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Abstract 

Background:  Oncogenic metabolic reprogramming contributes to tumor growth and immune evasion. The intertu-
moral metabolic heterogeneity and interaction of distinct metabolic pathways may determine patient outcomes. In 
this study, we aim to determine the clinical and immunological significance of metabolic subtypes according to the 
expression levels of genes related to glycolysis and cholesterol-synthesis in bladder cancer (BCa).

Methods:  Based on the median expression levels of glycolytic and cholesterogenic genes, patients were stratified 
into 4 subtypes (mixed, cholesterogenic, glycolytic, and quiescent) in an integrated cohort including TCGA, GSE13507, 
and IMvigor210. Clinical, genomic, transcriptomic, and tumor microenvironment characteristics were compared 
between the 4 subtypes.

Results:  The 4 metabolic subtypes exhibited distinct clinical, molecular, and genomic patterns. Compared to quies-
cent subtype, mixed subtype was more likely to be basal tumors and was significantly associated with poorer prog-
nosis even after controlling for age, gender, histological grade, clinical stage, and molecular phenotypes. Additionally, 
mixed tumors harbored a higher frequency of RB1 and LRP1B copy number deletion compared to quiescent tumors 
(25.7% vs. 12.7 and 27.9% vs. 10.2%, respectively, both adjusted P value< 0.05). Furthermore, aberrant PIK3CA expres-
sion level was significantly correlated with those of glycolytic and cholesterogenic genes. The quiescent subtype 
was associated with lower stemness indices and lower signature scores for gene sets involved in genomic instability, 
including DNA replication, DNA damage repair, mismatch repair, and homologous recombination genes. Moreover, 
quiescent tumors exhibited lower expression levels of pyruvate dehydrogenase kinases 1-3 (PDK1-3) than the other 
subtypes. In addition, distinct immune cell infiltration patterns were observed across the 4 metabolic subtypes, with 
greater infiltration of M0/M2 macrophages observed in glycolytic and mixed subtypes. However, no significant differ-
ence in immunotherapy response was observed across the 4 metabolic subtypes.

Conclusion:  This study proposed a new metabolic subtyping method for BCa based on genes involved in glycolysis 
and cholesterol synthesis pathways. Our findings may provide novel insight for the development of personalized 
subtype-specific treatment strategies targeting metabolic vulnerabilities.
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Introduction
Bladder cancer (BCa) is one of the most common tumors 
and the thirteenth leading cause of cancer-related deaths 
worldwide [1]. Globally, approximately 573,000 patients 
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were diagnosed with BCa in 2020, with 212,000 BCa-
related deaths in that year, posing an enormous threat 
to human health [2]. In recent times, BCa treatment 
has been revolutionized by emerging therapies such as 
immunotherapy and molecular-targeted therapy; how-
ever, the 5-year survival rate for muscle-invasive BCa 
remains unsatisfactory [3, 4]. Therefore, continuous 
understanding of tumor subtyping is desirable to improve 
the prognostic stratification of BCa to achieve personal-
ized treatment.

Oncogenic metabolic reprogramming is a major hall-
mark of cancers and allows cancer cells to survive and 
thrive in harsh conditions [5, 6]. Tumor cells, by an effect 
known as the Warburg effect, can shift glucose metabo-
lism toward aerobic glycolysis, providing cancer cells 
with energy and biosynthetic raw materials to promote 
tumor growth, invasion, and metastasis [5–8]. Metabolic 
reprogramming also plays a pivotal role in maintaining 
genomic instability and stemness in cancer cells to allow 
for self-expansion and resistance to chemotherapy. In 
addition, glycolytic reprogramming modifies the tumor 
microenvironment (TME) into a hypoxic, acidic, and 
nutritionally deficient environment that facilitates can-
cer cell growth and inhibits immune cell function [5–8]. 
Therefore, targeting metabolic vulnerability is a promis-
ing strategy for cancer therapy.

Pyruvate is the terminal product of glycolysis and serv-
ers as a precursor for different biosynthetic pathways. 
Mitochondrial pyruvate complex (MPC) comprised of 
pyruvate carriers 1 and 2 (MPC1/MPC2) is the entry 
point for pyruvate to the mitochondrial matrix for oxi-
dative metabolism, and MPC deficiency contributes to 
tumor initiation and progression by enhancing glycolysis 
[9, 10]. In addition to MPC, the pyruvate dehydrogenase 
complex (PDC) also serves as a gatekeeper in maintain-
ing the balance between anaerobic and aerobic glucose 
metabolism by catalyzing the conversion of pyruvate 
to acetyl-CoA for entry into the tricarboxylic acid cycle 
(TAC) [11]. PDC activity is tightly regulated by pyru-
vate dehydrogenase kinases (PDKs, isoform 1-4), which 
can phosphorylate and inactivate the PDC, resulting in 
attenuated pyruvate oxidative metabolism and increased 
glycolysis [12]. PDK inhibition has been reported to sup-
press tumor growth and is a promising therapeutic target 
for several diseases, including cancers [13, 14].

Recent studies have revealed the remarkable cancer 
prognosis-determining potential of metabolic heteroge-
neity [7]. For instance, using glycolytic and cholestero-
genic genes, Karasinska et al. classified pancreatic cancer 
into 4 distinct metabolic phenotypes, which were related 
to patient survival, and established molecular subtypes 
[15]. BCa is a heterogeneous malignancy [16], and it 
is unclear whether it can be stratified into different 

subtypes through heterogeneity in distinct metabolic 
pathways to enhance personalized therapy.

In this study, we stratified BCa into 4 distinct metabolic 
subtypes based on the expression levels of glycolytic and 
cholesterogenic genes. We aim to clarify the prognostic 
value of heterogeneity in glycolysis and cholesterol syn-
thesis, determine its association with genomic instability, 
stemness, and the immune microenvironment in BCa, 
and provide a research basis for further personalized 
treatment.

Materials and methods
Study datasets and participants
The Cancer Genome Atlas (TCGA) datasets, including 
RNA-seq expression, single nucleotide variants (SNV) /
indels, copy number variation (CNV), and correspond-
ing clinical profiles were downloaded from the GDC 
portal (https://​portal.​gdc.​cancer.​gov/). The GSE13507 
microarray dataset was downloaded from the GEO por-
tal (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The IMvigor210 
study, which evaluated the efficacy and safety of PD-L1 
inhibitors in locally advanced or advanced urothelial 
cancer [17, 18], was obtained from http://​resea​rch-​pub.​
gene.​com/​IMvig​or210​CoreB​iolog​ies/. A total of 760 pri-
mary BCa samples with survival data (TCGA, n = 400; 
GSE13507, n = 165; IMvigor210, n = 195) were used for 
this study. The gene expression values for RNA-seq were 
transformed into TPM (transcripts per kilobase million). 
RNA-seq and microarray gene expression data were 
log2 transformed for analysis. Batch effects caused by 
non-biological technical biases were corrected using the 
“ComBat” algorithm of “sva” R package. Principal compo-
nent analysis (PCA) was used to evaluate the batch effect 
between samples before and after correction. As shown 
in Supplementary Fig.  S1, the PCA confirmed a reduc-
tion in batch effects after normalization. The detailed 
clinical-pathological features of the 3 datasets are shown 
in Supplementary Table S1.

Metabolic subtyping
To stratify BCa based on the relative expression levels 
of genes involved in glycolysis and cholesterol biosyn-
thesis, genes belonging to Reactome gene sets, ‘glycoly-
sis’ (n = 72), and ‘cholesterol biosynthesis’ (n = 25), were 
extracted from ‘MsigDB’ (supplementary Table  S2). The 
batch effect-corrected expression values for these genes 
were standardized by Z-score, and then subjected to con-
sensus clustering (parameters: rps = 1000, pItem = 0.8, 
pFeature = 1, clusterAlg = hc, distance = euclidean) 
using the ‘ConsensusClusterPlus’ R package to identify 
co-expressed glycolysis and cholesterol synthesis genes. 
The number of clusters was determined according to the 
criteria of consensus Cumulative Distribution Function 
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(CDF) and the relative change in area under the CDF 
curve. Samples were divided into 4 metabolic subtypes 
based on the median expression values of co-expressed 
glycolytic and cholesterogenic genes i.e., quiescent (gly-
colytic ≤0, cholesterogenic ≤0); glycolytic (glycolytic > 0, 
cholesterogenic ≤0); cholesterogenic (glycolytic ≤0, cho-
lesterogenic > 0); mixed (glycolytic > 0, cholesterogenic 
> 0) subtypes.

Molecular phenotype classification
Bladder cancer samples were classified into five molecu-
lar phenotypes (basal/, luminal, luminal-infiltrated, lumi-
nal-infiltration, and neuronal) using the TCGA molecular 
classifier [19], or into three molecular phenotypes (basal, 
luminal, and P53-like) using the MD Anderson molecu-
lar classifier [20], according to the “BLCAsubtype” R 
package.

Tumor microenvironment immune cell infiltration
The CIBERSORT algorithm was used to estimate the 
relative abundance of 22 tumor-infiltrating immune cell 
types with the LM22 reference gene signature and 1000 
permutations based on TCGA RNA-seq data [21]. The 
Kruskal-Wallis test was used to compare the degree of 
immune cell infiltration between the different metabolic 
subtypes.

Single‑sample gene‑set enrichment analysis and stemness 
index
We performed single-sample gene-set enrichment analy-
sis (ssGSEA) on TCGA samples to estimate the enrich-
ment scores of gene sets involved in maintaining genomic 
instability [17]. The gene sets included (1) ‘DNA replica-
tion,’ (2) ‘mismatch repair,’ (3) ‘base excision repair,’ (4) 
‘nucleotide excision repair,’ (5) ‘DNA damage repair,’ (6) 
‘homologous recombination,’ and (7) ‘cell cycle’ genes. 
The stemness index, which was estimated using RNA 
expression (all available gene sets), was obtained from the 
UCSC Xena Pan-Cancer Atlas Hub (https://​xenab​rowser.​
net/). ANOVA was performed to compare differences in 
these signature scores between the 4 metabolic subtypes.

PDKs analysis
Pearson correlation analysis was performed to identify 
genes significantly correlated with PDK1-3 expression. 
Genes with |R| > 0.3 and P value< 0.001 were considered 
to be significant. Then, genes significantly correlated 
with all PDK1, PDK2, and PDK3 were subjected to Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis using 
the “clusterProfiler” R package.

Statistical analysis
R (version 4.0.2) was used for statistical analyses. 
Kaplan-Meier plots with log-rank test were used to test 
differences in overall survival using the ‘survival’ and ‘sur-
vminer’ tools in the R software package. Cox regression 
was used to evaluate differences in overall survival after 
adjusting for potential confounders such as age, gender, 
histological grade, and cancer stage. The Kruskal-Wallis 
test, Chi-square test, ANOVA, or Fisher exact test was 
used for between-group comparisons where appropriate. 
Values of P < 0.05 were considered statistically significant.

Results
Distinction of the 4 bladder cancer metabolic subtypes 
based on the expression levels of glycolysis and cholesterol 
synthesis genes
As shown in Fig.  1A, ten clusters of co-expressed gly-
colysis- and cholesterol-related genes were obtained 
by consensus clustering based on the consensus CDF 
and change in area under the CDF curve. We identified 
2 groups of robustly co-expressed glycolysis (n = 12, F4 
cluster) and cholesterol synthesis (n = 8, F2 cluster) genes 
which were used for metabolic subtyping (Fig. 1A, Sup-
plementary Table S3). Patients were assigned one of the 4 
metabolic subtypes, i.e., quiescent, glycolytic, cholestero-
genic, and mixed (Fig. 1B), based on the median expres-
sion levels of glycolytic and cholesterogenic genes. The 
largest proportion of samples exhibited the quiescent 
subtype (31.1%), followed by the mixed (24.3%), choles-
terogenic (22.5%), and glycolytic (22.2%) subtypes. The 
expression levels of these co-expressed glycolytic and 
cholesterogenic genes were shown in Fig. 1C.

Clinical significances of the 4 metabolic subtypes
As shown in Fig.  2A, the 4 metabolic subtypes demon-
strated significant differences in overall survival (log-rank 
P  value  = 0.012). The quiescent subtype exhibited the 
best survival, while the mixed exhibited shorter survival. 
The survival benefit of quiescent tumors in comparison 
to mixed tumors was observed in muscle-invasive BCa 
(overall log-rank P = 0.011); however, the difference was 
marginally significant in non-muscle-invasive BCa (log-
rank P = 0.09), probably due to the limited sample size. 
(Fig.  2B-C). In addition, significant differences in the 
histological grade were observed across the 4 metabolic 
subtypes (P = 8.95e-5) and quiescent tumors tended to 
exhibit lower histological grade and less advanced patho-
logical stage, although the latter did not reach statistical 
significance (P = 0.087) (Fig. 2D-E). Moreover, significant 
differences in molecular phenotypes were also observed 
across the 4 metabolic subtypes (P  < 2.2e-16). Using 
the MDA molecular classifier, basal tumors were more 
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common in the mixed and glycolytic subtypes (Fig. 2F). 
Similar findings were observed using the TCGA molecu-
lar classifier. Luminal (luminal infiltrated, luminal pap-
illary, and luminal) tumors were more common in the 
quiescent and cholesterogenic subtypes, while basal-
squamous tumors were more common in the mixed and 
glycolytic subtypes (Fig. 2G). Furthermore, multivariable 
cox regression revealed that mixed tumors remained an 
independent predictor for poorer prognosis after con-
trolling for age, gender, histological grade, clinical stage, 
and molecular phenotypes (Fig.  2H-I and supplemen-
tary Table  S4). These data indicate that tumors with 
higher rates of glycolysis and cholesterol synthesis may 
be more aggressive than tumors with a quiescent sub-
type, and the metabolic subtype based on glycolytic and 

cholesterogenic genes may be a promising classifier for 
prognostic stratification of BCa.

Genetic alterations of glycolytic and cholesterogenic genes 
across the 4 metabolic subtypes
To determine the genetic alteration events associated 
with metabolic subtypes, we investigated the frequency 
of SNVs, indels, and CNVs of the 20 co-expressed glyco-
lytic and cholesterogenic genes in the TCGA cohort. As 
shown in Fig. 3A, CNVs commonly occurred while SNV 
and indel mutations were rare. The SNV and indel muta-
tion frequencies of the genes were comparable across the 
four metabolic subtypes (Supplementary Table  S5). Of 
note, CNV gain was more frequently observed than CNV 
loss across the 4 metabolic subtypes (Fig. 3B), consistent 

Fig. 1  Identification of 4 distinct metabolic subtypes based on expression levels of glycolytic and cholesterogenic genes in BCa. (A) Consensus 
clustering (k = 10) for glycolytic and cholesterogenic genes; (B) Scatter plots depicting metabolic subtype proportions based on the median 
expression levels of glycolytic and cholesterogenic genes; (C) Heatmap comparing the expression levels of co-expressed glycolytic and 
cholesterogenic genes across the 4 subtypes.



Page 5 of 15Zhang et al. BMC Cancer            (2022) 22:2 	

with the upregulated expression levels of these genes. 
Significant differences in frequencies of CNV alterations 
were observed in glycolytic genes ENO1 (p  = 0.009), 
PFKP (P  = 0.004), and cholesterogenic genes HMGCR​ 

(P = 0.016), HMGCS1 (P = 0.003), and IDI1 (P = 0.008) 
across the 4 metabolic subtypes (Fig.  3A and Supple-
mentary Table S6), indicating that aberrant expression of 
these genes may be related to the development of BCa.

Fig. 2  Clinical significances of metabolic subtypes. (A-C) Kaplan-Meier curves with log-rank test showing the overall survival of patients with (A) 
bladder cancer (n = 760), (B) muscle-invasive BCa (n = 457), and (C) non-muscle-invasive BCa (n = 105), stratified by metabolic subtypes; (D-E) 
Distribution of patients according to (D) histological grade, (E) tumor stage, (F) MDA molecular phenotypes, and (G) TCGA molecular phenotypes 
stratified by 4 metabolic subtype;. (H-I) Forest plot depicting the result of multivariate cox-regression model. The IMvigor210 dataset was not used 
in the cox-regression analysis due to missing information on stage and grade. **P < 0.01, ***P < 0.001
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Association between metabolic subtypes and tumor 
genomic alterations
Genomic alterations are capable of driving tumor meta-
bolic reprogramming [22, 23]. For instance, oncogenic 
PIK3CA mutations have been reported to reprogram 
metabolism in a variety of cancers including BCa [23, 
24]. In this study, we investigated the genomic altera-
tion (SNV, indel, and CNV) landscapes associated with 
metabolic subtypes in the TCGA dataset. Of the 30 most 

frequently altered genes in BCa, the highest frequencies 
of alteration (SNVs, indels, and CNVs) were observed in 
TTN (58%), TP53 (45%), and MUC16 (39.0%). Signifi-
cant differences in the frequencies of alteration in RB1 
(P  < 0.001), ARID1A (P  = 0.008), LRP1B (P  = 0.018), 
CSMD3 (P  = 0.011), and PIK3CA (P = 0.018) were 
observed across the 4 metabolic subtypes (Fig. 4A, Sup-
plementary Table S7). Of note, CNV loss was frequently 
observed in RB1 and LRP1B, both of which exhibited the 

Fig. 3  Mutational and CNV profiles of co-expressed glycolysis and cholesterogenic genes across bladder cancer metabolic subtypes in the TCGA 
study. (A) Oncoprint depicting the distribution of SNV/indel and CNV events in the co-expressed glycolytic and cholesterogenic genes across 
the 4 metabolic subtypes. Fisher exact test was performed to compare the frequencies of alteration across 4 subtypes. *P < 0.05; **P < 0.01; (B) 
CNV variation frequency of the co-expressed glycolytic and cholesterogenic genes in the TCGA cohort. Column height represents the alteration 
frequency, the red dot indicates the amplification frequency, and the blue dot indicates the deletion frequency
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lowest frequencies in the quiescent subtype (Fig.  4B-C). 
Furthermore, correlation analysis revealed a significant 
correlation between the expression levels of these genes 
and the median expression of glycolytic and cholestero-
genic genes (Supplementary Table  S8). Of these genes, 
PIK3CA expression exhibited the strongest correlation 
with the expression of glycolytic and cholesterogenic 
genes (R = 0.43 and 0.52, respectively, and both P values 
were < 0.001) (Fig.  4D-E). These findings are compat-
ible with the notion that PIK3CA drives tumor metabolic 

reprogramming and promotes tumor progression [23]. In 
summary, this study revealed a distinct genomic alteration 
landscape across the 4 metabolic subtypes, suggesting the 
importance of crosstalk between genome instability and 
metabolic reprogramming in the development of BCa.

Association between genomic instability or cancer 
stemness index and metabolic subtypes
To further investigate the relationship between genome 
instability and metabolic subtypes, the signature scores 

Fig. 4  Mutational and CNV profiles of the 30 most frequently altered genes across the 4 metabolic subtypes of bladder cancer in the TCGA study. 
(A) Oncoprint illustrating the distribution of SNV/indel and CNV events affecting frequently altered genes in BCa across the 4 metabolic subtypes. 
Fisher exact test was performed to compare the frequencies of alteration across 4 subtypes. *P < 0.05; **P < 0.01;***P < 0.001; (B-C) Distribution of 
CNV alterations in RB1 and LRP1B. The Fisher exact test was used for comparison. * P < 0.05 compared to mixed subtype; (D-E) Scatter plot showing 
the correlation between PIK3CA expression and the median expression levels of the glycolytic and cholesterogenic genes
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of gene sets involved in genomic instability, including 
DNA replication, mismatch repair, base excision repair, 
nuclear excision repair, DNA damage repair, homolog 
recombination, and cell cycle genes, were compared. As 
shown in Fig. 5A-G, significant differences were observed 
between the 4 metabolic subtypes, with the lowest scores 
generally observed in the quiescent and mixed subtypes, 
indicating a close relationship of glycolysis and choles-
terol biosynthesis with genomic instability that drives 
tumorigenesis and therapeutic resistance. Furthermore, 
using the mRNA-based stemness indices derived from 
TCGA RNA-seq data, we observed the lowest and high-
est stemness indices in the quiescent and mixed subtypes, 
respectively (Fig.  5H). In summary, these data indicate 
a close relationship between metabolic reprogramming 
and genomic instability and identify glycolysis and cho-
lesterol synthesis as potential targets for controlling BCa.

TME infiltrating cells and metabolic subtypes
Infiltrating immune cells are an important component 
of the TME and play a critical role in carcinogenesis and 
tumor therapeutic response [25]. In this study, using 

the CIBERSORT algorithm, distinct infiltration pat-
terns were observed across the 4 metabolic subtypes in 
the TCGA dataset (Fig.  6A-B). Among the 22 immune 
cell types, naive B cells, plasma cells, CD4 memory-acti-
vated T cells, regulatory T cells (Tregs), resting NK cells, 
monocytes, macrophages (M0/M2), and resting mast 
cells demonstrated significant differences in infiltrating 
abundances across the 4 subtypes. Of note, the quiescent 
and cholesterogenic subtypes exhibited lower M0/M2 
macrophage infiltration than the glycolytic and mixed 
subtypes, and high M0/M2 macrophage levels were 
associated with poor prognosis (Supplementary Fig. S2). 
These data indicate that while both glycolysis and choles-
terol synthesis contribute to shaping the TME to facili-
tate tumor growth, glycolysis may have a more significant 
effect than cholesterol synthesis. We also investigated the 
association between metabolic subtype and immuno-
therapeutic response in the IMvigor210 study. However, 
no significant differences in response rate and survival 
benefit were observed between the 4 metabolic subtypes 
(Fig. 6C-D). Further studies with larger sample sizes are 
needed to confirm these findings.

Fig. 5  Metabolic subtypes associated with genomic instability and stemness index. (A-H) Box and dot plot illustrating the distribution of signature 
scores of (A) DNA replication, (B) mismatch repair, (C) base excision repair, (D) nucleotide excision repair, (E) DNA damage repair, (F) homologous 
recombination, (G) cell cycle, and (H) stemness index across the 4 metabolic subtypes
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Fig. 6  Immune cell infiltration and immunotherapy response across the bladder cancer metabolic subtypes. (A-B) Bar plot and histogram 
illustrating the distribution of 22 immune cell types estimated by CIBERSORT across the 4 metabolic subtypes. The Kruskal-Wallis test was used 
for comparison; (C) Immune-response rate according to metabolic subtypes in the IMvigor210 cohort; (D) Kaplan-Meier curves with log-rank test 
showing the overall survival of patients who received PD-L1 immunotherapy stratified by metabolic subtypes in the IMvigor210 cohort
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Association between MPC1/2 or PDK1‑4 alteration 
and metabolic subtypes
Because pyruvate is the terminal product of anaerobic 
glycolysis and acts as a precursor for different biosyn-
thetic pathways, including cholesterol biosynthesis, we 
further investigated MPC and PDKs, both are critical 
players involved in pyruvate processing. The mitochon-
drial pyruvate carrier (MPC) complex, which consists of 
MPC1 and MPC2, is required for efficient glucose pro-
duction, and decreased MPC activity in tumors enhances 
glycolytic activity, resulting in tumor progression [10]. In 
TCGA BCa samples, MPC1 and MPC2 mutations were 
rare, with only 1 mutation affecting MPC1 observed in a 
glycolytic subtype patient. In contrast, CNVs were com-
mon, with the majority of CNVs being deletions in MPC1 
and amplifications in MPC2, although no significant dif-
ferences in MPC1/2 CNV frequencies were observed 
between the 4 metabolic subtypes (Fig. 7A). Likewise, no 
significant differences in the expression levels of MPC1 
were observed between the subtypes; however, the 
expression levels of MPC2 were lower in the glycolytic 
and mixed phenotypes as compared to the cholestero-
genic subtype (Fig. 7B-C).

Similarly, SNV and indel mutations were rare but CNVs 
were common in PDK1-4; however, no significant differ-
ences in rates of genetic alteration (CNV or mutation) 
were observed between the 4 subtypes (Fig.  7A). Nev-
ertheless, PDK gene expression levels were significantly 
different between the 4 metabolic subtypes. Overall, 
quiescent subtypes exhibited the lowest PDK1-3 expres-
sion levels (Fig. 7D-G). Because PDK1-3 expression lev-
els demonstrated the most significant correlations with 
metabolic subtypes and were significantly lower in qui-
escent tumors compared to mixed tumors, we further 
performed Pearson correlation analysis to identify genes 
significantly correlated with PDK1, PDK2, and PDK3 
expression. As shown in Fig. 7H-J, a total of 1374 shared 
genes were identified to be significantly correlated with 
PDK1, PDK2, and PDK3 (all Pearson correlation R > 0.3, 
and P value< 0.001), and these genes were significantly 
enriched in spliceosome, RNA transport, nucleotide exci-
sion repair, DNA replication, RNA splicing, et al., in con-
sistence with our findings that metabolic subtypes were 
tightly associated with genomic instability. In summary, 
these data suggest that decreased PDC activity resulting 
from increased PDK mRNA levels may contribute to the 

development of the malignant features associated with 
metabolic subtypes, presenting PDKs as potential targets 
for controlling BCa through the manipulation of meta-
bolic vulnerability.

Discussion
In this study, based on the expression levels of genes 
involved in glycolysis and cholesterol synthesis, we iden-
tified 4 metabolic subtypes, which demonstrated distinct 
clinical and molecular characteristics, and different TME 
immune cell infiltration patterns, although no significant 
differences were observed in immunotherapy response 
rate. In summary, our study unveils the importance of 
metabolic reprogramming in BCa and presents metabolic 
heterogeneity-based subtyping as a potential prognosis 
biomarker for personalized therapy.

Glucose metabolic reprogramming is essential for 
tumor growth and therapeutic resistance [26]. Studies 
have shown that glycolysis is closely related to BCa devel-
opment. For instance, upregulation of pyruvate kinase 
M2 is closely related to tumor growth and chemo-resist-
ance and serves as a potential tumor marker for BCa 
monitoring [27, 28]. Lactic acid dehydrogenase (LDHA) 
is a key enzyme in glycolysis and its upregulation in BCa 
promotes glycolysis, thereby facilitating tumor growth 
and immune evasion [29, 30]. Aside from glycolysis, 
increasing evidence shows that cholesterol metabolites 
also play critical roles in cancer development [31, 32]. 
Increased cholesterol biosynthesis is a hallmark of many 
cancers, promoting cancer cell growth and immune eva-
sion by activating cellular signalings such as sonic hedge-
hog, Notch and receptor tyrosine kinases, and LXR-α 
signaling [33]. Based on the expression levels of glycolytic 
and cholesterogenic genes, Karasinska et  al. identified 4 
distinct metabolic phenotypes with remarkable prognos-
tic significance [15]. As with previous studies, this study 
also revealed a close relationship between metabolic 
subtypes and BCa prognosis. Notably, the quiescent and 
mixed subtypes were associated with the best and worst 
outcomes, respectively. These results indicate that glyco-
lysis and cholesterol synthesis might act synergistically to 
accelerate tumor progression in BCa.

It has been well recognized that the molecular char-
acteristics of BCa are associated with prognosis and 
therapeutic responses. Compared to luminal tumors, 
basal tumors demonstrated unfavorable survival and 

Fig. 7  Association between MPC1/2 or PDK1-4 and bladder cancer metabolic subtypes. (A) The distribution of MPC1, MPC2, and PDK1-4 mutation 
and CNVs across the 4 metabolic subtypes in the TCGA study; (B-G) Expression levels of MPC1, MPC2, PDK1, PDK2, PDK3, and PDK4 across the 4 
metabolic subtypes in TCGA cohort; (H) Veen diagram showing the number of genes significantly correlated with PDK1, PDK2, or PDK3 in the TCGA 
cohort (Pearson correlation |R| > 0.3 and P value< 0.001). All the common genes (n = 1374) were positively associated with PDK1, PDK2, and PDK3; 
(I-J) Top 10 most significantly enriched gene sets of GO terms and KEGG pathways associated with PDK1, PDK2, and PDK3 expression. Only genes 
significantly correlated with PDK1, PDK2, and PDK3 (n = 1374) were subjected to enrichment analysis.

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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suboptimal therapeutic response [19, 20]. In this study, 
basal tumors were more common in the mixed subtype 
using both TCGA molecular classifier and MDA clas-
sifier, consistent with the unfavorable survival associ-
ated with mixed tumors, suggesting a close relationship 
between metabolic reprogramming and molecular phe-
notypes. More importantly, metabolic subtype remained 
as a significant predictor for overall survival after con-
trolling for major confounders including molecular 
phenotypes. Taken together, our study highlights the 
prognostic value of metabolic subtypes in guiding per-
sonalized therapy.

Genomic instability resulting from mutations in DNA 
repair genes is a hallmark of most cancers and plays 
a central role in tumor initiation and progression [34, 
35]. Recent studies have revealed the close relationship 
between metabolic reprogramming and cancer genomic 
instability [36]. For instance, glycolysis was found to con-
tribute to DNA metabolism by providing metabolites 
essential for the biosynthesis of nucleotides. Some glyco-
lytic products (like L- and D-lactate) and key glycolytic 
enzymes (like PGAM1 and PKM2) are involved in DNA 
damage repair [37–39]. Furthermore, the importance of 
cholesterol biosynthesis in maintaining genome instabil-
ity has also been reported [40, 41]. Previous studies have 
reported that genetic defects of the nucleotide excision 
repair pathway, including ERCC1 deficiency, result in the 
suppression of cholesterol biosynthesis [42]. In line with 
previous reports, our study also revealed a close rela-
tionship between glycolysis and cholesterol biosynthesis 
and genomic stability. Of the 4 metabolic subtypes, the 
quiescent subtype exhibited the lowest activities in mis-
match repair, base excision repair, nucleotide excision 
repair, DNA damage repair, and DNA replication, while 
the mixed subtype exhibited relatively higher activities 
than the other subtypes. Moreover, we observed signifi-
cant differences in genomic alteration patterns between 
the 4 metabolic subgroups. RB1 is a well-known tumor 
suppressor gene, and its deletion can enhance glycolytic 
metabolism and driving tumor progression [43]. A recent 
study also identified LRP1B, which encodes low-density 
lipoprotein receptor-related protein 1B, as a novel tumor 
suppressor, and LRP1B deletion was associated with 
chemotherapy resistance in ovarian cancer [44]. In this 
study, although the quiescent tumors harbored similarly 
high mutation rates in most of the interested genes, con-
sistent with findings reported in a previous study [15], 
it is worthy of note that the quiescent subtype exhibited 
lower frequency of CNV loss in RB1 and LRP1B than 
mixed subtypes, in line with the survival benefit of the 
quiescent subtype. In addition, we observed frequent 
mutations in PIK3CA, which were positively associated 
with glycolysis and cholesterol synthesis. In consonance 

with our findings, previous studies have reported that 
PIK3CA mutation promotes tumor progression partly 
by enhancing glycolysis [45]. In summary, our findings 
suggest a close relationship of glycolysis and cholesterol 
synthesis with genomic instability and present glycolytic 
and cholesterogenic metabolism targeting as a potential 
therapeutic strategy for BCa treatment.

Accumulating evidence revealed that metabolic repro-
graming can contribute to tumor progression by creating 
a hypoxic, acidic, and nutritionally deficient TME [5–8]. 
However, the TME cell-infiltrating characteristics of dis-
tinct metabolic subtypes remain unclear. In this study, 
the 4 metabolic subtypes exhibited a distinct immune 
cell infiltration pattern, demonstrating that the glycolytic 
and cholesterogenic reprogramming is critical in shaping 
different TME landscapes. Of note, the quiescent sub-
type exhibited significantly lower M0/M2 macrophage 
levels than the other subtypes. A recent study also dem-
onstrated that macrophage-promoted tumor growth by 
regulating tumor cell metabolism, in support of our find-
ings [46]. Furthermore, macrophages have been proved 
to be critical players in driving cancer cell immune 
evasion and are closely related to poor prognosis [47]. 
Therefore, a comprehensive assessment of the metabolic 
patterns may enhance our understanding of TME cell-
infiltrating characteristics. In this study, we speculated 
that metabolic subtype could predict immunotherapeutic 
response, however, we did not observe significant differ-
ences in the response to PD-L1 immunotherapy between 
the 4 subtypes in IMvigor210 study. Therefore, further 
studies are warranted to evaluate the roles of glycolysis 
and cholesterol synthesis in immunoregulation in BCa. 
Furthermore, recent studies have reported that as with 
cancer cells, TME immune cells also undergo metabolic 
reprogramming to facilitate tumor growth and immune 
evasion [48, 49]. In this study, although we demonstrated 
a distinct TME cell-infiltration pattern associated with 
heterogeneity in glycolysis and cholesterol synthesis, 
we did not investigate the metabolic alteration in TME 
immune cells, which may also contribute to the alteration 
in the transcriptome profiles of tumor tissues. Further 
studies, such as studies with single-cell RNA-sequencing, 
are needed to investigate the crosstalk between metabolic 
alterations in tumors and TME cells during tumor initia-
tion and progression.

The MPC deficiency has been linked to tumorigen-
esis by enhancing glycolysis and may serve as a potential 
target of anticancer therapy by manipulating glycolytic 
activity [9, 10]. In line with previous reports on other 
cancer types [15], this study revealed that in BCa, MPC1 
was frequently deleted, while MPC2 was mostly ampli-
fied. Although no significant differences in MPC1 expres-
sion levels were observed between the 4 metabolic 
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subtypes, the decreased MPC2 expression in the glyco-
lytic and mixed subtypes suggests that MPC2 may con-
tribute to mitochondrial pyruvate uptake in BCa. In 
addition to MPC, the PDC also plays a pivotal role in 
regulating energy homeostasis [50, 51]. Studies have sug-
gested that metabolic reprogramming in cancer cells is 
associated with PDC inhibition due to phosphorylation 
of its E1a subunit by PDKs [14, 52, 53]. Thus, inhibition 
of PDK has been recognized as an attractive strategy in 
anticancer therapy [54, 55]. While the roles and mecha-
nisms of PDK1-3 in BCa remain unknown, enhanced 
PDK4 expression in BCa has been reported in previous 
studies, and PDK4 inhibitors were found to suppress BCa 
cell invasiveness and to potentiate cisplatin-induced cell 
death [56, 57]. In this study, we observed significantly 
lower PDK1-3 expression levels in the quiescent sub-
type as compared to the other subtypes, consistent with 
the notion that PDKs contribute to tumorigenesis by 
inhibiting PDC activity [54, 55]. Furthermore, GO and 
KEGG enrichment analysis revealed that PDK1-3 was 
correlational with the critical biological process involved 
in tumorigenesis, including nucleotide excision repair, 
DNA replication, RNA splicing, etc., presenting PDK1-3 
as potential therapeutic targets for BCa. However, the 
decreased expression levels of PDK4 in the mixed and 
glycolytic subtypes did not match our inferences and was 
inconsistent with other reports [56, 57]. Further studies 
are needed to investigate the roles played by PDKs in BCa 
development.

Our study had some limitations. Firstly, we only 
addressed the intertumoral glycolytic and cholestero-
genic heterogeneity, however, the intratumoral meta-
bolic heterogeneity and the comprehensive landscape of 
tumor metabolism remained uninvestigated. Secondly, 
the current study is largely based on correlation analysis 
and there is a lack of experimental validation; therefore, 
the findings of this study should be interpreted with cau-
tion. Thirdly, although we combined 3 cohorts to obtain a 
large sample size, the sample size in the subgroup analy-
sis of non-muscle-invasive BCa was still small.

Overall, this study identified a metabolic heterogene-
ity-based classifier with distinct molecular and immune 
characteristics, and predicted outcomes in BCa, provid-
ing novel insights for the development of personalized 
therapeutic strategies targeting metabolic vulnerabilities.
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