean RT, it is important to note

that fits achieved with the onset mechanisms (TON_222 model)

are significantly better than the fits from the attentional selection

speed account (TAN_222 model). Taken together, these consid-

erations provide strong support for the delayed onset mechanism.

Neural correlates of delayed decision onset
Our findings suggest that decisions are not necessarily initiated

automatically by the presence of appropriate stimuli, but can be

adjusted within limits to current task demands. The observed

effects can only be explained by a neural mechanism that can

delay the onset of the decision process without interfering with the

allocation of selective attention. Note that this cannot be achieved

by blocking out sensory input, for example, by closing one’s eyes.

In the absence of sensory input, selective attention cannot be

allocated and the benefit of delaying decision onset is lost. To date

we are not aware of a compelling neural correlate of delayed

decision onset. Extra-cranial measurements of the onset of the

lateralized readiness potential (LRP) are inconclusive because it is

not clear whether LRP onset is more closely related to the onset of

the decision process [11] or its termination [35]. Regardless of

these problems of interpretation, different studies have either

found effects of speed-accuracy tradeoff on LRP onset [35] or not

[36,37].

There is some evidence in favor of a gating mechanism from

intracranial single-unit recordings [24,38] in the frontal eye-fields

(FEF). Based on the assumption that FEF motor neurons reflect the

accumulation of sensory evidence that is represented in visual FEF

neurons, these authors conclude that models with explicit gating of

sensory evidence provide the best account of behavioral and

neural data. Though the findings indicate the presence of a gating

mechanism that delays the onset of the response selection process,

the actual gating was not believed to occur in the temporal

domain. Rather, the authors support a model with two nested

firing rate thresholds, one that gates the flow of information from

FEF sensory neurons to FEF motor neurons and a second

threshold for response initiation.

A similar gating mechanism that operates in the firing rate

domain might also play a role in our dot-interference task.

However, there are strong arguments that favor temporal gating in

our task. First, increasing the gating threshold for both motion

channels would delay the integration of evidence for both

channels, but this delay would not be equal for the two channels

because the target contrast in our task was lower than the

distractor contrast. Thus, it would take the target motion channel

longer to cross threshold, thus increasing the impact of the

distractor and partially reversing the desired effect. Secondly, in

Purcell’s case [24], the gating operates on the activity of visual FEF

neurons that are believed to represent top-down mediated

salience. These salience signals require significant preprocessing

and have slow temporal dynamics that are reminiscent of neural

integrators. In our case, however, the gating would be expected to

operate on the activity of motion-selective neurons (e.g., in MT)

that have much faster temporal dynamics and lack the slow

increases of firing rate over time. Instead, MT neurons typically

respond with a burst of activity to motion onset before they begin

to become direction selective at a lower sustained firing rate.

Because of this strong unselective burst of activity, firing rate
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dependent gating would affect decision onset only within a rather

small range. Even more problematic, the predicted decision onset

would always happen during the initial burst, i.e. before MT

activity actually becomes selective for the direction of motion. The

key finding of our study, however, states that subjects delay

decision onset up to an average of 50 ms after the sensory evidence

becomes selective for direction of motion (Figure 10). Despite

these differences, we believe that there may be a way to partially

reconcile activity-dependent and temporal gating as outlined

below.

Our data indicate that decision onset can be affected by the

instructions to the subject to stress either speed or accuracy.

However, this is not necessarily the only determinant. In the

context of the RT paradigm we find a potentially informative

slight misfit of our model that may hint at an additional

determinant of decision onset: RTs in the neutral condition are

systematically longer than predicted by the model. In principle,

this may be due to additional non-decision time that is specific to

the neutral condition. However, the longer RTs also go along with

higher than predicted accuracy, indicating that they might be due

to a higher decision threshold or delayed decision onset (both

mechanisms lead to longer reaction times and higher accuracy).

But why would decision onset be delayed for the neutral relative to

the congruent and incongruent condition? Here we speculate that

decision onset may be modulated by the amount and/or salience

of potentially task-relevant information. Potentially task-relevant

information are dots moving either left- or rightwards. Dots

moving up- or downwards are a priori irrelevant to the task. In the

neutral condition, the distractors move upwards, thus reducing the

amount of potentially task-relevant information. If our hypothesis

is correct, this should delay decision onset, and increase RTs as

well as accuracy in the neutral condition only. In summary, we

speculate that that decision onset has at least two determinants:

internal factors (speed-accuracy setting) and sensory drive in the

shape of potentially relevant sensory information. This interpre-

tation partially blurs the border between strict activity-based

gating on the one hand (see above and [24]) and strict temporal

gating on the other. Alternative explanations for the slight misfit in

the neutral condition are possible, and at this point we have not

conducted additional experiments to confirm our hypothesis.

Subthalamic Nucleus and decision onset
In a number of groundbreaking recent studies, Frank and

colleagues have dissected the role of the sub-thalamic nucleus

(STN) for value-based decision making [39]. Their work has

generated a neural network model of decision-making that is based

on basal-ganglia anatomy and physiology (the BG model). In a

recent paper, Ratcliff & Frank [40] set out to modify a numerically

tractable diffusion model to capture the main properties of the

more complex BG model. They argue that higher activity in the

STN node of the BG model can be captured as an increase in

decision threshold. The temporal dynamics of STN activity can be

captured by exponentially collapsing response thresholds. Further,

the authors suggest that STN activity can be so high as to prevent

any responses from occurring and argue that this effect can be

captured as an increase in non-decision time. To a certain extent

our model shares common ideas with this body of work. In the

following, we outline some of the most important differences.

(1) The model by Ratcliff & Frank contains one parameter, non-

decision time, that represents both, the time of decision onset and

conduction delays in the system. Our model, in contrast, splits this

value into two independent parameters: decision onset and non-

decision time. This distinction is not only possible, but also

necessary, because in our paradigm drift-rate is non-stationary and

varies systematically over the time-course of a single trial. As a

result, we are able to distinguish whether subjects wait before

initiating the decision process (delayed decision onset), or whether

they wait to execute the response once they have made up their

mind (longer non-decision time). Though Ratcliff and Frank

present theoretical arguments that the former is the case, they

provide no experimental evidence for the assumption that subjects

delay decision onset, rather than increasing non-decision time.

The two scenarios can only be distinguished experimentally when

drift rate varies systematically over the time-course of a trial as is

the case in our paradigm.

(2) Ratcliff and Frank propose that STN activity has two effects:

an increase of the bound and an increase of non-decision time/

decision onset. While the former is beneficial and helps subjects

prolong the decision process in order to make more accurate

choices, the delayed decision onset serves its purpose only if the

quality of the sensory information improves over time. In our case,

the delayed decision onset dramatically improves accuracy

because it allows the decision to start at a point in time when

the sensory information is more selective for the target stimulus.

Hence, our study is the first demonstration that delaying decision

onset can serve a purpose and improve response accuracy.

(3) In the Frank & Ratcliff model, STN activity, and hence

decision onset, is determined by the amount of sensory conflict in

the stimulus – that is, decision onset is not necessarily controlled by

the subject. In our study, the stimuli are identical and the

difference in decision onset must be mediated by the instructions.

Hence, our study is the first demonstration that humans can

actively manipulate decision onset to improve decision accuracy.

Note, however, that subjects were not aware of how they were

improving accuracy. Hence, most likely, decision onset is out of

conscious control.

(4) Conversely, we do not allow our model to adjust decision

onset as a function of sensory conflict. The main argument for this

choice comes from the data of the CD paradigm that can be fit

very nicely with a model that assumes identical decision onsets that

are independent of conflict. However, the current study did not

explicitly test whether the model would benefit from letting

decision onset vary as a function of congruency. Hence, it is

possible that future analyses may reveal such an effect.

Overall, we believe that our paper shares similarities with the

work by Ratcliff & Frank. We would not be surprised if some of

the differences outlined above could be attributed to differences in

the tasks. In addition, we believe that the collapsing bound

suggested by Ratcliff & Frank may increase the quality of the fits in

our case, by reducing the over-dispersion that is observed for the

RT quantiles in the neutral and incongruent condition.

Challenges for the onset mechanism
A general challenge to the onset mechanism has been presented

by Larsen & Bogacz [23]. They argue that an additional

mechanism that determines decision onset would be computa-

tionally challenging and energy inefficient by adding an additional

layer of complexity to the decision process. Here we have outlined

that adjusting decision onset as a function of task demand (task set-

dependent gating) is computationally no more demanding than

adjusting response thresholds to task demands. The added

complexity can be justified by the potential benefits of delaying

decision onset that can far exceed those of response threshold

adjustments. The benefit of delaying decision onset depends on the

specific task in question. In artificial settings, when no distractors

are present and momentary evidence is approximately constant

over time, the potential benefit would certainly be smaller. In

situations when targets and distractors are far enough apart, overt
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attention, i.e. a gaze-shift to the relevant location, may partially

take over the role that covert allocation of attention plays in the

current task [41]. However, in many realistic situations where

relevant information is presented amidst very salient distractors,

the effect of decision onset can be substantial.

Sub-optimality of observed decision strategies
Our simulations highlight that our subjects set decision onset

and response threshold at suboptimal levels — all subjects could

have further decreased response latency without any loss in

accuracy (Figure 10). To maximize the rate of information

transfer, subjects would have needed to delay decision onset even

further while lowering response threshold. This result raises the

question: why did they not adopt a more optimal decision

strategy? We will argue below that subjects use suboptimal

strategies because they did not have enough time to find the

optimal strategy. In the context of the threshold model,

requirements of speed and accuracy are mutually exclusive and

subjects can trade one for the other by changing threshold; that is,

for any desired level of accuracy, there exists exactly one response

threshold. The resulting response latencies are, thus, ‘‘optimal’’.

Decision onset expands this one-dimensional view: the optimal

strategy is best described as a two-dimensional vector that specifies

response threshold and decision onset. Within this expanded

framework, any desired level of accuracy or response latency can

be achieved by an infinite number of threshold/onset combina-

tions (iso-accuracy/iso-latency lines in Figure 5A&B). All settings

will differ with respect to the rate of information transfer that they

provide (Figure 5C) and the true challenge is not only to meet a

required level of response accuracy/latency, but to do so while

optimizing information transfer. Moreover, in this framework it

may be imprecise to view the adjustment of speed and accuracy as

a tradeoff rather than a two-dimensional optimization problem. This

optimization problem is challenging given the stochastic nature of

the dependent variables. For example, it will require hundreds of

trials to reliably differentiate a decision strategy providing 99%

accuracy from one providing 99.5%. A gradient-decent-like search

for the optimal decision strategy would require tens of thousands

of trials before converging on the optimal strategy. Hence, it is not

surprising that the subjects in our task did not find the optimal

strategy. It is possible, however, that subjects may learn to

implement optimal decision strategies through additional training

in combination with specific instructions that encourage them to

delay decision onset and reduce response threshold.

Comparison to other joint response signal/RT studies
Our study uses a powerful approach that includes two distinct

experimental paradigms: a response signal paradigm and a RT paradigm

with different requirements regarding speed and accuracy. This

dual approach was pioneered by Ratcliff to study decision-making

in a numerosity categorization task [33]. Here we applied the same

general approach to study decision-making in the presence of

salient distractors that cause stimulus and/or response conflict.

Due to the different requirements of this type of decision, we

adapted the methodology [33] in a number of ways, for example,

by using the cyclic deadline paradigm instead of the standard

response signal paradigm.

Early studies using a response signal paradigm assumed that

information continues to accumulate until the response signal is

given [30,31]. Ratcliff [33], however, found that it was necessary

to assume the presence of implicit response thresholds in the

response signal paradigm in order to accurately predict data from the

RT paradigm. Our study provides a somewhat different finding: the

assumption of implicit response thresholds in the response signal

paradigm (the CD paradigm) actually prevents accurate modeling of

the data in the CD paradigm itself. The problem is that for very long

processing times, subjects almost always respond accurately, even

in the incongruent condition. This implies that the decision

process never terminates at the threshold for the incorrect

response. There are three ways to deal with this issue when

modeling the data from the CD paradigm: (1) no response

thresholds are present, (2) response thresholds are present but set

to such extreme values that the incorrect threshold is never

reached or (3) the response thresholds are not absorbing but

reflecting, i.e. the integration of evidence continues even after the

threshold has been reached. In the current paper we assume

option (1) because it was conceptually, as well as computationally,

the simplest alternative and provided a very good quantitative fit

to the data in both paradigms. We believe that the apparent

discrepancy with Ratcliff’s earlier finding can be attributed to

differences in the tasks (numerosity categorization vs. Stroop-like

interference task).

Perfect versus leaky integration
All modeling efforts reported here are based on the assumption

of perfect integration. Perfect integration has been shown to be a

good assumption in many different tasks and conditions. However,

it is possible that a short integration time constant might be more

beneficial in a task in which drift rate changes systematically over

the time-course of a trial. In preliminary analyses we found that

data from the CD paradigm can be explained quite well using

perfect as well as leaky integration (data not shown). While it is

possible that the RT paradigm may be able to distinguish between

perfect and leaky integration, establishing this distinction was

beyond the scope of the current paper. It is, however, worth

mentioning that the only other model that predicts entire RT

distributions in a similar interference task, also uses perfect

integration [16].

Comparison of non-decision times in CD and RT task
One surprising yet very consistent finding were the longer non-

decision times in the RT paradigm (346628 ms) compared to the

CD paradigm (259613 ms). In principle, it is possible that the

novel CD paradigm did not provide accurate estimates of non-

decision time. However, the non-decision times measured with the

CD paradigm are in the expected range based on simple visual

RTs [42] that were confirmed in an exploratory experiment using

one example subject (data not shown). Overall, we argue that the

non-decision times estimated from the CD paradigm seem to be a

much more realistic estimate of the fixed delays in the system. This

implies that (1) either non-decision times are not estimated

correctly from the RT paradigm, or (2) non-decision times are

actually longer in the RT paradigm. Option 1 is possible, in

principle, but not very constructive because we cannot propose an

alternative model that can explain the data using shorter non-

decision times.

This leads to option 2. Here we consider 3 possibilities for why

non-decision times could actually be longer in the RT paradigm:

training effects, attention, and true paradigm-related differences.

The simplest explanation of the lower non-decision times in the

CD paradigm is additional training. By the time subjects

performed the CD paradigm, they had performed several hundred

trials in the RT paradigm, as well as a substantial amount of

training in the CD paradigm itself. All of this additional exposure

may have led to a more effective link between a stimulus/decision

and the corresponding response. However, given the intuitive

mapping between stimulus and response, we believe that the
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difference in non-decision time between the two tasks is larger than

what would be expected from training effects.

It is also possible that these differences in non-decision time

could be due to attentional effects. It is a well-known fact that

attention can dramatically affect reaction times [42], in particular

if a stimulus is presented unexpectedly. Hence, it could be argued

that non-decision times are shorter in the CD paradigm because it

provides a more engaging environment that makes it easier for

subjects to focus attention on upcoming stimuli. In fact, based on

our own observations and informal reports by the subjects, the CD

paradigm was more fun and less tiring. However, it is also

important to note that we took care to equalize temporal

predictability of the stimulus: in both paradigms, subjects could

anticipate stimulus onset. Hence, setting aside the ‘fun-factor’ of the

rhythmic responses, there is no reason why subjects should not

have been able to allocate the same amount of attention towards

the time of stimulus onset in both paradigms.

Finally, it is possible that the two paradigms have inherently

different non-decision times. Non-decision time in the RT

paradigm may be longer because of additional post-decision

overhead that is not present if subjects are pushed to their limit in

the CD paradigm. It is unclear what this overhead would

accomplish and why subjects would be willing to incur extra costs

that do not prolong the decision process itself and hence do not

contribute towards improving response accuracy. We speculate

that the additional time might be used to initiate post-decision

meta-analyses of the previous decision. Conversely, non-decision

times might be shorter in the CD paradigm, because it allows

subjects to influence their final motor response into a later stage of

processing. If this were the case, we might expect to see more trials

in which subjects accidentally press both buttons. Our data did not

allow us to quantitatively test this assumption, but from our own

subjective experience, this was not the case. If at all, double presses

seemed to be more common in the RT paradigm. Regardless of

what causes the longer non-decision times in the RT paradigm,

our findings suggest that a cyclic response mode may be quite

beneficial (by reducing non-decision times) in situations where

subjects need to make many successive and potentially boring

decisions.

Conclusions

The current study provides support for the idea that subjects

can strategically adjust decision onset to trade speed for accuracy

in a Stroop-like interference task. The finding that decision onset

can be adjusted to task demands has important implications for the

development of training methods to help individuals make fast

high-stake decisions in complex environments with salient

distractors. Current strategies to improve accuracy suggest subjects

should increase cognitive control in order to speed up the selection

of the relevant target [17,22]. While extensive training may

produce some speeding of the selection process, there is certainly a

physiological limit on how much the dynamics can be accelerated.

Manipulating decision onset provides an independent mechanism

to improve accuracy once that limit is reached by finding the

optimal balance between decision onset and response threshold.

Hence, our finding that decision onset can be controlled may spur

the development of new training programs to delay decision onset,

which could be particularly helpful for individuals or clinical

populations that have a slow stimulus selection process or who

make fast high-stakes decisions in complex realistic environments.

Supporting Information

Figure S1 The effect of biased competition on the
activity of a single motion channel. (A) Based on the

temporal progression of the biased competition in Layer 2, activity

of a motion channel can be grouped into two periods: the bottom-

up period in which activity reflects physical salience, the top-down

period in which activity reflects task-relevance. Note that in the

temporal dynamics of the biased competition process were chosen

for illustration purposes only and do not reflect the results of the

fits to the actual data. Activity is plotted for six different stimulus

configurations depending on the presence and direction of motion

of the target and distractor dots (see Legend for color code).

Conditions where either target and/or the distractor were not

present serve as a reference, but never occurred in the actual

experiment. Note that in the bottom-up period, the distractor

alone (black line) elicits stronger activity than when it is present in

combination with the target (green line). This reflects the finding

that cells will respond with an average firing rate if two stimuli are

presented in its receptive field simultaneously. Note that in the top-

down phase, the green and cyan lines converge towards the grey

line, while the orange line converges towards the red line. This

means that the motion channel responds as if the distractor were

less salient or even absent if the biased competition operates in a

winner-take-all fashion. (B) The relative response strength of the

individual conditions depends on the setting of the divisive

inhibition term Iin in equation (2) that models the non-linear

contrast response function of the motion channel. All values

represent activity in the bottom-up period. In the top-down

period, responses converge to the grey, and red line, respectively,

as indicated in (A).

(TIFF)

Figure S2 Data and model fits in the cyclic deadline task for all

seven subjects separately. Conventions as in Figure 4.

(TIFF)

Figure S3 RT fits for one example subject and example
model (TON_222). Predicted (green/red lines) and measured

(black lines) RT distributions for one example subject in the RT

paradigm. In different sessions, the subject was instructed to

emphasize either speed (top row) or accuracy (bottom row). The

central portions of the plot depict the density of the simulated

decision variable as it develops over the time course of a trial

(yellow: high density, red: low density, log-scale). The black line

overlays accumulated mean drift rate as estimated from the cyclic

deadline task. The insets above and below the central portion

indicate the RT distribution for correct and error trials,

respectively. The green and red lines indicate the fit of the 6-

parameter TON_222 model to the data. For each condition,

accuracy and RT distributions were fit with three free parameters:

decision onset, t0, response threshold, 6B, and non-decision time.

All other parameters were set to the values estimated from the

cyclic deadline version of the task.

(TIFF)
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