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Abstract

In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an

oscillatory type of locomotion called scrunching. We have previously characterized the bio-

mechanics of scrunching and shown that it is induced by specific stimuli, such as amputa-

tion, noxious heat, and extreme pH. Because these specific inducers are known to activate

Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP

channels control scrunching. We found that chemicals known to activate TRPA1 (allyl iso-

thiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other

systems induce scrunching in the planarian species Dugesia japonica and, except for anan-

damide, in Schmidtea mediterranea. To confirm that these responses were specific to either

TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV

antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treat-

ment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunch-

ing by decreasing the latency time, suggesting an agonistic relationship in planarians. We

further confirmed that TRPA1 in both planarian species is necessary for AITC-induced

scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist,

SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knock-

down of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not

inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching

induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show

that although scrunching induction can involve different initial pathways for sensing stimuli,

this behavior’s signature dynamical features are independent of the inducer, implying that

scrunching is a stereotypical planarian escape behavior in response to various noxious sti-

muli that converge on a single downstream pathway. Understanding which aspects of noci-

ception are conserved or not across different organisms can provide insight into the

underlying regulatory mechanisms to better understand pain sensation.
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Introduction

Normal locomotion of freshwater planarians, termed gliding, is achieved through synchronous

beating of cilia in a layer of secreted mucus [1–3]. Gliding planarians display a smooth motion

without major body shape changes, except for turning movements of the anterior end. How-

ever, when exposed to certain noxious stimuli (e.g. low pH, high temperature, or amputation),

planarians switch to a muscular-based escape gait that is characterized by oscillatory body

length changes [4]. We termed this gait scrunching and showed that it has a characteristic set

of 4 quantifiable parameters: 1. frequency of body length oscillations, 2. relative speed, 3. maxi-

mum amplitude, and 4. asymmetry of body elongation and contraction [4]. Moreover,

scrunching is conserved among different planarian species, with each species demonstrating a

characteristic frequency and speed. Although scrunching shares similarities with peristalsis,

another muscle-based oscillatory gait that occurs when cilia beating is disrupted [2,5–7],

scrunching is cilia-independent, can be induced in animals performing peristalsis, and is dis-

tinguishable from peristalsis based on the 4 parameters listed above [4], demonstrating that

scrunching and peristalsis are distinct gaits. Because scrunching is such a stereotypical

response involving many steps of neuronal communication (sensation, processing, neuro-

muscular communication), scrunching in response to noxious heat has proven to be a useful

and sensitive readout of neuronal function in planarian toxicological studies [8,9]. However,

which molecular targets and neuronal circuits regulate scrunching remain an open question.

Recently, it has been shown using RNA interference (RNAi) that the Transient Receptor

Potential (TRP) channel, TRP ankyrin 1 (TRPA1), is required for avoidance behaviors in

Schmidtea mediterranea in response to noxious heat and the pungent ingredient in mustard

oil, allyl isothiocyanate (AITC) [10]. The authors also showed that the noxious heat response

was mediated by H2O2 and/or reactive oxygen species which directly activate SmTRPA1, caus-

ing the planarian to avoid hot regions. Moreover, in response to physical injury (tail snips),

Smed-TRPA1-knockdown worms scrunched with a significantly reduced amplitude [10].

Based on these results, the authors hypothesized that SmTRPA1 signaling, induced through

H2O2 upregulation at the site of wounding, may regulate amputation-induced-scrunching in

S. mediterranea. Whether H2O2 exposure alone induces scrunching or whether SmTRPA1

also plays a role in triggering scrunching in response to other stimuli is still unknown.

TRPA1 is a member of the TRP superfamily, comprised of widely conserved transmem-

brane, nonselective cation channels [11]. TRP channels mediate responses to almost all classes

of external stimuli, including various nociceptive stimuli such as extreme temperatures, ultra-

violet light, and specific chemical irritants, and as such mediate the initial steps of pain sensa-

tion [11–13]. TRPs are classified into sub-families depending on their main mode of activation

(mechanical, thermal, chemical. . .), but are often polymodal, integrating different stimuli in

the same channel [11,13,14].

In addition to TRPA1, TRPV channels are also good candidates for possibly regulating

scrunching. Scrunching is activated by low pH and noxious heat [4], stimuli which are known

to activate members of the TRP vanilloid (TRPV) sub-family, named after their sensitivity to

vanilloid compounds such as capsaicin, in vertebrates and invertebrates [15–20]. TRPV chan-

nels are activated by a diverse range of stimuli and exhibit a high level of species-dependent

functional differences [20,21]. For example, while human and rat TRPV1 are highly sensitive

to capsaicin, rabbit and bird have greatly reduced sensitivities [21–23]. Historically it was

thought that, like fruit flies and nematodes [24–26], most invertebrates were also insensitive to

this chili pepper irritant [27]. However, medicinal leech was recently found to contain a capsai-

cin-sensitive TRPV channel [16]. Interestingly, although no TRPV homologs exist in the para-

sitic flatworm Schistosoma mansoni, it was shown that TRPA1 in this species mediates the
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behavioral response to capsaicin [28,29]. Previous analysis of a Dugesia japonica transcriptome

has estimated that at least 25 TRP homologs may be present in this planarian species [30].

Thus far, partial sequences for seven TRP genes have been identified and their expression pro-

files characterized [31]. DjTRPMa channels have been shown to regulate thermotaxis behavior

at lower temperatures (0–25˚C) [31], but the function of DjTRPA and DjTRPV channels has

not yet been studied in this species.

Thus, based on previous literature in planarians and the known activators of scrunching,

we hypothesized that planarian TRPA1 and TRPV channels control scrunching to specific sti-

muli. To test this hypothesis, we first assayed a variety of chemicals for their ability to induce

scrunching in two freshwater planarian species, S. mediterranea and D. japonica. We focused

on chemical compounds that have been shown to activate TRPA1 and/or TRPV, such as

AITC, an agonist of planarian [10] and mammalian [32,33] TRPA1, and capsaicin, a specific

agonist of mammalian TRPV1 [34,35].

We found that scrunching is a specific response to known modulators of mammalian

TRPA1 or TRPV channels, including AITC and capsaicin. These findings were substantiated

by knocking down either SmTRPA1, DjTRPAa or DjTRPVa/DjTRPVb using RNAi and evalu-

ating the behaviors of these worms when exposed to a subset of the confirmed scrunching

inducers. We found that planarian TRPA1, and partially TRPV, modulate scrunching in

response to different triggers.

The observation that scrunching is a stereotypical response that is the same for different sti-

muli and sensing mechanisms suggests the existence of a single convergent pathway that regu-

lates scrunching downstream of planarian TRP activation. TRP channels are involved in

various chemical and physical sensing capacities across eukaryotes, from yeast to humans, yet

exhibit a high level of diversity, both within the superfamily and across species [11,13]. By

understanding how these channels are used in different species, such as planarians, we gain

better insight into their regulatory mechanisms, with the potential to reveal elements impor-

tant to control pain sensation.

Materials and methods

Animal care

Asexual freshwater planarians of the species Dugesia japonica and Schmidtea mediterranea
were used for all experiments. The animals were fed organic chicken or beef liver 1–2 times

per week, cleaned twice per week, and starved for 5–7 days prior to experimentation. Planari-

ans were stored in a temperature-controlled Panasonic incubator in the dark at 20˚C with D.

japonica in dilute (0.5 g/L) Instant Ocean (IO) water (Spectrum Brands, Blacksburg, VA,

USA) and S. mediterranea in 1X Montjüic Salts (MS) water [36].

Behavioral assays

Pharmacological perturbations. All chemicals used are listed in Table 1. Chemicals were

stored according to supplier specifications. All stock solutions were made directly in IO or MS

water or in 100% dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO, USA), depending

on chemical solubility. For chemicals prepared in DMSO, the final DMSO concentrations

were kept�1%, which does not induce scrunching (S1 Fig). Specific conditions for each chem-

ical experiment were determined empirically by qualitative observation of planarian scrunch-

ing behavior (Table 1). The lowest exposure concentration tested which induced the most

straight-line scrunches in wildtype worms was used for each experiment. The pH of all expo-

sure solutions (except for hydrogen chloride) was checked and adjusted with NaOH to fall

between 6.90–7.10, to ensure the observed scrunching behavior was not due to low pH
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conditions. Planarians were exposed to the chemicals either in a bathing solution or by pipett-

ing a fixed volume directly onto a worm. Pipetting allowed for the usage of small volumes of

locally higher chemical concentrations and was used in cases of poor chemical solubility or

when baths failed to produce sufficiently long stretches of straight-line scrunching that could

be used for quantitative analysis. Working solutions for chemicals were made fresh immedi-

ately prior to starting experiments. Planarians were individually placed into 100 x 15-mm or

60 x 15-mm petri dishes (Celltreat Scientific Products, Shirley, MA, USA) depending on

whether experiments were conducted in baths or by pipetting, respectively. The behavior of

each planarian was recorded, starting immediately after initial exposure to the chemical, for up

to five minutes at 10 frames per second (fps) using a charge-coupled device camera (PointGrey

Flea3 1.3MP Mono USB 3.0) with a 16-mm lens (Tamron M118FM16 Megapixel Fixed-focal

Industrial Lens) attached to a ring stand.

Amputation experiments. Individual S. mediterranea planarians were placed into 100 x

15-mm petri dishes containing 15 mL of MS water. Using a razor blade, planarians were

amputated just above the pharynx. The behavior of each planarian was recorded at 10 fps

using the same setup as in the chemical assays. The number of scrunches of the resulting head

piece was counted for each amputation with the scrunching sequence beginning after the first

immediate contraction.

High temperature experiments. 60 mm x 15-mm petri dishes were filled with 5 mL of

either IO or MS water. Individual planarians were placed in the dishes and induced to scrunch

by pipetting 100 μL 65˚C IO/MS water as in [4]. Additionally, we tested the effects of a heated

water bath using an automated set-up for screening individual planarians in a 48-well plate

[8]. To induce scrunching, the plate was placed on a warmed peltier plate (TE Technology

Inc., Traverse City, MI), whose temperature was computer controlled to heat the water in the

wells. The temperature of the peltier was initially set to 65˚C for the first 30 seconds to quickly

heat up the plate from room temperature and then gradually decreased to 43˚C to stabilize the

aquatic temperature across the plate at around 32˚C for 4 minutes. The plate was imaged from

above and the movies were analyzed using a custom, automated MATLAB (MathWorks,

Natick, MA, USA) script to detect instances of scrunching, as previously described [8].

Scrunching quantification. Recordings of planarian behavioral responses to the noxious

stimuli were processed using ImageJ (National Institutes of Health, Bethesda, MD, USA). The

Table 1. Overview of chemicals used to induce scrunching.

Chemical CAS Provider Purity Exposure

concentration

Exposure

method

Type/action and references

Allyl isothiocyanate

(AITC)

57-06-7 Sigma-Aldrich 95% Dj, Sm—50, 75,

100 μM

25 mL bath Planarian and mammalian TRPA1 agonist [10,32,37]

Hydrogen peroxide

(H2O2)

7722-84-1 Sigma-Aldrich 30% Dj, Sm—40 mM 25 mL bath Planarian TRPA1 agonist [10]

Capsaicin 404-86-4 Cayman

Chemicals

�95% Dj, Sm—33, 82.5,

165 μM

25 mL bath TRPV1 agonist (various species)

[15,20,32,34,35]

Anandamide 94421-68-

8

Sigma-Aldrich �97% Dj– 100, 125 μM

Sm– 100 μM

25 mL bath Endocannabinoid and mammalian TRPV1 agonist

[35,38]

HC-030031 349085-

38-7

Cayman

Chemicals

�98% Dj, Sm– 100 μM 25 mL bath Human, rat, mouse, medicinal leech TRPA1 antagonist

[37,39,40]

SB-366791 472981-

92-3

Cayman

Chemicals

�98% Dj, Sm– 1, 10 μM 25 mL bath Rat, parasitic flatworm and medicinal leech TRPV1

antagonist [16,41–43]

Hydrogen chloride

(HCl)

7647-01-0 Sigma-Aldrich 36.5–

38.0%

Dj, Sm—pH to 2.7 10 μL pipette Low pH, planarian scrunching inducer [4]

https://doi.org/10.1371/journal.pone.0226104.t001
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background-subtracted image sequences were cropped to capture the first set of at least four

consecutive straight-line scrunches or oscillations. An ellipse was then fit to the sequence of

binary images of the worm to track and quantify the major axis (length of the worm) over

time. From these data, the parameters frequency (number of scrunching/oscillation cycles per

second), maximum elongation (difference between longest and shortest elongations/contrac-

tions as a fraction of the longest), relative speed (product of maximum elongation and fre-

quency), and fraction of time spent elongating were then quantified in MATLAB as in [4].

Unless stated otherwise, all values denote mean ± standard deviation (SD). Statistical signifi-

cance for each scrunching parameter (or number of scrunches for amputation experiments)

was calculated using a student’s t-test comparing to either previously published values for

amputation for wild-type animals or to the control RNAi population for RNAi experiments.

Behavior scoring. Recordings of worms in chemical baths were scored by 2 blind review-

ers. For every 15 s interval in the first 90 s of recording, worms were scored as either scrunch-

ing, exhibiting a non-scrunching reaction, or not reacting. Worms were scored as scrunching

if they scrunched at least once in a given 15 s interval, based on the definitions set in [4].

Worms were scored as exhibiting a non-scrunching behavior if they performed other behav-

iors, such as head shaking, frequent turning or abnormally long body elongation. Planarians

that glided unhindered throughout the 15 s interval were scored to have no reaction. Three

experimental replicates were carried out for each condition, with N = 8 S. mediterranea and

N = 10 D. japonica used per replicate. The mean of the scored responses from the two review-

ers and across the experimental replicates for each 15 s interval are shown in the respective fig-

ures. To compare the timing of the initiation of scrunching in AITC or capsaicin alone or with

the addition of HC-030031 or SB-366791, respectively, a Fisher’s exact test was performed by

comparing the number of planarians scrunching or not scrunching (no reaction or a non-

scrunching reaction) in two early time periods (15–30, and 31–45 s), using the averaged num-

bers from the two reviewers. A Fisher’s exact test was also performed to compare the number

of planarians reacting (scrunching or exhibiting a non-scrunching reaction) or not reacting in

control versus DjTRPVab or DjTRPAa RNAi populations.

Mucus staining

Staining procedures were performed using fluorescently labeled Vicia villosa (VVA) lectins as

described previously [4]. D. japonica planarians were individually placed in wells and induced

to scrunch atop a glass coverslip using baths of 33 μM capsaicin or 50 μM AITC. The same

staining procedure was followed for S. mediterranea planarians with scrunching being induced

by a bath of 33 μM capsaicin or 50 μM AITC. Mucus trails were imaged in 4x under GFP fluo-

rescence using a Nikon Eclipse Ci microscope (Nikon Corporation, Minato, Tokyo, Japan).

Images were stitched together using Fiji [44] and the MosaicJ plugin [45].

Cilia imaging

To view cilia beating, D. japonica and S. mediterranea planarians were incubated for five min-

utes in baths of 100 μM anandamide before mounting between a glass slide and a 22�22’ cover-

slip. Imaging procedures were performed as previously described in (4).

Partial cloning of Dugesia japonica TRP genes

Partial mRNA sequences for TRPA1 (DjTRPAa) and TRPV (DjTRPVa and DjTRPVb) homo-

logs in D. japonica have been previously published [31]. Primers were designed using Primer3

[46] from these templates for DjTRPVa and DjTRPVb to generate 213 and 430 bp fragments,

respectively (Table 2). For DjTRPAa, using the published partial sequence as a starting point,

TRP channels in planarian scrunching
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we blasted against a D. japonica transcriptome (dd_Djap_v4) on PlanMine [47] to identify the

full coding sequence (transcript dd_Djap_v4_9060_1_1). An 895 bp fragment was identified

from this transcript and cloned using the primers in Table 2.

These fragments were cloned into the pPR244-TRP vector using ligase independent cloning

[48]. The Smed-TRPA1-pGEMt plasmid was a gift from Dr. Marco Gallio [10].

Sequence alignments

Full coding sequences for DjTRPVa and DjTRPVb were obtained by blasting the published

partial sequences [31] on PlanMine [47]. Predicted protein sequences for SmTRPA1,

DjTRPA1, DjTRPVa, and DjTRPVb were obtained using the National Center for Biotechnol-

ogy Information Open Reading Frame Finder (https://www.ncbi.nlm.nih.gov/orffinder/).

Alignments were created with JalView [49] using T-Coffee [50].

RNAi feedings and injections

Expression of SmTRPA1 and DjTRPAa were knocked down separately in their respective spe-

cies. Expression of DjTRPVa and DjTRPVb were knocked down in combination and referred

to as DjTRPVab RNAi. The respective TRP genes of interest were knocked down by injecting

S. mediterranea or D. japonica worms on four consecutive days with in vitro transcribed

dsRNA to a final concentration of at least 1 μg/μL as in [51]. Negative control populations of

both species, denoted as control RNAi, were injected with unc22 dsRNA, a non-homologous

C. elegans gene. Approximately 180 nL dsRNA were injected into each worm per day of injec-

tion using a standard dissection microscope and Pneumatic PicoPump Model PV 820 (World

Precision Instruments, Sarasota, FL, USA). Needles were made by pulling 1-mm/0.58-mm

OD/ID Kwik-Fill borosilicate glass capillaries through a two-stage program on a P-1000

micropipette puller (Sutter Instrument Company, Novato, CA, USA). On the fourth day of

injection, after the fourth injection had been administered, worms were fed organic chicken

liver mixed with at least 1 μg/μL dsRNA. Worms were then starved for six days prior to

experiments.

qRT-PCR

RNA was extracted from ten worms for each RNAi population using TRIzol (Invitrogen,

Carlsbad, CA, USA) then purified using an RNeasy Mini Kit (QIAGEN, Germantown, MD,

USA) including a DNase treatment. cDNA was synthesized from each RNA pool using the

SuperScript1 III First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA, USA),

following the manufacturer’s protocol and priming with random hexamers. Primers for qPCR

were designed using Primer3 [46] and are listed in Table 2.

Table 2. Primers used in this study.

Gene Fragment length (bp) Forward primer Reverse primer

DjTRPAa 895 GCAATTAATGACCGAGCAAAC AACCGATTCGTTCAAAGTGG

DjTRPVa 213 TATTGAGTGCGCCAATGAAA AATCACCGCGAACCATTTTA

DjTRPVb 430 TCCATTACTTTGGATGGGTTTAC TTTTGCCCAAATTGCTATCC

DjTRPAa-qPCR 109 TCGAGGGGAAATTGCCAATG ACTTGAGCTTCAGATGAGCC

DjTRPVa-qPCR 89 ATTCGCGAAGATGAACACGG GCCCCTCTTTGGTCAATGTC

DjTRPVb-qPCR 142 ATAAGTGCGTCCAATCATTGC TCTCGGTGAATTCAAGCTGC

SmTRPA1-qPCR 99 CCTCGTGTGGAAATAGTGCG TGGGACTACAGACTAACGCG

https://doi.org/10.1371/journal.pone.0226104.t002
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DjGAPDH and SmedGAPDH were used as housekeeping genes for their respective species.

qPCR was performed on an MJ Research PTC-200 thermocycler equipped with a Chromo4

Real-Time PCR Detector (Bio-Rad Laboratories, Hercules, CA, USA), using PerfeCTa1

SYBR1 Green FastMix1 (Quantabio, Beverly, MA, USA). Technical triplicates were run for

all reactions within an experiment, and two biological replicates were performed. To analyze

primer efficiency, standard curves were obtained using a 1:1:1:1 mix of all cDNA pools for

each species, serially diluted. The efficiency for each primer pair was found to be between 87–

116%. Analysis of relative expression for the genes targeted by RNAi was performed using the

ΔΔCt method, where reported values are the mean of all replicates.

Results and discussion

TRPA1 and TRPV agonists induce scrunching in S. mediterranea and D.

japonica
Based on the known inducers of scrunching in D. japonica and S. mediterranea (noxious heat,

pH, amputation) ([4] and S2 Fig), and the recent work by Arenas et al. suggesting that TRPA1

mediates scrunching in response to amputation in S. mediterranea [10], we tested known

chemical agonists of planarian and/or other species’ TRPA1 and TRPV (Table 1) for their abil-

ity to trigger scrunching in D. japonica and S. mediterranea. The two oscillatory planarian

gaits, scrunching and peristalsis, can be hard to distinguish qualitatively by eye. Thus, if oscil-

latory motion was observed, we distinguished peristalsis and scrunching by quantifying the 4

characteristic parameters (frequency, speed, maximum elongation, asymmetry of elongation/

contraction) and comparing with published reference values for these gaits [4]. Notably, asym-

metry between contraction and elongation cycles is the most distinct feature of scrunching

that is conserved among different planarian species [4]. We previously found that each planar-

ian species exhibits a characteristic scrunching frequency and speed, with D. japonica scrunch-

ing at higher speeds and with almost double the frequency of S. mediterranea planarians [4].

Therefore, all comparisons are done with references in the same species.

Under normal conditions, planarians glide, maintaining a constant body length over time

(Fig 1A and 1B). When exposed to 50 μM of the TRPA1 activator, AITC, planarians scrunched

showing oscillations of body length elongation and contraction (Fig 1C) with quantitative

parameters consistent with those previously determined for D. japonica and S. mediterranea
using amputation (Table 3).

Previous studies in S. mediterranea demonstrated that TRPA1 is directly activated by H2O2

[10]; therefore, we assayed whether H2O2 exposure could induce scrunching. As expected

from the results of AITC exposure, 40 mM H2O2 elicited scrunching in both planarian species

(Fig 1D and Table 3). Notably, while S. mediterranea scrunching parameters were statistically

insignificant from those induced by amputation, D. japonica scrunched at slightly (but statisti-

cally significant) lower speeds in 40 mM H2O2 compared to the reference values for amputa-

tion-induced scrunching in this species (Table 3). However, all other scrunching parameters

were consistent with the previous reference values, demonstrating the overall characteristics of

scrunching. This decrease in speed may be due to negative health effects of the exposure, since

we found that D. japonica but not S. mediterranea disintegrated within a day following the 5

min H2O2 exposure unless excessively washed post H2O2 exposure. Even after washing in

three separate 50 mL baths of IO water, 1/12 D. japonica planarians died within 24 hours.

Additional range-finding tests were unable to determine a concentration of H2O2 that induced

scrunching without negative health effects in D. japonica. Lower concentrations (10 and 20

mM) only induced head wiggling within 5 min of exposure. It is currently unclear why D.

japonica show such an increased sensitivity to H2O2.

TRP channels in planarian scrunching
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Fig 1. TRPA1 and TRPV agonists induce scrunching in planarians. (A) Single frames of gliding S. mediterranea
(left) and D. japonica (right). (B-F) Representative length versus time plots for S. mediterranea (left) and D. japonica
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We have previously demonstrated that scrunching is induced by high heat and low pH [4],

which are known activators of TRPV1 in other species [15–20]. Thus, we tested whether the

classical TRPV1 agonist, capsaicin, and the endocannabinoid anandamide, known to directly

activate TRPV1 in mammalian systems [35,38,52–54], were able to induce scrunching (Fig 1E

and 1F). Although not all organisms are equally sensitive to these mammalian TRPV1 modula-

tors, some invertebrates such as medicinal leech [16] and parasitic flatworms [28] have been

shown to exhibit behavioral effects when exposed to capsaicin, suggesting that planarians may

also be sensitive to TRPV1 modulators.

Indeed, both S. mediterranea and D. japonica scrunched with stereotypical parameters

when exposed to 165 μM capsaicin (Fig 1E and Table 3). Additionally, in both species,

scrunching in capsaicin was often accompanied by vigorous head shaking and jerking (S1

Movie). In contrast, exposure to 100 μM anandamide elicited scrunching in D. japonica but

not in S. mediterranea (Fig 1F and Table 3). The slightly reduced maximum body elongation

in D. japonica is likely because anandamide also induced other behaviors, such as increased

head lifting or head wiggling, but all other parameters are consistent with scrunching. S. medi-
terranea worms displayed oscillatory locomotion (Fig 1F), but a quantitative analysis of the

parameters shows that S. mediterranea performed peristalsis (Table 3), which we have previ-

ously demonstrated to be a distinct gait from scrunching [4]. Peristalsis is induced when cilia

beating is disrupted, whereas scrunching is cilia-independent [2,4–7]. Using cilia imaging, we

confirmed that cilia beating was disrupted in S. mediterranea but not D. japonica exposed to

100 μM anandamide (S3 Fig). A possible explanation for this finding is that in addition to

being a low potency agonist of TRPV1, anandamide also activates cannabinoid receptor 1

(CB-1) [35,38]. Although the cannabinoid receptor(s) have not yet been directly identified in

(right) planarians during (B) gliding or (C-F) chemically induced scrunching, when exposed to (C) 50 μM AITC, (D)

40 mM H2O2, (E) 165 μM capsaicin, or (F) 100 μM anandamide. D. japonica planarians only scrunched temporarily in

capsaicin, as shown in the representative plot in (E), where scrunching occurs from 2–9 seconds. Length was

normalized by the average gliding length for all plots. (G-H) Example S. mediterranea (i) and D. japonica (ii) mucus

trails stained with fluorescein-conjugated VVA lectin (see Methods) for worms exposed to (G) 50 μM AITC or (H)

165 μM capsaicin. Mucus trail images were black/white inverted. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0226104.g001

Table 3. Quantification of scrunching parameters in response to TRPA1 and TRPV chemical agonists in D. japonica and S. mediterranea.

Species Stimulus Conc. Frequency (cycles s -1) Maximum elongation Speed (body length s-1) Fraction of time spent elongating Gait N

D. japonica AITC 50 μM 0.72 ± 0.08 0.52 ± 0.04 0.37 ± 0.04 0.59 ± 0.03 S 9

D. japonica H2O2 40 mM 0.54 ± 0.09 0.44 ± 0.04 0.23 ± 0.05� 0.60 ± 0.02 S 8

D. japonica Capsaicin 165 μM 0.80 ± 0.14 0.48 ± 0.07 0.38 ± 0.05 0.59 ± 0.04 S 8

D. japonica Anandamide 100 μM 0.63 ± 0.08 0.43 ± 0.05� 0.27 ± 0.05 0.57 ± 0.03 S 8

D. japonica Amputationa – 0.70 ± 0.27 0.50 ± 0.08 0.34 ± 0.12 0.60 ± 0.12 S 15

S. mediterranea AITC 50 μM 0.33 ± 0.02 0.43 ± 0.05 0.14 ± 0.02 0.58 ± 0.02 S 5

S. mediterranea H2O2 40 mM 0.37 ± 0.03 0.39 ± 0.05 0.14 ± 0.02 0.52 ± 0.02 S 10

S. mediterranea Capsaicin 165 μM 0.44 ± 0.04 0.49 ± 0.06 0.21 ± 0.03 0.57 ± 0.03 S 8

S. mediterranea Anandamide 100 μM 0.28 ± 0.03�� 0.30 ± 0.05�� 0.08 ± 0.01�� 0.49 ± 0.03�� P 7

S. mediterranea Amputationa – 0.40 ± 0.09 0.44 ± 0.09 0.17 ± 0.09 0.62 ± 0.18 S 77

S. mediterranea Peristalsisa – 0.26 ± 0.07 0.23 ± 0.19 0.06 ± 0.04 0.50 ± 0.07 P 14

Values denote mean ± SD. S: scrunching; P: peristalsis
aAmputation and peristalsis data are previously published values [4], provided for reference.

� p < 0.05 and

�� p < 0.01 from student t-tests, conducted by comparing against the same parameter in the published amputation data for each species as the control group.

https://doi.org/10.1371/journal.pone.0226104.t003
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planarians, pharmacological experiments with specific cannabinoid receptor agonists and

antagonists in the planarian Dugesia gonocephala suggest the presence of functional cannabi-

noid receptor homologs in planarians [55,56]. Complicating matters, in other systems, cross-

talk with the cannabinoid system can modulate the responsiveness of TRPV1 [38].

Furthermore, the efficiency of anandamide binding to TRPV1 appears to be species-specific

[35]. Thus, these factors could interact to produce different manifestations of similar, yet dis-

tinct, oscillatory gaits in the two species, resulting in scrunching in D. japonica, but peristalsis

in S. mediterranea. This dissimilarity in behavioral phenotypes, together with the sensitivity

differences to H2O2 exposure, emphasize that care needs to be taken when attempting to

extrapolate findings from pharmacological studies from one planarian species to another. Sim-

ilar pharmacological differences have also been found in parasitic flatworms as AITC was

shown to activate TRPA in S. mansoni, but not in the closely related S. haematobium [28].

Finally, we also visualized the mucus trails of worms of both species exposed to either AITC

or capsaicin (Fig 1G and 1H) and saw the characteristic profiles of triangular anchor points

that we have previously demonstrated to be associated with scrunching [4].

In summary, we found that archetypal agonists of TRPA1 and TRPV channels induce

scrunching in planarians, supporting our hypothesis that induction of this gait is mediated by

TRPA1 and TRPV activation.

Increasing concentrations of AITC and the TRPA1 antagonist HC-030031

enhance scrunching

It has been previously shown that increasing the concentration of AITC decreases the latency

to initiate the nocifensive response in the medicinal leech [40]. We observed this same trend in

both planarian species, as at higher concentrations of AITC more planarians scrunched earlier

(Fig 2A), with more pronounced differences seen in S. mediterranea. However, in all concen-

trations of AITC tested, even when planarians did not scrunch initially, they still reacted to the

AITC as evidenced by vigorous head turning (shown as percent worms reacting in Fig 2A),

thus demonstrating that the initial sensation of AITC does not appear to be affected by con-

centration within the range tested here. Interestingly, the scrunching parameters were also

dependent on AITC concentration, with increasing concentrations causing significantly

increased maximum elongation and speed for both D. japonica and S. mediterranea when

compared to 50 μM AITC (S1 Table). Whereas for D. japonica, these values, as well as fre-

quency in 100 μM AITC, were also significantly different from the scrunching parameters in

response to amputation, the parameters for S. mediterranea exposed to the different concentra-

tions of AITC were not significantly different from amputation-induced scrunching parame-

ters, indicating these differences were within the range observed in this species (S1 Table).

A striking behavioral difference was observed between S. mediterranea and D. japonica
when exposed to AITC. In all tested AITC concentrations, the majority (at least ~80% in all

tested concentrations) of scrunching D. japonica ceased scrunching by 90 seconds and began

gliding, as seen by the decrease in both the percent worms scrunching and reacting in Fig 2A.

This apparent desensitization was concentration-dependent; D. japonica planarians at higher

AITC concentrations started and ceased scrunching earlier than those at lower AITC concen-

trations. S. mediterranea did not share this desensitization behavior and showed longer periods

where all worms were scrunching (Fig 2A, compare 100 μM AITC between the two species).

Consistent with this observed desensitization to prolonged scrunching activation in D. japon-
ica, the continuous application of high concentrations of AITC completely desensitizes cur-

rents in the dorsal root ganglion neurons of mice [57]. AITC is thought to activate TRPA1

through covalent modification of conserved cysteine residues [58], causing seemingly
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irreversible activation on the time scale of the mice electrophysiological experiments (15–60

mins) [57]. Since acute or repeated exposure to lower concentrations of AITC were not shown

to induce desensitization of mouse TRPA1 [57], it is possible that differences in sensitivity

between the two planarian species, which could be due to differences in chemical uptake and/

or receptor sensitivities, could explain the lack of desensitization observed at the used concen-

trations in S. mediterranea.

HC-030031 is a specific TRPA1 antagonist that has been shown to block nocifensive

responses to AITC in other systems, including rat and the medicinal leech [39,40]. Therefore,

we tested whether HC-030031 could block or at least attenuate planarian scrunching. During

initial tests with multiple concentrations of HC-030031, we unexpectedly found that 200 μM

HC-030031 induced scrunching in 10/10 D. japonica planarians at some point within 2 min-

utes of exposure, whereas it did not have that effect on S. mediterranea (S4A Fig). At 100 μM

HC-030031, neither planarian species scrunched, but D. japonica displayed a mild reaction

including vigorous head turning, which was not observed in S. mediterranea. However, since

scrunching was absent at this concentration in both species, 100 μM HC-030031 was used for

further experiments.

When co-administered with 50, 75, or 100 μM AITC, 100 μM HC-030031 (Fig 2B)

decreased the latency to induce scrunching in the majority of planarians at 50 and 75 μM

Fig 2. HC-030031 decreases scrunching latency induced by AITC. (A, B) Behavior scoring plots for S. mediterranea (left) and D. japonica (right) showing the

percentage of worms scrunching (black lines) or reacting (behaviors other than scrunching, see Methods; red lines) every 15 s over 90 s when exposed to (A) AITC or

(B) AITC + 100 μM HC-030031. Markers and shading represent the mean and standard deviation of 3 technical replicates, respectively.

https://doi.org/10.1371/journal.pone.0226104.g002
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AITC compared to AITC treatment alone (Fig 2A) in both planarian species (S2 and S3 Mov-

ies). This decreased latency was confirmed by Fisher’s exact tests showing a statistically signifi-

cant increase in the number of worms scrunching at 15–30 and/or 31–45 seconds in 100 μM

HC-030031 compared to AITC alone (S2 Table). These data suggest a cooperative interaction

between AITC and HC-030031, which mimicked the trend seen in increasing concentrations

of AITC alone (Fig 2A). This effect was not as pronounced at 100 μM, especially in S. mediter-
ranea where no significant differences were found, suggesting that the maximal activity may

have already been reached with 100 μM AITC alone.

Together, these findings suggest that increasing concentrations of AITC or cooperative

actions of AITC and HC-030031 enhance scrunching, further supporting the idea that TRPA1

is involved in mediating the scrunching response.

Genetic modulation of TRPA1 expression disrupts scrunching in response

to AITC, H2O2, and amputation

Our chemical experiments suggest that TRPA1 activation in S. mediterranea and D. japonica
induces scrunching. Sequence analysis of the putative proteins encoded by SmTRPA1 and

DjTRPA1 further support that they would be sensitive to AITC as 2 of the 3 cysteines impor-

tant for covalent modification by AITC [58] are conserved (S5 Fig). To confirm this, we

knocked down SmTRPA1 and DjTRPAa using RNAi and evaluated how this affected scrunch-

ing in response to TRPA1 modulators. Gene knockdown was confirmed by qRT-PCR showing

73.0% knockdown in SmTRPA1 RNAi populations and 51.4% knockdown in DjTRPAa RNAi

populations compared to expression in the species-specific control RNAi populations (S6A

and S6B Fig).

When exposed to 100 μM AITC for 90 s, none of the SmTRPA1 RNAi or DjTRPAa RNAi

planarians scrunched, while all control RNAi animals of each species scrunched under the

same conditions (Fig 3A and 3B, S4 and S5 Movies). Similarly, scrunching in response to

200 μM HC-030031 alone or to 100 μM HC-030031 + 100 μM AITC was completely lost in

DjTRPAa RNAi animals (S4B and S4C Fig), demonstrating that planarian TRPA1 is essential

for AITC-induced scrunching and that HC-030031 activates TRPA1. Our results suggest a

cooperative, rather than antagonistic, action of HC-030031 on planarian TRPA1. Different

organisms have been shown to have different sensitivities to the antagonistic effects of HC-

030031. For example, divergence of a single amino acid (N855 in human TRPA1) in frog and

zebrafish TRPA1 is responsible for their insensitivity to the inhibitor [59]. Although the mech-

anism of human TRPA1 inhibition could not be resolved structurally [60], it has been sug-

gested that HC-030031 causes a conformational change in human TRPA1 which disrupts

ligand binding [59]. Thus, it is possible that in planarians HC-030031 may cause a different

conformational change in TRPA1 to instead potentiate AITC activation.

Scrunching was also completely lost in both SmTRPA1 RNAi and DjTRPAa RNAi popula-

tions exposed to 40 mM H2O2 for either 270 s or 60 s, respectively, during which times all con-
trol RNAi planarians of both species scrunched (Fig 3C and 3D). These data are consistent

with previous reports of H2O2 as a direct activator of S. mediterranea TRPA1 [10]. Together,

these results show that planarian TRPA1 is essential to induce scrunching with either AITC or

H2O2.

One of the most robust but unspecific inducers of scrunching is amputation [4]. Arenas

et al. found that when doing tail snips on filter paper, Smed-TRPA1 RNAi animals exhibited a

decreased scrunching amplitude compared to control RNAi animals [10]. Because dry envi-

ronments alone can induce scrunching (S7A Fig and [4]), we did not perform amputation

experiments on filter paper, but in an aqueous environment instead. Under these experimental

TRP channels in planarian scrunching

PLOS ONE | https://doi.org/10.1371/journal.pone.0226104 December 5, 2019 12 / 25

https://doi.org/10.1371/journal.pone.0226104


conditions, we found that knockdown of SmTRPA1 caused reduced scrunching compared to

control RNAi animals after amputation, evidenced by fewer total scrunches (S6B Fig). Thus,

SmTRPA1 appears to partially mediate scrunching in response to amputation. These results

are consistent with the work of Arenas et al., who also found attenuated rather than completely

abolished scrunching in Smed-TRPA1 RNAi animals after amputation [10].

In S. mediterranea, it has been shown that amputation leads to a burst of H2O2 production

at the wound site [61]. Thus, because H2O2 directly activates SmTRPA1, it has been suggested

that mechanical injury (such as amputation) indirectly activates SmTRPA1 through H2O2

Fig 3. TRPA1 is necessary for AITC- and H2O2-induced scrunching. (A-D) Representative length versus time plots for RNAi treated S. mediterranea (left) and D.

japonica (right) exposed to (A-B) 100 μM AITC or (C-D) 40 mM H2O2. Note that the scrunching frequencies in the control RNAi populations differ between the two

inducers because a higher (100 μM) concentration of AITC was used (compare values in Table 3 and S1 Table). Plots are representative of the total number of worms

tested, as indicated in the respective panels for each condition.

https://doi.org/10.1371/journal.pone.0226104.g003
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production [10]. While our results confirm that H2O2 activation of TRPA1 induces scrunching,

H2O2 activation of TRPA1 is likely not the only mechanism mediating amputation-induced

scrunching since scrunching is not completely abolished in amputated SmTRPA1 RNAi planar-

ians. We were unable to perform these same experiments with the D. japonica RNAi popula-

tions as even in control RNAi animals, amputation only induces few scrunches robustly.

Together, our results confirm that TRPA1 in both S. mediterranea and D. japonica is neces-

sary to induce scrunching in response to AITC and H2O2 and is partially involved in amputa-

tion-induced scrunching in S. mediterranea.

TRPV antagonist SB-366791 enhances scrunching

As we did for TRPA1, we similarly dissected the role of TRPV in scrunching. Because ananda-

mide did not elicit scrunching in S. mediterranea and because two D. japonica TRPV genes

have previously been characterized [31], we carried out all further experiments in D. japonica
only. When comparing the behavioral responses to different concentrations of capsaicin, we

found that at all tested concentrations, the planarians initially reacted by vigorously turning

and shaking their heads and then transitioned to a scrunching phenotype over time. Because

of this transitional nature of the behavior, it was often difficult to confidently distinguish non-

scrunching reactions from scrunching by eye alone. Increasing the concentration of capsaicin

decreased the latency time to switch to a scrunching reaction, similarly to AITC (Fig 4A). As

with AITC (Fig 2A), after 45 s in 165 μM capsaicin, D. japonica scrunching behavior began to

cease (Fig 4A). However, unlike in AITC where D. japonica began gliding again, D. japonica
continued to react in capsaicin by maintaining a contracted body length and exhibiting minor

oscillations (S6 Movie). Many nociceptors, including TRPA1 and TRPV, have been shown to

become desensitized following prolonged activation. This desensitization is why certain TRP

agonists, such as capsaicin, have been used therapeutically as analgesics [62]. In rat neuronal

cell culture, it was shown that prolonged capsaicin exposure causes rat TRPV1 channels to be

removed from the membrane through endocytosis and lysosomal degradation [63]. A similar

desensitization to scrunching induction appears to be present in D. japonica, though the

underlying mechanism remains to be determined.

We then tested SB-366791, a selective antagonist of human and rat TRPV1 [41,42]. Initial

experiments using a range of different concentrations of SB-366791 showed that D. japonica
began vigorous head turning at a concentration of 10 μM SB-366791 but did not scrunch. No

abnormal behaviors were observed at 1 μM (S7 Movie). Similarly to AITC co-administration

with HC-030031, co-administration of capsaicin with 10 μM SB-366791 decreased the

scrunching latency compared to exposure to capsaicin alone (compare Fig 4A and 4B for the

same capsaicin concentrations). Statistically significant differences were seen in the proportion

of worms scrunching at 16–30 or 31–45 seconds in 33 and 82.5 μM capsaicin with or without

10 μM SB-366791 (S3 Table). However, unlike the trends seen with HC-030031, co-adminis-

tration with SB-366791 decreased the number of worms which stopped scrunching over time,

creating a more prolonged scrunching reaction compared to capsaicin alone. Together these

results suggest that planarians are sensitive to a known agonist and antagonist of human and

rat TRPV1, though the identity of this purported “capsaicin-receptor” remains to be verified.

While SB-366791 enhances capsaicin-induced scrunching it does not have the same potentia-

tion effects seen with HC-030031 and AITC.

DjTRPVab modulates scrunching behavior in response to anandamide

To assay their roles in mediating scrunching in response to the TRPV modulators, we knocked

down both known DjTRPV genes (DjTRPVa and DjTRPVb) [31] in combination via RNAi
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(referred to as DjTRPVab RNAi). Gene knockdown was confirmed by qRT-PCR showing a

41.2% decrease in DjTRPVa and 83.3% decrease in DjTRPVb in the DjTRPVab RNAi popula-

tion compared to expression in control RNAi planarians (S6C and S6D Fig). Because TRPA1

has been found to modulate sensitivity to capsaicin in the parasitic flatworm S. mansoni,
which does not have any TRPV homologs [28,29,43], we also evaluated the reactions of

DjTRPAa RNAi worms to the mammalian TRPV agonists. Neither DjTRPVab nor DjTRPAa
RNAi significantly attenuated scrunching in response to 165 μM capsaicin (Fig 5A and S6

Movie). Although there was a slight decrease in the percentage of worms scrunching in the

DjTRPVab and DjTRPAa RNAi populations compared to control RNAi, all DjTRPVab and

DjTRPAa RNAi planarians either reacted or scrunched when exposed to 165 μM capsaicin.

Sequence comparisons between TRPV1s which are sensitive (human, rat) or insensitive

(chicken, rabbit) to capsaicin have revealed 3 residues (Y511, S512, and T550 using human

TRPV1 numbering) which are important for capsaicin sensitivity [22,23]. None of these

Fig 4. Scrunching in capsaicin is enhanced by SB-366791. (A-B) Behavior scoring plots for D. japonica showing the

percentage of worms scrunching (black lines) or reacting (non-scrunching behaviors, red lines) every 15 s over 90 s

when exposed to (A) capsaicin or (B) capsaicin + 10 μM SB-366791. Markers and shading represent the mean and

standard deviation of 3 technical replicates, respectively.

https://doi.org/10.1371/journal.pone.0226104.g004
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residues are conserved in DjTRPVa, while only S512 is conserved in DjTRPVb (S8 Fig), con-

sistent with our RNAi results showing DjTRPVa and b are not required for capsaicin-induced

scrunching. Similarly, for S. mediterranea, pipetting 165 μM capsaicin onto control or

SmTRPA1 RNAi populations induced scrunching in all tested animals (N = 10). A TRPV

homolog has not yet been identified in this species. Thus, none of these channels are solely

responsible for capsaicin-induced scrunching.

Although mammalian TRPV1 was originally identified as the “capsaicin receptor”, capsai-

cin-sensing ability and the responsible receptor varies dramatically across invertebrates. Sev-

eral invertebrate species, including fruit flies and nematodes, are insensitive to capsaicin

[25,26]. In Caenorhabditis elegans, capsaicin potentiates the thermal avoidance response, but

this effect is not dependent on OSM-9, the purported C. elegans TRPV1 homolog, suggesting

another unknown receptor is involved [25]. A similar situation appears to be present in D.

japonica, where scrunching is not dependent on two previously identified TRPV homologs,

DjTRPVa and DjTRPVb (Fig 5A). Our results also show that, unlike in S. mansoni, TRPA1 in

both planarian species is not responsible for capsaicin sensing, suggesting evolutionary diver-

gence. While our data show that DjTRPVa/b and DjTRPA are not essential for capsaicin sens-

ing in planarians, it is possible that other planarian TRP channels may be involved.

Transcriptomic analysis suggests D. japonica may have at least 25 TRPs [30], of which only 7

have been characterized so far [31]. What receptor is responsible for capsaicin sensing,

whether it be another unidentified TRPV, a different TRP channel, or some unrelated protein,

in freshwater planarians remains to be determined.

Next, we tested whether scrunching induced by anandamide could be affected by knock-

down of either DjTRPVab or DjTRPAa. Even in control RNAi planarians, scrunching in

response to 125 μM anandamide was complicated as non-scrunching behaviors, such as vigor-

ous head turning or other body shape contortions (Fig 5B, S8 Movie), were also prevalent.

Thus, we focused our comparisons on the number of worms reacting by either clearly scrunch-

ing or exhibiting these mixed behavioral phenotypes. Most (75%) control RNAi planarians

began reacting within 30 seconds, whereas in DjTRPVab RNAi planarians, anandamide-

induced scrunching was attenuated, evidenced by an increase in the latency time to induce

scrunching (Fig 5B, S8 Movie). This increased latency was confirmed by a Fisher’s exact show-

ing a significant decrease in the number of DjTRPVab RNAi planarians reacting during 16-30s

compared to control RNAi planarians at the same time (p-value: 0.02). No significant differ-

ences were found in the behaviors of DjTRPAa RNAi planarians. These data suggest that

DjTRPVa/b partially mediate anandamide-sensing in D. japonica, though other receptor(s)

are likely also involved.

Anandamide and other cannabinoids have complicated relationships with TRP channels.

Both endogenous and synthetic cannabinoids act through the canonical cannabinoid recep-

tors, CB-1 and CB-2, but some have been found to activate TRPV and TRPA1 channels as well

[54,64]. Additionally, because of the extensive crosstalk between the endocannabinoid system

and TRPV1, leading to sensitization of TRPV1 to other endogenous ligands, it has been sug-

gested that even when anandamide treatment mimics the physiological outcomes of TRPV

agonists, the effects are not necessarily due to direct activation of TRPV1 [38]. Thus, it is

unclear from our RNAi results whether anandamide’s role in scrunching is due to direct acti-

vation of DjTRPVab or indirectly through its role as an endocannabinoid.

Finally, we assayed the scrunching response of all RNAi populations (SmTRPA1, DjTRPA1,

and DjTRPVab) to noxious heat and low pH exposure, which are known to affect TRPV in

other species [15,16,18–20]. We observed scrunching in all populations (S7 Fig), indicating

that none of these 3 genes are involved in the scrunching response to these stimuli.Strengthen-

ing this conclusion is the observation that, in addition to pipetting experiments, when
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scrunching was induced by heating the aquatic environment, scrunching was observed in all

RNAi populations with no statistically significant differences, as determined by a Fisher’s exact

test (p>0.05). Scrunching was found in 24/34 DjTRPAa and 20/28 DjTRPVab RNAi planari-

ans, similar to control RNAi worms (25/36). Consistent results were also found for S. mediter-
ranea as similar proportions of animals scrunched in the control (9/22) or SmTRPA1 (7/21)

RNAi populations. The finding that in this assay S. mediterranea planarians across RNAi pop-

ulations scrunched much less than D. japonica planarians may be a consequence of the experi-

mental setup being optimized for D. japonica [8]. While previous reports have shown that

SmTRPA1 is involved in mediating heat avoidance behaviors via direct activation by H2O2

[10], our data suggest that other channels may be involved in triggering scrunching in

response to high temperatures.

Taken together, these data demonstrate that TRPA1 is required for scrunching in response

to AITC and H2O2 in both planarian species, whereas DjTRPVab partially regulates

Fig 5. DjTRPV mediates the behavioral response to anandamide. (A-B) Behavior of control RNAi, DjTRPAa RNAi,

and DjTRPVab RNAi planarians in (A) 165 μM capsaicin and (B) 125 μM anandamide. Markers and shading

represent the mean and standard deviation of 3 technical replicates, respectively.

https://doi.org/10.1371/journal.pone.0226104.g005
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anandamide-induced scrunching in D. japonica. It remains to be determined which other

receptor(s) are involved in regulating the anandamide response and are responsible for the

other scrunching inducers, including capsaicin, low pH and noxious heat. Importantly,

because scrunching in response to capsaicin, heat or pH were not affected by knockdown of

either DjTRPA or DjTRPVab, these genes are likely not responsible for the general scrunching

response but rather mediate sensing of specific stimuli.

Conclusions

Combining the results presented here with our previous studies of scrunching allowed us to

partially decipher the molecular mechanisms responsible for sensing noxious stimuli in pla-

narians. In this and our previous work, we found that planarian TRPA1 and TRPV channels,

as well as the planarian Big Potassium ion channel SLO-1 which mediates ethanol-induced

scrunching [65], are involved in inducing scrunching in response to specific stimuli. Using

RNAi, we found that some inducers are specific to one of these pathways, such as AITC and

H2O2 to TRPA1, while others, such as anandamide and amputation, rely on potential epistatic

or overlapping functions of other unidentified channels. Lastly, the responsible receptors

mediating the response to some scrunching inducers, including capsaicin, low pH, and nox-

ious heat remain elusive and it remains to be determined which receptor(s) are responsible for

sensing these stimuli. Based on our results, it is likely that multiple receptors could have epi-

static or overlapping functions. Further complicating matters, we found species differences

with several of the scrunching inducers. For example, while anandamide induced scrunching

which was partially mediated by DjTRPVa/b in D. japonica, it induced peristalsis in S. mediter-
ranea. These observations and the differences in sensitivity to H2O2 and HC-030031 between

the two species demonstrate that although these two species are closely related, caution must

be used when extrapolating the pharmacological effects of one species to another.

It is striking that despite the existence of multiple induction routes, the dynamic features of

scrunching are independent of the inducer, and hence of the sensing pathway. This suggests

some form of signal integration occurring downstream of these receptors, as illustrated graphi-

cally in Fig 6, which represents our current understanding of the molecular mechanisms of

scrunching induction.

Signal integration could occur at the neuronal level, raising the question of which parts of

the planarian nervous system are involved. Our previous results [4] have shown that tail pieces

which lack a brain are still capable of scrunching in response to some stimuli, albeit much

more rarely. This would suggest that the ventral nerve cords are sufficient for scrunching exe-

cution but that the brain plays an important role in achieving consistent induction.

Our pharmacological studies revealed that several agonist-antagonist pairs (AITC/HC-

030031 and capsaicin/SB-366791) either both triggered scrunching and/or were unable to

pharmacologically rescue the scrunching phenotype. These results were surprising given that

in other systems, including invertebrates such as the medicinal leech and schistosomes, the

antagonists work as expected to inhibit the action of the agonists [16,40,43]. In contrast, in the

two planarian species studied here, we found that both a TRPA1 agonist and antagonist

induced scrunching, with potentiating effects when co-exposed in both planarian species. Sim-

ilarly, although the mammalian TRPV antagonist SB-366791 did not induce scrunching alone,

it also potentiated capsaicin-induced scrunching in D. japonica. Only RNAi against the target

genes allowed us to suppress scrunching in response to specific chemical inducers. One possi-

ble explanation for these findings is that the planarian sensory system is highly sensitive to any

deviation from normal and that scrunching is a default downstream response to system pertur-

bations or stress. However, the observed species differences demonstrate that scrunching is
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not always triggered, in agreement with our previous findings that ethanol, but not methanol,

trigger scrunching [65]. Furthermore, knockdown of a single receptor, such as SLO-1 [65] or

TRPA1, abolishes the scrunching response to specific inducers (ethanol and AITC/H2O2,

respectively), without perturbing scrunching in response to other inducers. Together, these

observations argue that scrunching is a specific response, whose regulation, despite the prog-

ress made in this work, remains poorly understood.

Understanding the molecular mechanisms controlling the scrunching gait, from initiation

to execution will require systematic studies of these different aspects using chemical and/or

molecular approaches as presented here. The observed complexity and myriad of pathways

involved in scrunching initiation reported here may explain why scrunching is a sensitive read-

out of neurotoxicity [8] and gaining a deeper understanding of its regulation will allow for more

mechanistic studies of potential toxicants in the future using the planarian system. Moreover,

by understanding the extent that aspects of nociception are conserved (or not) across species

will provide better informative context to understand species-specific sensitivity differences and

provide insight into the important mechanisms regulating noxious stimuli and pain sensation.

Supporting information

S1 Table. Maximum elongation and speed of scrunching are dependent on AITC concen-

tration. Scrunching parameters for D. japonica and S. mediterranea exposed to 50, 75, or

100 μM AITC, denoted as mean ± standard deviation. For each concentration, planarians

were observed to scrunch with the parameters listed within the first minute in the bath. �

denotes p< 0.05 and �� denotes p< 0.01 significance level compared to 50 μM AITC given by

a two-tailed t-test. ^ denotes p< 0.05 and ^^ denotes p< 0.01 significance level compared to

amputation given by a two-tailed t-test. aAmputation data are previously published values [4],

provided for reference.

(PDF)

S2 Table. P-values comparing scrunching rate in AITC treatment with or without HC-

030031. A Fisher’s exact test was used to compare the number of worms scrunching vs not

Fig 6. Overview of our current understanding of mediators of scrunching induction. Solid lines indicate that direct

connections have been experimentally shown. Dotted lines indicate inducers which were only found to induce

scrunching in one of the two species. Dashed lines are hypothesized connections.

https://doi.org/10.1371/journal.pone.0226104.g006
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scrunching (no reaction or non-scrunching reaction) at each listed time point in different con-

centrations of AITC alone or co-exposed with 100 μM HC-030031. � denotes p< 0.05 and ��

denotes p< 0.01 significance level.

(PDF)

S3 Table. P-values comparing scrunching rate in capsaicin with or without SB-366791. A

Fisher’s exact test was used to compare the number of worms scrunching vs not scrunching

(no reaction or non-scrunching reaction) at each listed time point in different concentrations

of capsaicin alone or co-exposed with 10 μM SB-366791. � denotes p< 0.05 and �� denotes

p< 0.01 significance level.

(PDF)

S1 Fig. 1% DMSO does not induce scrunching in either S. mediterranea or D. japonica.

Representative length versus time plot for wildtype (A) S. mediterranea or (B) D. japonica pla-

narians in 1% dimethyl sulfoxide (DMSO) (N = 10). Planarians were exposed to 1% DMSO by

directly pipetting 100 μL.

(TIF)

S2 Fig. S. mediterranea scrunch in response to low pH exposure. Representative length ver-

sus time plot for wildtype S. mediterranea planarians in Instant Ocean water at neutral pH

(red, N = 5) and pH 2.7 (black, N = 10). Scrunching was induced by directly pipetting 100 μL

onto planarians.

(TIF)

S3 Fig. Anandamide impairs cilia beating in S. mediterranea but not D. japonica. Represen-

tative (N = 3/3) 1 s kymograph of cilia beating for S. mediterranea (left) and D. japonica
(right). (A) Controls in planarian water and (B) when exposed to 100 μM anandamide for 5

minutes. Notice that cilia beating is almost completely lost in S. mediterranea while cilia beat

normally in D. japonica. Scale bar shows 0.1 s horizontally and 1 μm vertically.

(TIF)

S4 Fig. 200 μM HC-030031 induction of scrunching in D. japonica is dependent on

TRPA1. (A) Representative length versus time plot for wildtype (i) S. mediterranea and (ii) D.

japonica planarians in 100 μM (black) and 200 μM (red) HC-030031. Plots are representative

of N = 10. (B) Representative length versus time plot for D. japonica control RNAi (N = 13)

and DjTRPAa RNAi (N = 11) planarians in 200 μM HC-030031. (C) Representative length ver-

sus time plot for D. japonica control RNAi (N = 8) and DjTRPAa RNAi (N = 9) planarians in

100 μM HC-030031 + 100 μM AITC.

(TIF)

S5 Fig. Planarian TRPA1s have conserved AITC-responsive cysteines. Alignment of human

and mouse TRPA1 with predicted protein sequences for planarian TRPA1. Darkness of purple

color-coding represents levels of shared identity. Cysteines shown to be involved in AITC sen-

sitivity are shown in orange. Two of the three cysteines are conserved in both SmTRPA1 and

DjTRPA1.

(TIF)

S6 Fig. Confirmation of RNAi knockdown by qRT-PCR. (A-D) Relative expression of (A)

SmTRPA1, (B) DjTRPAa, (C) DjTRPVa and (D) DjTRPVb in the respective RNAi populations

compared to the control RNAi population in that species. Data are shown as the mean of two bio-

logical replicates (each including 3 technical replicates). Error bars represent the standard error.

(TIF)
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S7 Fig. SmTRPA1 mediates scrunching in response to amputation. (A) Representative

length versus time plot for wildtype S. mediterranea planarians in an aqueous (red, N = 5) and

dry (black, N = 10) environment, created by placing the planarians on wet filter paper as in

(10). (B) Distribution showing median and quartiles of the number of scrunches directly fol-

lowing amputation in control RNAi (N = 21) and SmTRPA1 RNAi (N = 24) planarians. �

denotes p< 0.01 significance from control RNAi given by a two-tailed t-test.

(TIF)

S8 Fig. Residues important for capsaicin binding are not conserved in DjTRPVa/b. Frag-

ment of a sequence alignment of capsaicin-sensitive (human, rat) and capsaicin-insensitive

(rabbit) TRPV1s with predicted protein sequences for DjTRPVa and DjTRPVb. Darkness of

purple color-coding represents levels of shared identity. Residues important for capsaicin-sen-

sitivity are in orange. The only residue found in the planarian TRPVs is S512 in DjTRPVb.

(TIF)

S9 Fig. Heat and low pH sensing are not significantly impaired in DjTRPAa or DjTRPVab
RNAi planarians. (A-B) Representative oscillation plots for control, DjTRPAa, and DjTRPVab
RNAi planarians exposed to (A) pH 2.7 and (B) 65˚C IO water via pipette. No significant dif-

ferences in scrunching induction are seen in any of the conditions. N = 10 for all conditions.

(TIF)

S1 Movie. D. japonica and S. mediterranea planarians in 165 μM capsaicin. Comparison of

D. japonica and S. mediterranea behaviors in 165 μM capsaicin. Planarians exhibit vigorous

head shaking and turning as well as scrunching. Movie is recorded and played at 10 fps.

(AVI)

S2 Movie. D. japonica exposed to 50 μM AITC alone and with 100 μM HC-030031. First 50

s of exposure of D. japonica to 50 μM AITC alone or co-administered with 100 μM HC-

030031. Movie is recorded and played at 10 fps. Scale bar: 1 cm.

(AVI)

S3 Movie. S. mediterranea exposed to 50 μM AITC alone and with 100 μM HC-030031.

First 50 s of exposure of S. mediterranea planarians to 50 μM AITC alone or co-administered

with 100 μM HC-030031. Movie is recorded and played at 10 fps. Scale bar: 1 cm.

(AVI)

S4 Movie. D. japonica control and DjTRPAa RNAi planarians in 100 μM AITC. Behavior

of D. japonica control RNAi and DjTRPAa RNAi in 100 μM AITC during the first 30 seconds

of exposure. Control RNAi planarians scrunch whereas DjTRPAa RNAi planarians exhibit

rapid head turning but lack a scrunching response. Movie is recorded and played at 10 fps.

Scale bar: 1 cm.

(AVI)

S5 Movie. S. mediterranea control and SmTRPA1 RNAi S. mediterranea planarians in

100 μM AITC. Behavior of S. mediterranea control RNAi and SmTRPA1 RNAi planarians in

100 μM AITC during the first 30 s of exposure. Control RNAi planarians scrunch whereas

SmTRPA1 RNAi planarians glide. Movie is recorded and played at 10 fps. Scale bar: 1 cm.

(AVI)

S6 Movie. D. japonica control, DjTRPAa, and DjTRPVab RNAi planarians in 165 μM cap-

saicin. First 60 seconds of D. japonica RNAi populations when exposed to 165 μM capsaicin.

Movie is recorded and played at 10 fps. Scale bar: 1 cm.

(AVI)

TRP channels in planarian scrunching

PLOS ONE | https://doi.org/10.1371/journal.pone.0226104 December 5, 2019 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226104.s018
https://doi.org/10.1371/journal.pone.0226104


S7 Movie. D. japonica behavior in 1 μM and 10 μM SB-366791. Movie showing D. japonica
behavior in SB-366791. D. japonica planarians exhibit no abnormal behaviors in 1 μM SB-

366791 but display vigorous head turning at 10 μM SB-366791. Movie is recorded and played

at 10 fps. Scale bar: 1 cm.

(AVI)

S8 Movie. D. japonica control, DjTRPAa, and DjTRPVab RNAi planarians in 125 μM

anandamide. First 60 seconds of D. japonica RNAi populations when exposed to 125 μM

anandamide. Control RNAi D. japonica planarians exhibit either scrunching or a non-scrunch-

ing behavior. Conversely, both DjTRPAa and DjTRPVab RNAi planarians show a significant

decrease in both reactions. Movie is recorded and played at 10 fps. Scale bar: 1 cm.

(AVI)
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