
PATTERNING AND AXIS FORMATION

Heterodimers reign in the
embryo
Experiments by three independent groups on zebrafish have clarified

the role of two signaling factors, Nodal and Gdf3, during the early

stages of development

BENJAMIN TAJER AND MARY C MULLINS

T
he formation of the basic embryonic body

plan of all animals depends on signaling

factors that cause naı̈ve cells to differenti-

ate into cells with a wide range of potential fates.

Key among the earliest such signals in vertebrates

is a signaling factor called Nodal, which specifies

the mesoderm (the tissue that goes on to become

muscle and bone) and the endoderm (which is the

precursor to the liver, stomach and other internal

organs). Additionally, Nodal signaling is essential

to instructing organs, such as the heart and liver, to

form on either the left or right side of the embryo

(reviewed in Zinski et al., 2017).

Like Nodal, Gdf3 is a member of the TGFß fam-

ily of signaling factors, but even though it was

discovered more than 30 years ago, much less is

known about Gdf3 (which is also called Gdf1 or

Vg1). However, we do know that Gdf3 and Nodal

are expressed in the same tissues, and that they

require the same signaling pathway components

(Cheng et al., 2003; Zinski et al., 2017)), which

has fuelled speculation that they work together,

perhaps by forming a heterodimer (Tanaka et al.,

2007; Fuerer et al., 2014). Now, in eLife, three

groups report that they have resolved long-stand-

ing questions about the function of Gdf3 by gener-

ating mutations in the gdf3 gene in zebrafish

(Bisgrove et al., 2017; Montague and Schier,

2017; Pelliccia et al., 2017).

The proteins in the TGFß family contain two

domains – a prodomain and a mature ligand

domain – and they are translated in the endo-

plasmic reticulum, where they form either homo-

dimers or heterodimers (Figure 1). These dimers

are then cleaved to yield dimers that contain just

the two mature ligand domains (Constam, 2014).

After being secreted into the extracellular space,

the mature ligand dimers can bind a receptor

complex on a neighboring cell and trigger a

sequence of events that leads to the expression

of genes involved in the development of the

mesoderm and endoderm, and in left-right pat-

terning (Figure 2).

Perplexingly, Gdf3 is neither cleaved nor

secreted when overexpressed (Dale et al.,

1989; Tannahill and Melton, 1989), deepening

the mystery of its function. However, replacing

the prodomain of Gdf3 with the prodomain of a

different member of the TGFß family allows it to

be cleaved and secreted, after which it is able to

specify the mesoderm and endoderm
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(Dale et al., 1993; Thomsen and Melton, 1993;

Kessler and Melton, 1995), but this does not

explain why ordinary Gdf3 cannot be cleaved in

the first place. The three papers published in

eLife have finally illuminated the role of Gdf3.

The groups use different approaches but they

all conclude that Nodal and Gdf3 function by

forming a heterodimer. The experiments

involved creating two types of mutants: gdf3

zygotic mutants and maternal-zygotic (MZ) gdf3

mutants. gdf3 zygotic mutants are deficient in

gdf3 mRNA transcribed from the embryonic

genome after fertilization, and MZ-gdf3 mutants

are deficient in both maternal gdf3 (that is, gdf3

mRNA and protein made during oogenesis and

loaded into the egg before fertilization) and

zygotic gdf3.

In one paper Brent Bisgrove, Yi-Chu Su and

Joseph Yost of the University of Utah showed that

Gdf3 acts in parallel, and not upstream or down-

stream, to Nodal signaling (Bisgrove et al., 2017).

They demonstrated that the downstream machin-

ery of Nodal/Gdf3 signaling was functionally intact

in theMZ-gdf3mutants: moreover, they eliminated

the possibility that signaling is lost through the

overexpression of a Nodal antagonist called Lefty.

Furthermore, Bisgrove et al., and also Tessa Mon-

tague and Alexander Schier of Harvard University

(Montague and Schier, 2017), showed that Gdf3

and Nodal must be co-expressed in the same cells

for signaling to occur. Because maternal Gdf3 is

ubiquitously expressed in the embryo, it had not

been appreciated in the past that Nodal signaling

depends entirely on its co-expression with Gdf3.

Using MZ-gdf3 mutants, both groups found that

the only way to rescue the patterning of the meso-

derm and endoderm was for gdf3 and nodal to be

co-expressed in the same cells.

Montague and Schier delved further into the

existence and mechanism of the Nodal-Gdf3 het-

erodimer, resolving longstanding questions about

the secretion of Gdf3 in the process. Through co-

immunoprecipitation, they confirmed that Nodal-

Gdf3 heterodimers form in the embryo, and they

failed to find Gdf3 homodimers. They also demon-

strated that the prodomain of Gdf3 cannot be

cleaved from the mature ligand without the co-

expression of Nodal. Using fluorescent tags they

also found that Gdf3 was only secreted when co-

expressed with Nodal, and that secreted Gdf3 co-

localizes with secreted Nodal. In summary, Monta-

gue and Schier demonstrated that the cleavage of

Gdf3 Nodal

prodomain

Ligand

Nodal can form homodimers

Nodal and Gdf3 can form heterodimers

Gdf3 cannot form homodimers

Extracellular

Endoplasmic

Reticulum
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Figure 1. Nodal homodimers and Nodal-Gdf3 heterodimers. Gdf3 (red) and Nodal (blue) both contain an

N-terminal prodomain and a mature C-terminal ligand when they are first synthesized in the endoplasmic

reticulum. Nodal can form homodimers, and also heterodimers with Gdf3, but Gdf3 is unable to form

homodimers. Although cells can form Nodal homodimers, Nodal-Gdf3 heterodimers predominate in signaling

(after cleavage in the endoplasmic reticulum and secretion into the extracellular space).
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Gdf3, the secretion of Gdf3 and Gdf3 signaling

activity all depended on the formation of the

Nodal-Gdf3 heterodimers.

In the third paper Jose Pelliccia, Granton Jindal

and Rebecca Burdine of Princeton University

revealed the role of maternal gdf3 in left-right pat-

terning (Pelliccia et al., 2017). These researchers

identified the same loss of mesoderm and endo-

derm patterning as the other groups, but they

were curious about the lack of a left-right pattern-

ing phenotype in zygotic gdf3 mutants. This was

surprising because previous gdf3 inhibition experi-

ments caused left-right patterning defects, and

also because zygotic gdf3 is co-expressed with

nodal in tissues where Nodal regulates left-right

patterning (Zinski et al., 2017)).

Pelliccia et al. performed clever experiments

that gave the answer. They found that while a

high concentration of gdf3 mRNA restored left-

right asymmetry in the MZ-gdf3 mutant, pro-

gressively lower concentrations revealed left-

right asymmetry defects. These results indicate

that, surprisingly, maternally expressed gdf3

mRNA and/or protein persists to post-gastrula-

tion stages of development, when it functions

together with Nodal as a Nodal-Gdf3 hetero-

dimer to generate left-right asymmetry in the

embryo, obviating the need for zygotic Gdf3

expression.

Together these three papers make a compel-

ling case for the existence and importance of

Nodal-Gdf3 heterodimers during early develop-

ment, but many questions still remain unanswered.

Why, for example, are heterodimers

required? Montague and Schier propose a model

in which the Gdf3 proteins are formed first and

wait for Nodal protein to form in the endoplasmic

reticulum: the presence of a large population of

ready-made Gdf3 monomers then allows the cell

to make the Nodal-Gdf3 heterodimers more rap-

idly than it could make Nodal homodimers. How-

ever, this explanation does not account for the

increased potency of Nodal-Gdf3 heterodimers

compared to Nodal homodimers, which implies

Figure 2. Nodal-Gdf3 signaling in zebrafish. After being secreted, the mature Nodal-Gdf3 heterodimer (red and

blue) diffuses through the extracellular space to the surface of the receiving cell, where it binds a co-receptor

called Oep (short for one-eyed-pinhead; Gritsman et al., 1999) and two receptors (Acvr1b and Acvr2;

Wrana et al., 1994) to assemble a signaling complex. Within this complex, the Acvr2 receptors phosphorylate the

Acvr1b receptors, which in turn phosphorylate proteins called Smad2 and Smad3 (Gu et al., 1998; Dubrulle et al.,

2015). The phosphorylated Smad2 or Smad3 then forms a heterotrimer with Smad4 and accumulates in the

nucleus, where it activates the transcription of various genes. The signaling complex shown here was first

suggested by Calvanese et al. (2010).
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that downstream effects could be more important.

Perhaps, for example, the asymmetry of the heter-

odimer leads to more efficient signal transduction

through the receptors to phosphorylate Smad2/3

(Figure 2). Interestingly, another member of the

TGFß family, Bmp2-Bmp7, also functions exclu-

sively as a heterodimer in patterning dorsal-ventral

tissues during the same stages of development

that Nodal-Gdf3 heterodimers specify the meso-

derm and endoderm (Little andMullins, 2009).

Altogether, these papers represent a sub-

stantial leap forward in our understanding of

Nodal and Gdf3 function during early embryonic

development and reveal the reigning of TGFß

heterodimers in the embryo.
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