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Persistent inflammatory pain is linked with
anxiety-like behaviors, increased blood
corticosterone, and reduced global DNA
methylation in the rat amygdala
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Abstract
Chronic pain increases the risk of developing anxiety, with limbic areas being likely neurological substrates. Despite high clinical
relevance, little is known about the precise behavioral, hormonal, and brain neuroplastic correlates of anxiety in the context of
persistent pain. Previous studies have shown that decreased nociceptive thresholds in chronic pain models are paralleled by
anxiety-like behavior in rats, but there are conflicting ideas regarding its effects on the stress response and circulating cor-
ticosterone levels. Even less is known about the molecular mechanisms through which the brain encodes pain-related anxiety.
This study examines how persistent inflammatory pain in a rat model would impact anxiety-like behaviors and corticosterone
release, and whether these changes would be reflected in levels of global DNA methylation in brain areas involved in stress
regulation. Complete Freund’s adjuvant (CFA) or saline was administered in the right hindpaw of adult male Wistar rats.
Behavioral testing included the measurement of nociceptive thresholds (digital anesthesiometer), motor function (open field
test), and anxiety-like behaviors (elevated plus maze and the dark-light box test). Corticosterone was measured via radio-
immunoassay. Global DNAmethylation (enzyme immunoassay) as well as DNMT3a levels (western blotting) were quantified in
the amygdala, prefrontal cortex, and ventral hippocampus. CFA administration resulted in persistent reduction in nociceptive
threshold in the absence of locomotor abnormalities. Increased anxiety-like behaviors were observed in the elevated plus maze
and were accompanied by increased blood corticosterone levels 10 days after pain induction. Global DNA methylation was
decreased in the amygdala, with no changes in DNMT3a abundance in any of the regions examined. Persistent inflammatory pain
promotes anxiety -like behaviors, HPA axis activation, and epigenetic regulation through DNA methylation in the amygdala.
These findings describe a molecular mechanism that links pain and stress in a well-characterized rodent model.
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Introduction

Chronic pain increases the risk of developing depression and
anxiety,1 and is associated with disorders in affective pro-
cesses and the involvement of limbic areas both in patients
and animal models.2,3 In the central nervous system (CNS),
pain processing occurs through a complex organization of
ascending and descending neural pathways which often
overlap with brain regions involved in emotional behavior,
including the prefrontal cortex, amygdala, and hippocam-
pus.4 These brain regions and their subdivisions are also
responsible for the coordination of the stress response.5 In
particular, the amygdala is critically involved both in emo-
tional regulation6 as well as pain perception.7,8 Chronic pain
also affects the hypothalamic-pituitary-adrenal axis (HPA), a
neuroendocrine feedback system responsible for the regu-
lation of stress adaptation. The imbalance of the HPA axis is
linked to stress-related disorders with increased release of
corticosterone leading to alterations in behavior, neuro-
transmitter systems, and gene expression in the brain.9 The
effects of persistent inflammatory pain on corticosterone
release are not well understood.

An attractive mechanism that could explain pain persis-
tence and its co-morbidities is DNA methylation, a covalent
reaction at the 5’ position in cytosine-guanine dinucleotides
and is often associated with altered gene expression.10 In-
deed, stress-related disorders, anxiodepressive-like behav-
iors, and chronic pain have been strongly linked to changes in
CNS DNA methylation.9,11–14 In a model of peripheral
neuropathy, mice displayed anxiety-like behaviors and
concomitant reduction of global DNA methylation in the
prefrontal cortex and the amygdala.12 In a mouse model of
bone trauma, increased levels of global methylation and
decreased levels of hydroxymethylation were observed in the
olfactory bulb and were associated with an increased bias
towards recalling unpleasant memories.14 In a rat acute in-
flammatory pain model induced by complete Freund’s ad-
juvant (CFA) in the paw, increased phosphorylation of
methyl-CpG binding protein 2 was observed in spinal lam-
ina I15,16 and II.16

The findings above led us to examine whether persistent
inflammatory pain would impact anxiety-like behaviors,
corticosterone release, and whether these changes would be
reflected in levels of global DNA methylation in the brain
areas involved in stress regulation. Using a well-characterized
rat model of persistent inflammatory pain ,17,18 we hypoth-
esize that reduced nociceptive thresholds are accompanied by
increased signs of anxiety, increased levels of circulating

cortisol, as well as alterations in the global DNA methylation
in the brain.

Methods

Experiments were performed according to the international
guidelines for animal use with the approval of the local
Animal Care and Use Committee of the University of São
Paulo-Brazil, Campus of Ribeirão Preto (Protocol number
2014.1.508.58.1) and Conselho Nacional de Controle de
Experimentação Animal - Ministério da Ciência e Tecnologia
(Brazil). The number of animals used in each protocol was
chosen empirically and all efforts were made to minimize
animal suffering.

Animals

Male Wistar adult rats (weighing ∼200 g at arrival) were
used. All animals were provided by our local animal vivarium
(University of São Paulo, Campus of Ribeirão Preto, Brazil)
and kept in Plexiglas wall cages (56 cm × 17 cm × 39 cm, four
rats per cage) in a room maintained at 24 ± 1°C, and humidity
60–65% and allowed to acclimate for at least 1 week prior to
experiments. Animals were housed in a 12:12-h light/dark
cycle with food and water available ad libitum. The exper-
imental rooms for nociceptive and behavioral testing were
maintained at the same temperature and humidity as above.
The light intensity in the rooms for elevated plus maze, dark-
light box, and open field test was ∼50 lux. Visual cues and
loud noises were limited for the behavioral and nociceptive
testing. All experiments were performed between 09:00 a.m.
and 03:00 p.m. to minimize hormonal circadian oscillations.
Behavioral experiments in elevated plus maze (EPM), dark-
light box (DLB), and open field test (OFT) were documented
using a video camera. The ARRIVE guidelines (Animal
Research: Reporting of in Vivo Experiments) were followed.

Experimental groups

We randomly assigned each animal to one of the following
groups, as described here: Group 1 (n = 8): the rats were tested
in the von Frey apparatus to verify the basal latency (BL) of
the nociceptive threshold and received in the right hind paw
1 day after BL data. Then, the nociceptive threshold was
measured at 3, 7, and 10 days after CFA injection. Right and
left hind paws were tested. This group of animals was ex-
posed to the open field test 2 h after the von Frey test on the
10th day after paw injection. Group 2 (n = 8): the rats
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followed the same timeline as Group 1, however, instead of
CFA, 0.9% saline was administered. This served as a control
group for the group 1. Group 3 (n = 8): CFAwas administered
in the right hindpaw and rats underwent EPM 10 days after
injection. Group 4 (n = 7): the rats followed the same timeline
as group 3, however instead of CFA, 0.9% saline was ad-
ministered. This served as a control group for the group 3.
Group 5 (n = 8): CFAwas administered in the right hind paw
and underwent DLB 10 days after the injection. Group 6 (n =
8): the rats followed the same timeline as group 5, however
instead of CFA, 0.9% saline was administered. This served a
control group for the group 5. Group 7 (n = 6): CFA was
administered in the right hindpaw, and rats were decapitated
10 days after injection. Immediately following decapitation,
the trunk blood was collected and placed into heparinized
tubes. Brains were also harvested and stored in �80°C for
dissection and subsequent global DNA methylation and
DNMT3a abundance analysis. Group 8 (n = 6): the rats
followed the same timeline as group 7, however instead of
CFA, 0.9% saline was administered. This served as a control
group for the group 7.

A priori exclusion criteria included animals showing signs
of illness and severe discomfort after the intraplantar injec-
tions (0 animals were excluded). One animal died due to the
ketamine/xylazine anesthesia prior to the intraplantar injec-
tion and was therefore excluded from the study. The ex-
perimental timeline is depicted in Figure 1.

Induction of persistent pain

A single intraplantar administration of CFA (0.05 mL, 50 μg;
Mycobacterium tuberculosis, Sigma-Aldrich #F5881) in the
right hind paw surface was performed. All animals were
anesthetized with a mixture of ketamine 10%, 100 mg/kg +
xylazine 2%, 10 mg/kg intramuscular for the intraplantar
CFA or pyrogen-free sterile saline 0.9% injections.

Nociceptive response

The threshold (in grams) of paw withdrawal response was
measured. The animals were placed in the experimental box
of the apparatus to acclimate for 2 h before the tests and
mechanical innocuous stimuli were applied to the hind paws
by a digital anesthesiometer (von Frey model, Insight In-
struments, Ribeirão Preto, São Paulo, Brazil). After accli-
mation, a progressive force (0–80 g with a 15-s limit) was
applied to the right and left hind paws using a filament
(0.5 mm diameter). A baseline (BL) was obtained from all
animals prior to the intraplantar saline or CFA injection, and
then re-tested at 3, 7, and 10 days after injection. In each
experimental day, the mechanical stimulus was applied three
times (3–5 min between each stimulus with no fixed interval)
to obtain a mean of the force applied.

Locomotor activity

The Open field test (OFT) was used to evaluate locomotor
activity. The same sets of animals previously subjected to the
von Frey test were also tested in the OFT 2 h after the end of
the von Frey test. This was done to determine whether the
paw injections would affect locomotion and confound the
emotional responses exhibited in the EPM and DLB. Animals
were placed in a polyethylene box (60 cm × 60 cm × 60 cm)
with the floor divided into 16 equal squares of 15 cm each.
Rats could freely ambulate over a 5-min period and the total
distance travelled (in cm) was analyzed using the ANY-
MAZE software.

Anxiety-like behaviors

Elevated plus-maze. The elevated plus maze (EPM) apparatus
was made of wood, had two open arms and two enclosed arms
of the same size (50 cm long each), and was raised 50 cm
above the floor. Rats were placed in the center of EPM and
allowed 5 min of free exploration. The parameters measured
were the percentage of time spent in the open arms and
number of entries into open and enclosed arms.

Figure 1. Experimental timeline. Image illustrated using
Biorender© software.
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Dark-light box. The dark-light box (DLB) apparatus is a box
with two equal compartments (50 cm length × 80 cm width ×
60 cm height). The dark and white acrylic compartments are
connected by a small opening (15 cm height × 10 cm width),
which allows for free exploration by the animal. The animals
explored the apparatus for 5 min. The number of crossings
between compartments and the percentage of time spent in
each compartment was measured.

Sample collection and storage

Independent groups of animals were euthanized through
decapitation for blood and brain collection 10 days after CFA
or saline 0.9% injection. Trunk blood was collected into
heparinized tubes and centrifuged (2500 g, 20 min, 4°C). The
plasma was extracted and kept at �20°C for the cortico-
sterone assay. Brains were harvested and rapidly frozen in dry
ice and maintained in �80°C for later dissection, protein or
DNA extraction, DNMT3a quantification, and global DNA
methylation analysis.

Corticosterone assay

Radioimmunoassay (RIA) was performed to determine
whether CFA-induced persistent inflammatory pain changes
circulating corticosterone, a classical marker for stress. Total
plasma corticosterone levels were measured following the
manufacturer’s instructions for the Corticosterone Antiserum
Developed in rabbit (C8784-100TST, Sigma) with modifi-
cations. Plasma corticosterone was extracted with ethanol.
For each 25 μL of plasma, 500 μL of 100% ethanol was
added, vigorously mixed for 15 s, and centrifuged at 2500 g
for 15 min at 4°C. Each supernatant was collected and al-
lowed to dry completely. These samples were resuspended in
0.1% gelatin phosphate buffer (pH 7.4) and were maintained
at �20° until the analysis. The RIA was performed by in-
cubating the extracted samples or the unlabeled corticoste-
rone with the antiserum and tritiated hormone {[1,2,6,7 –

3H
(N)]-corticosterone, Perkin Elmer} at 4°C for 24 h. The
separation of free/bound tritiated corticosterone was pro-
moted by the addition of a suspension of dextran-coated
charcoal (0.5% activated charcoal, 0.5% dextran in phosphate
buffer, pH 7.4) added to each tube, vortexed for 1 min, in-
cubated at 4°C for 15 min, then centrifuged at 2000 g for
15min at 4°C. The antiserum-bounded 3H-corticosterone was
presented at each supernatant, mixed with the scintillation
liquid, and the radioactivity of each tube was measured using
the beta Trilux counter (Perkin Elmer). A standard curve was
set up with known concentrations of unlabeled corticosterone
and it was used to estimate the corticosterone levels in the
unknown samples. Data were analyzed by Multicalc soft-
ware. The lower limit for detection for corticosterone was

0.05 ng/mL. All samples were measured in duplicate in the
same assay to avoid inter-assay error.

DNA methylation

Genomic DNA extraction and global DNA methylation levels
measurement. The following regions were bilaterally mi-
crodissected according to stereotaxic coordinates: the
amygdala (Bregma �1.92 mm to �3.12), the ventral hip-
pocampus (Bregma �1.92 mm to �1.44 mm), and the
prefrontal cortex (Bregma �4.68 mm to �2.76 mm). Ge-
nomic DNA from each sample was extracted and purified
using SDS/proteinase K. The tissue was placed in 550 μL
lysis buffer (NaCl 0.1 M, Tris 50 mM, EDTA 50 mM, final pH
8), 27.5 μL of 20% SDS, and 20 μL of proteinase K (#P2308,
Sigma). The tissue was then incubated up to 2 h at 60°C for
total tissue digestion. Following the digestion step, 600 μL of
4 M sodium chloride was added to the lysis buffer followed by
15 s of vortexing and centrifuging (14,000 rpm, room tem-
perature, 30 min). An aliquot (1 mL) of the mixture (lysis
buffer + NaCl) containing the digested tissue of each sample
was placed in another labeled tube and two equal volumes of
100% ethanol were added and kept in �20°C for up to 18 h.
The tubes were then centrifuged (14,000 rpm, 4°C, 30 min)
the following day and the supernatant was discarded. The
DNAwas washed (centrifuging 14,000 rpm 4°C, 5 min) three
times with 700 μL of 70% ethanol and left at room tem-
perature to allow complete drying. To re-suspend and dilute
the DNA, 50 μL of ultrapure molecular grade water was
added to the dried tubes. The DNA concentration was
quantified by spectrophotometry (Nanodrop 2000c, Thermo
Fisher Scientific). This was followed DNA digestion and
global DNA methylation quantification. Briefly, the purified
DNA was digested with Nuclease P1 (#P2640, Sigma, 2 U/
mg of DNA, 4 h, 65°C in acetate buffer 20 mM pH 5.3),
alkaline phosphatase enzymes (#N8630, Sigma, 1 U/mg of
DNA, 2h, 65°C in Tris-HCl buffer 20 mM pH 7.5), precip-
itated with 100% ethanol, and NaCl 5M at �20°C for at least
18 h. The samples were then centrifuged at 15,000 g for
15 min. The resulting pellet was re-suspended in ultrapure
water and the global levels of DNA methylation were as-
sessed using a DNA Methylation EIA kit (#589324, Cayman
Chemicals). The absorbance was measured by spectropho-
tometer (SpectraMax 190 plate reader, Version 6.2.1, Mo-
lecular Devices). Different concentrations of the purified
5-methyl-2’-deoxycytidine (provided by the kit) were
used to generate the standard concentration curve. The
concentrations (ng/mL) were computed based on the standard
curve equation. Each 5-methyl-2’-deoxycytidine concentra-
tion was divided by its respective total DNA and expressed as
a percentage of the mean of the control (saline group). All
samples were measured in the same assay.
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DNMT3a protein quantification. Part of the tissue used for
genomic DNA extraction was used for this experiment.
Tissue was homogenized in RIPA buffer (Sigma-Aldrich #
R0278) containing protease inhibitors (10%, dilution 1:10,
Sigma-Aldrich) and 0.5% phenylmethanesulfonyl fluoride
(PMSF, Sigma-Aldrich). After cold agitation (∼4°C) for 2 h,
the samples were centrifuged (3500 rpm, 20 min, 4°C) to
collect the supernatant. Following quantification of total
protein, 60 μg of protein of each sample was diluted in a 2x
Laemmli buffer (1:1; Sigma-Aldrich, S3401). Proteins were
separated by electrophoresis (125 V, 90 min) in 12% poly-
acrylamide gels. A marker of molecular weight (10 kDa–
250 kDa; Prism Ultra Protein Ladder, ABCAM ab116028)
was used in one well of each gel for assessment of the
subsequent transfer. After electrophoresis, the proteins
were transferred to a nitrocellulose membrane (0.45 μm
pore size; Amersham) in a tank blotting system (125 V,
90 min) semi-immersed in a transfer buffer containing
20% methanol. The membranes were subsequently
blocked with 5% BSA for 60 min in slow agitation in room
temperature to block non-specific binding. The mem-
branes were incubated overnight in 4°C in a PBS-T BSA
1% buffer (phosphate buffered saline +1% tween 20 + 1%
BSA) containing antibodies against DNMT3a (rabbit, 1:
1000, H-295 sc-20,703, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) and β-actin (mouse, 1:1000, C4 sc-
47,778, Santa Cruz Biotechnology, Santa Cruz, CA,
USA). Membranes were then incubated with PBS-T
containing BSA 1% and secondary HRP (horseradish
peroxidase)-conjugated antibodies (anti-rabbit, 1:10,000;
Abcam, ab6721; and anti-mouse 1:10,000; Merck, 12-
349) for 2 h in room temperature. A chemiluminescent kit
(SuperSignal Chemiluminescent Substrates, Thermo
Fisher Scientific) detected the immunolabeled bands in the
membranes, and densitometric analysis was made by
using the ImageLab 5.2.1 (BioRad) software. The ratio of
band optical density of DNMT3 to β-actin (housekeeping
protein) was calculated.

Statistical analysis

The time course of mechanical sensitivity was analyzed
using a two-way repeated measures ANOVA followed by
Tukey’s post hoc test when appropriate. We considered
treatment (CFA or vehicle injection) and time (BL, 3rd ,7th,
or 10th days after injection) as factors. For the remaining
experiments, all statistical analyses were made using the
Shapiro-Wilk test for normality followed by Student t test.
Welch’s correction was applied when the assumption of
equal variances was not met. Results were considered
significant is p < .05. All data are reported as mean ±
standard error of the mean (SEM) and were analyzed by
GraphPad Prism® for Windows, version 7.0 (GraphPad
Software, USA).

Results

Intraplantar CFA injection reduces nociceptive
thresholds in rats and increases circulating
corticosterone levels in the absence of
locomotor deficiency

To study the effects of intraplantar CFA injection on the
nociceptive response, we tested two groups of animals in the
von Frey test before CFA or saline (control) paw injection to
establish a baseline; as well as 3,7, and 10 days after the paw
injection. Two-way repeated measures ANOVA revealed
significant effects of treatment [F (1,14) = 81.95 p < .001],
time [F (3,42) = 15.17 p < .001], and treatment × time in-
teraction [F (3,42) = 23.6 p < .001] in the group injected with
CFA. Animals that received CFA injection had reduced
withdrawal thresholds (in grams) 3, 7, and 10 days after CFA
injection in the ipsilateral paw compared to the saline group
(two-way repeated measures ANOVA followed by Tukey
post-hoc test, p = < .0001; Figure 2(a)). Two-way repeated
measures ANOVA did not show evidence of a significant
difference in treatment [F (1,14) = 0.4031 p = .5357], time
[time F (3,42) = 2.187 p = .1038], or treatment x time in-
teraction [F (3,42) = 0.3551 p = 0.7857] between the groups
saline or CFA in the contralateral paw (Figure 2(b)).

We measured circulating total corticosterone levels 10 days
after CFA injection in the paw.We found that intraplantar CFA-
administered animals showed augmented plasma levels of
corticosterone [t (10) = 2.282, p = .0456, Figure 2(c)], com-
pared to the saline control group. To determine if the rats
experiencing persistent paw pain would have impaired am-
bulation, we allowed the animals to freely behave in the OF for
5 min. The OF test is a common tool to assess emotional and
locomotor responses in rodents. CFA-injected animals did not
differ significantly in the distance of centimeters travelled in
the apparatus [t (14) = 0.6209 p = .5446 Figure 2(d)] when
compared to the saline control group.

CFA-induced persistent inflammatory pain in rats
leads to anxiety-like behaviors

We aimed to investigate whether the established persistent
inflammatory pain induced by CFA could promote anxiety-
like behaviors in rats. In the EPM test, we quantified the time
spent (%) in the open arms and the number of entries into the
open and closed arms. CFA-injected rats had a decrease in the
number of entries in the open arms [t (13) = 3.228 p = .0066
Figure 3(b)] and there were no differences neither in the
entries in the closed arms [t (13) = 1.184 p = .2578 Figure
3(c)] nor time spent (%) in the open arms [t (13) = 1.336 p =
.2044 Figure 3(a)] compared to saline group. Decreased
frequency of entry and/or duration of time spent in the open
arms is an indication of an anxiety-like phenotype.19 In the
DLB, we counted the number of crossings between the dark
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Figure 2. CFA treatment results in reduced mechanical thresholds and increase corticosterone levels in the absence of motor impairment.
(a, b): Mechanical thresholds (g) in the von Frey test for the ipsilateral (a) and contralateral (b) hindpaws at baseline (BL) and at 3, 7, and
10 days following the intraplantar administration of 50 μL CFA or 0.9% sterile saline in the right hind paw (Two-way repeated measures
ANOVA followed by Tukey’s post-test for multiple comparisons, ***p < .001). (c): Plasma levels of corticosterone assessed by
radioimmunoassay at 10 days after CFA or saline administration (Student t test, * p < .05). (d): Total distance travelled in the open field test
at 10 days after CFA or saline administration (Student t test). N = 8/group. Results are expressed as mean ± the standard error of the mean
(SEM). CFA, Complete Freund’s adjuvant.

Figure 3. CFA treatment results in anxiety-like behaviors. (a–c): Rats were tested in the elevated plus maze apparatus 10 days after the
intraplantar administration of 50 μL CFA or 0.9% sterile saline in the right hind paw. The following behaviors were measured: (a): Percentage
of time spent in the open arms. (b): Frequency of entries in the open arms. (c): Frequency of entries in the closed arms. (d–f): Rats were tested
in the dark light box test 10 days after CFA or saline administration. The following behaviors were measured: (d): Number of crossings
between the black and white compartments of the apparatus. E: Time spent in the white compartment. (f): Time to exhibit the first latency.
N = 7–8/group. Results are expressed as mean ± the standard error of the mean (SEM) and were analyzed by Student t test. **p < .01. Image
illustrated using Biorender© software. CFA, Complete Freund’s adjuvant.
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and white compartments, the time spent in the white com-
partment, and the time for first latency. We did not observe
major differences between CFA and saline groups regarding
the number of crossings between compartments [t (14) =
0.4077 p = 0.6897 Figure 3(d)], time spent in the white
compartment [t (14) = 0.2473 p = 0.8083 Figure 3(e)), and
exhibition of first latency [t (14) = 1.31 p = .2114 Figure 3(f)].

Rats with persistent inflammatory pain show
decreased global DNA methylation in the amygdala

After evaluating the behavioral and hormonal effects of
persistent pain, we investigated the global DNA methylation
levels in the amygdala, ventral hippocampus, and prefrontal
cortex. CFA-treated rats showed decreased global DNA
methylation in the amygdala when compared to the saline
control group [t (10) = 2.777, p = .0195, Figure 4(a)]. There

were no significant differences between the CFA and saline
control groups in the levels of global DNA methylation in the
ventral hippocampus [t (10) = 0.9488, p = .3651, Figure 4(b)]
or the prefrontal cortex compared to the saline group [t (10) =
0.0100, p = .9922, Figure 4(c)]. Quantification of the de novo
methyltransferase DNMT3a demonstrated no significant dif-
ferences between the CFA and control group in the amygdala [t
(6.3) = 2.01, p = .09, Welch’s correction, Figure 4(d)], ventral
hippocampus [t (4) = 1.84, p = 0.14, Figure 4(e)], or prefrontal
cortex [t (10) = 1.17, p = .27, Figure 4(f)].

Discussion

Our data shows that persistent hindpaw inflammation is
accompanied by behavioral signs of pain and anxiety, ele-
vated levels of circulating corticosterone, and decreased
global DNA methylation in the amygdala (Figure 5).

Figure 4. CFA treatment results in DNA hypomethylation and unchanged DNMT3a levels in the amygdala. (a–c): DNAmethylation levels in
amygdala (AMY, a), ventral hippocampus (VHPC, b) and prefrontal cortex (PFC, c) 10 days following the intraplantar administration of 50 μL
CFA or 0.9% sterile saline in the right hind paw. Each sample result is expressed as 5-methyl-2-deoxycidine/total DNA normalized by the 5-
methyl-2-deoxycidine/total DNA of the mean of the control group and expressed as percentage. (d–f): Quantification of DNMT3a levels
(relative to actin) in the amygdala (d), ventral hippocampus (e) and prefrontal cortex (f) 10 days after CFA or saline administration.
Representative bands can be seen on the upper side. N = 3–6/group. Results are expressed as mean ± the mean standard error (SEM) and
were analyzed by Student t test. *p < .05. Image illustrated using Biorender© software. CFA, Complete Freund’s adjuvant.
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Our behavioral studies supplement the body of prior
publications targeting pain and anxiety in preclinical models.
For instance, Parent and colleagues showed that hindpaw
CFA administration results in a robust anxiety-like response
observed in the EPM (reduced percentage of time spent and
number of entries in the open arms), OF, and social inter-
action test 28 days after injection in rats.18 Similarly, data
from our group showed an anxiogenic-like response observed
in the EPM 10 days after orofacial CFA injection.17

There exist conflicting data of how chronic pain and stress
hormones (e.g., corticosterone and/or adrenocorticotropic
hormone, ACTH) are linked, with reports of increased,20–23

decreased,24–26 or unchanged27–29 blood corticosterone or
ACTH levels in subjects with chronic pain. We propose two
explanations for such seemingly contradictory findings. First,
the discrepancy could be due to the ambiguous nature of the
link between pain-related stress and the HPA system. For
example, plasma corticosterone or ACTH levels did not
change 13 days after mono-neuropathy induction even when
the rats were restrained for 120 min compared to sham
group.30 The expression of stress genes (i.e., crf
[corticotrophin-releasing factor] and gr [glucocorticoid re-
ceptor]) in the central and medial amygdala nuclei in these
rats increased, indicating that the chronic pain may change the
CRF system independent of the HPA axis. Bomholt and
colleagues,31 using a neuropathic pain model, revealed that
rats do not have elevated corticosterone levels at baseline or
after physical restriction compared to the sham control, in-
dicating that chronic pain may not directly alter the HPA axis.
Second, it is possible that corticosterone levels are less de-
pendent on hyperalgesic state32 and more dependent on the
time course of the painful condition or its specific mani-
festation. Evidence from human studies shows that the HPA
axis may be hyperactive in the early stages of the pain
chronicity process and might be hypoactive as the pain
persists.33 For instance, hypercortisolism was shown in re-
gional musculoskeletal pain but not in widespread muscu-
loskeletal pain in women, which makes elevated cortisol an
indicator of an intermediate stage in the pain chronicity
process.34 Considering that the CFA animals in our study had
elevated blood corticosterone 10 days after the induction of
paw inflammation, we speculate that our preclinical model of
persistent inflammatory pain could serve to study the

hormonal responses to stress and pain chronification pro-
cesses. A detailed time-course of the effect of the persistent
inflammatory pain on the glucocorticoid release and its role in
the development of mood-related disorders is therefore
needed. It is noteworthy that corticosterone levels alone may
not accurately represent HPA axis activation and quantitation
of corticosteroid receptor abundance and sensitivity may be
required.

Increased levels of stress hormones in the context of
chronic pain has been associated with cortical, amygdaloid,
and hippocampal plasticity in patients.35 Similarly, repeated
intra-amygdala injections of corticosterone in rats reduced
viscerosomatic sensitivity and induced anxiety-like behav-
iors, an effect that was blocked by CRF receptor 1 antagonist
administration.36 This implies the presence of a plastic
molecular mechanism that regulates pain and anxiety in these
brain regions. Epigenetic mechanisms, including DNA
methylation, have been implicated in pain-related CNS
plasticity, both in global12,37 and gene-specific (synapto-
tagmin38 and crf 39) assays. We observed that CFA-injected
animals had reduced global DNA methylation in the
amygdala, but not in the prefrontal cortex or the ventral
hippocampus. Global hypomethylation in more chronic
(6 months) stages of neuropathic pain has been reported in the
mouse prefrontal cortex,12,37 thereby emphasizing the sen-
sitivity of these epigenetic modifications both to the time
course following injury as well as the type of pain studied. It
is noteworthy that while the amygdalar hypomethylation
changes in the current study are dramatic, they are often
difficult to interpret as they lack cellular context within a
complex tissue with high cell heterogeneity. It is unclear
whether these changes represent one cell population actively
methylating/demethylating protein coding areas of the ge-
nome, or an increase of one cell type with a specific meth-
ylation profile. As such, further cell specific or single cell
platforms will be needed to further interrogate these meth-
ylomic landscape changes. No differences in the levels of the
de novo methyltransferase, DNMT3a, were observed in any
of the regions studied.

We have demonstrated that peripheral CFA administration
is associated with the manifestation of both sensory (me-
chanical sensitization) and affective (stress and anxiety) di-
mensions of pain and is paralleled by systemic biochemical

Figure 5. Summary of findings. Image illustrated using Biorender© software.
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alterations (increased corticosterone levels) and global DNA
hypomethylation in the amygdala. Since only one timepoint
was studied, it is not possible to ascertain the precise se-
quence of these events. However, there is ample evidence of
pain leading to amygdalar plasticity and anxiety-like be-
haviors in preclinical models.40–42 What is less studied is the
link between peripheral injuries and brain epigenetic modi-
fications. Previous studies have suggested that epigenetic
modifications may predispose individuals to vulnerability to
chronic pain and its associated comorbidities43 while others
have noted the involvement of epigenetic mechanisms in the
maintenance of pain following the initial pathology or in-
sult.44 We hypothesize that chronic or persistent pain may
lead to DNA methylation changes which, in turn, could
initiate (mal)adaptive cellular plasticity underlying co-
morbidities such as depression and anxiety. A potential
candidate gene based on our biochemical data as well as
previously published studies is crf.39 Our future studies will
therefore involve crf-specific DNA methylation analysis in
our model and its link to the behavioral and hormonal re-
sponse to persistent inflammatory pain. Furthermore, we will
carry out detailed biochemical analyses of DNA methyl-
transferase localization, abundance, and activity, as well as
pharmacological interrogation of DNA methyltransferase
function.

Some limitations of the present study should be consid-
ered. In this way, our data was collected using male rats only.
In the future, it is important to test female subjects since there
are well established differences in mechanisms of pain be-
tween males and females,45 including mechanisms of CNS
plasticity46 and epigenetic modifications.47 While our study
does not specify the exact mechanisms by which pain results
in global DNA hypomethylation, it is nonetheless an im-
portant proof-of-concept finding with potentially high clinical
impact and therapeutic relevance. For example, the use of
methyl donors (e.g., choline, betaine, folate and vitamin
B1248) in the treatment of persistent or chronic pain and its
associated behavioral-related disorders could be considered.
Our study might therefore guide future treatments for both
chronic pain and its sequelae.

Anxiety that is comorbid with chronic pain, in addition to
being a clinical problem in itself, can enhance the overall
experience of pain and alter the function of commonly-used
analgesics, including opiates.49 It is therefore crucial to study
and treat pain in a more integrated manner, considering the
entirety of its clinical presentation as well as the underlying
peripheral and central mechanisms.
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