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Abstract

Even if a stimulus pattern moves at a constant velocity across the receptive field of motion-sensitive neurons, such as lobula
plate tangential cells (LPTCs) of flies, the response amplitude modulates over time. The amplitude of these response
modulations is related to local pattern properties of the moving retinal image. On the one hand, pattern-dependent
response modulations have previously been interpreted as ’pattern-noise’, because they deteriorate the neuron’s ability to
provide unambiguous velocity information. On the other hand, these modulations might also provide the system with
valuable information about the textural properties of the environment. We analyzed the influence of the size and shape of
receptive fields by simulations of four versions of LPTC models consisting of arrays of elementary motion detectors of the
correlation type (EMDs). These models have previously been suggested to account for many aspects of LPTC response
properties. Pattern-dependent response modulations decrease with an increasing number of EMDs included in the
receptive field of the LPTC models, since spatial changes within the visual field are smoothed out by the summation of
spatially displaced EMD responses. This effect depends on the shape of the receptive field, being the more pronounced - for
a given total size - the more elongated the receptive field is along the direction of motion. Large elongated receptive fields
improve the quality of velocity signals. However, if motion signals need to be localized the velocity coding is only poor but
the signal provides – potentially useful – local pattern information. These modelling results suggest that motion vision by
correlation type movement detectors is subject to uncertainty: you cannot obtain both an unambiguous and a localized
velocity signal from the output of a single cell. Hence, the size and shape of receptive fields of motion sensitive neurons
should be matched to their potential computational task.

Citation: Meyer HG, Lindemann JP, Egelhaaf M (2011) Pattern-Dependent Response Modulations in Motion-Sensitive Visual Interneurons—A Model Study. PLoS
ONE 6(7): e21488. doi:10.1371/journal.pone.0021488

Editor: Alexander Borst, Max-Planck Institute of Neurobiology, Germany

Received May 10, 2011; Accepted May 30, 2011; Published July 8, 2011

Copyright: � 2011 Meyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported by the Deutsche Forschungsgemeinschaft (DFG) and by a grant of the Volkswagen Stiftung to Anne-Kathrin Warzecha. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hanno.meyer@uni-bielefeld.de

Introduction

During locomotion animals continually encounter spatiotem-

poral changes in their habitat. These changes are reflected in the

retinal input and depend in a characteristic way on the animal’s

self-motion as well as the three-dimensional layout and textural

properties of the environment. Hence, to efficiently control

locomotion, the nervous system is required to extract behaviorally

relevant information from this ever changing retinal input. It has

been shown, that the extraction of visual motion cues from optic flow

(i.e. the field of retinal image velocities) is involved in motor

control of a variety of species [1]. In the visual system of flies

retinal image motion is processed by about 60 anatomically

identified motion-sensitive interneurons, the so called lobula plate

tangential cells (LPTCs). The processing of motion information by

LPTCs is supposed to be relevant in the context of flight

stabilization, object detection, visual odometry or spatial naviga-

tion [2]. LPTCs respond to visual motion in large parts of the

visual field in a direction-selective way, being excited by motion in

their preferred direction and inhibited by motion in the opposite

direction (their so-called anti-preferred direction). LPTCs differ in the

location and size of their receptive fields. Accordingly they

spatially pool the responses of different numbers of retinotopically

organized movement sensitive elements from different regions of

the visual field. These local motion sensitive elements can

be modelled by correlation-type elementary motion detectors

(EMDs/Fig. 1). For these EMDs input of at least two spatially

separated photoreceptor-channels is required to differentiate

directed motion from stationary brightness changes. The delayed

signal of one retinal input channel interacts in a multiplicative way

with the signal of a neighbouring input channel [3–5].

Although natural images share, on average, a typical spatial

frequency spectrum [6], the local spatial structure and contrast of

individual images may vary strongly. As a consequence, if a

natural image moves at a constant velocity across the receptive

field of LPTCs, the response amplitude is usually not constant but

may modulate over time in a pattern-dependent fashion. Because

of these pattern-dependent modulations it is not easily possible to

infer the time course of pattern velocity from such neuronal

signals. Pattern-dependent modulations have, therefore, been

referred to as ’pattern noise’, because they deteriorate the neuron’s

ability to provide unambiguous velocity information [7]. These

modulations are also reflected in LPTC models with EMDs as

their input channels [8–10].

Different functional modifications of the model have been

proposed to reduce pattern-dependent modulations and thus to

improve the coding of pattern velocity. These modifications

include band-pass filtering, compressive/saturating non-linearities
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in the peripheral visual system as well as motion adaptation and

spatial integration of EMDs (Fig.1; [11,8,10]). The latter is

accomplished by the dendritic integration by LPTCs. The

consequences of this integration strongly depend on the size of

the receptive fields and their spatial sensitivity distributions. An

increasing number of retinotopic inputs included in the receptive

field leads to a decrease of pattern-dependent modulations, since

spatial changes within the visual field are smoothed out by the

summation over many spatially displaced input signals [4,12].

Whereas dendritic integration improves the accuracy of velocity

Figure 1. EMD array models used for simulation of LPTC response. (A) Basic EMD model including peripheral filtering (PF) in the input
stage (see Methods and Materials). Signals from each receptor are delayed via the phase delay of a temporal first-order low-pass filter, multiplied and
half-wave rectified. Integration of signals in the output cell Z is performed according to the gain control model [13]. (B) Adaptive EMD model
extended with a first-order high-pass filter in the cross-arms of the half-detectors. The time-constant of the high-pass filter is adjusted according to
the rate of change of the corresponding low-pass signal [14]. (C) EMD model with contrast saturation during early visual processing in the input
stage. Saturating non-linearities are included to mimic contrast saturation during early visual processing [15]. (D) EMD model with gain control in
the input lines [8]. The input from each receptor channel is divided by the mean absolute deviation (see Methods and Materials) in order to control
the gain in the input lines.
doi:10.1371/journal.pone.0021488.g001
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estimation, the ability of the system to localize movements in the

visual field is reduced. The limited size and specific spatial location

of the receptive fields of LPTCs indicates that they may provide

functionally relevant information about the spatial structure of

local features during movements of the animal. However, they do

this at the expense of the quality of the velocity signal.

In the current study the influence of the size and shape of

receptive fields on the amplitude of pattern-dependent modula-

tions was analyzed systematically by simulations of arrays of four

different versions of EMDs which have previously been employed

to explain LPTC responses (Fig.1). High dynamic range natural

panoramic images moving at constant velocity served as input

data. We find that receptive field size and shape influences the

pattern-dependent modulations to a great extent. However, large

receptive fields deteriorate the ability of the system to localize

movements in the visual field, hinting at a trade-off between the

quality of velocity signals and their ability to localize moving

textures.

Results

To quantify the influence of changes in the receptive fields on

the amplitude of pattern-dependent response modulations LPTC

models were analyzed. Models of spatial arrays of four different

versions of EMDs were used in computer simulations. These

models reflect the fly motion vision pathway from the compound

eye to the LPTCs (Fig. 1). Model simulations allow the variations

of size and shape of receptive fields, which would be impossible to

modify in the ’hard-wired’ visual system of a living animal. The four

models used for simulation of LPTC responses have been recently

proposed and differ in their internal computational structure

emulating different functional aspects of information processing in

the visual system of flies (see Methods and Materials). (i) The basic

EMD model (Fig.1A) includes temporal filters mimicking dynamic

cell properties in the lamina and the retina, correlation-type

EMDs and non-linear integration by the model LPTC [13]. (ii)

The adaptive EMD model (Fig.1B) includes an additional high-

pass filter in the cross-arms of the EMDs. The high-pass filter time-

constant is adjusted depending on LPTC activity [14]. (iii) The

EMD model with contrast saturation (Fig.1C) elaborates the basic

model by including compressive saturating non-linearities in the

early visual processing stages [15]. (iv) In the EMD model with

gain control in the input lines (Fig.1D) a mechanism for controlling

the gain in the input lines of the EMDs is implemented [8].

One class of LPTCs, the HS-cells, respond best to horizontal

wide field motion. In the blowfly three HS cells were characterized

that respond to horizontal front-to-back motion in the dorsal part

(HSN; HS-north), the equatorial part (HSE; HS-equatorial) and

the ventral part of the ipsilateral visual field (HSS; HS-south),

respectively [16–18]. To compare the influence of changes in the

receptive fields on the amplitude of pattern-dependent response

modulations with a physiologically plausible model, we simulated

the responses of the model EMD arrays according to an estimate

of an HSE cell receptive field ([19]; see also Methods and

Materials for details).

Under natural circumstances flying insects are confronted with

contrast and luminance values widely exceeding the ranges that

can be represented by photographic images. Consequently five

different high dynamic range [20] natural panoramic images,

taken in different habitats of flies and varying in contrast and

spatial composition, formed the input data sets of the simulations

(Fig. 2, see Methods and Materials). Visual motion was simulated

by uniform horizontal motion of the panorama images in the

preferred direction of the model LPTCs.

Contrast dependent response modulations of LPTC
models

All LPTC models show pattern-dependent modulations coupled

to the position of the input image (Fig. 3). The responses of single

EMDs depend on prominent features of the moving panoramic

image data used as visual input. The marked region in the input

image and the corresponding normalized (see Methods and

Materials) EMD array responses integrating one (blue) or three

(blue + red) EMDs show examples of this dependency: due to the

relatively high contrast step from background to the chair in the

input image, the models respond with a strong increase in relative

response amplitude. By increasing the number of spatially

integrated input channels pattern-dependent modulation ampli-

tude and smoothness change. Although all models show pattern-

dependent modulations dependent on the contrast distribution

Figure 2. High dynamic range panorama images. (A) Five
different panoramic high dynamic range photographs used as input
datasets. Images have been normalized, gamma corrected and reduced
to 8-bit dynamic range for reproduction. (B) Global root mean square
(RMS/see Methods and Materials) contrast for each image. RMS contrast
varies considerably between images.
doi:10.1371/journal.pone.0021488.g002
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and the number of integrated receptor channels, the modulation

amplitude and the temporal response characteristics differ between

models (data not shown). The pattern-dependent modulation

amplitudes reach different maximum values for all models. Also

the onset and decay of the modulations differ between models.

These differences in maximum amplitude and temporal response

characteristics indicate that the specific features of the different

models influence the pattern-dependent modulations of the

simulated LPTC response.

One-dimensional receptive fields
To compare the degree of pattern-dependence of model LPTCs

with different receptive field sizes, the pattern-dependent modula-

tion amplitude was quantified by computing their standard

deviation over time. Figure 4 shows the standard deviations of

simulated normalized responses of a one-dimensional EMD array at

different elevations of a sample image. The horizontal extent of the

one-dimensional EMD array was varied between 1 EMD and 288

EMDs (corresponding to an angular extent of 1.25u–360u). For each

model version the standard deviation of the pattern-dependent

modulations decays with increasing horizontal extent of the EMD

array for all elevations. The maximum amplitude and the reduction

of the pattern-dependent modulation amplitude depend on the

elevation of the one-dimensional receptive fields. This can be seen,

when comparing the standard deviations, for instance, in the

elevation range ,1–30 (corresponding to the sky in the input image)

with the standard deviations in the elevation range ,30–50

(corresponding to the ground): Maximum amplitudes differ

according to the contrast ranges in the corresponding image

regions. This complies with the data shown in figure 3, as differing

local contrasts along different horizontal sections of the input image

lead to differences in the response amplitudes.

Although mean pattern-dependent modulation amplitudes of all

models decay with the number of receptors included in the array,

the range of values and the reduction of the modulations with

increasing array extent differ between models. This is most

obvious when comparing the standard deviations for the different

models. The functional modifications added to the different

models reduce pattern-dependent modulations to different extents.

The rate of decay changes most strongly when contrast saturation

Figure 3. Pattern dependent response modulations of EMD models. (A) Image III (Fig. 2A) sampled by a one-dimensional EMD array, with
either 2 (blue) or 4 (blue and red) receptors integrated. Image translates horizontally for 300 ms with a speed of 60u/s in preferred direction. (B)
Normalized EMD responses Z for all models (Fig.1A–D) corresponding to the marked region in the input image. Blue response traces correspond to
an EMD array integrating 2 receptors and pink response traces to an array integrating 4 receptors. pattern-dependent modulation amplitude and
temporal response characteristics differ between models.
doi:10.1371/journal.pone.0021488.g003
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is included in the input lines of the movement detectors. This can

be seen, when comparing the color-coded pattern-dependent

modulations of the basic and the adaptive EMD model responses

(Fig.1A,B) with the response modulations of the EMD model with

contrast saturation and the EMD model with gain control in input

lines (Fig.1C,D): with increasing receptive field size pattern-

dependent modulations are reduced to a higher extent, when

saturating non-linearities or gain control in the input line of the

EMDs are included in the model as compared with the two other

model versions.

Two-dimensional receptive fields
Figure 5 shows the mean amplitude of pattern-dependent

modulations for two-dimensional EMD arrays exemplarily for one

input data set. For convenience, we only simulated rectangular

receptive fields. The size of the EMD array is defined by the

overall number of receptors included in the integration, i.e. m � n
receptors with m the number of vertical and n the number of

horizontal EMD signals. EMD arrays were centred on the vertical

axis of the input image during sampling. The decay in amplitude

with increasing size of the EMD array is visualized on a

logarithmic scale for the vertical and horizontal extent of the

receptive field (defined by log number of receptors integrated in

the receptive field). For all models, the pattern-dependent

modulation amplitude decreases with increasing two-dimensional

array size. This can be observed for size changes in the horizontal,

as well as in the vertical direction. This effect is most pronounced

for the models with some kind of contrast normalization in the

detector input lines, i.e. the EMD model with contrast saturation

and the EMD model with gain control in input lines (Fig.5 bottom

panels).

Aspect ratio of receptive fields
In the basic and the adaptive EMD model the decay of pattern-

dependent modulations depends on the aspect ratio of the

integrated array, since an enlargement of the receptive field along

the elevation and the azimuth of the visual field affects their

standard deviation in different ways (panels in the middle of Fig.5).

Moreover, in particular for the basic model and the adaptive

model pattern-dependent modulations decrease more effectively, if

the receptive field is elongated along the horizontal axis, i.e. along

the direction of pattern motion, than when it has a more compact

form (e.g. a square; compare the data points on the diagonal line

corresponding to receptive fields of equal size). However, when

saturating non-linearities are included in the LPTC models

(Fig. 1C&D), this effect is no longer prominent, indicating that

the aspect ratio of the receptive field plays only a relatively small

role in influencing the pattern-dependent modulation amplitude in

the model with contrast saturation and the model with gain

control in input lines.

To investigate the influence of the aspect ratio of the EMD

array on the pattern-dependent modulation amplitudes, we

computed their standard deviations for each model and for all

input images. Figure 6 shows the mean standard deviation of

pattern-dependent modulations for one-dimensional EMD arrays

(colored lines) and square two-dimensional EMD arrays (colored

symbols) for all images. Pattern-dependent modulation amplitudes

decay with increasing receptive field size for horizontal one- as well

Figure 4. Pattern-dependent modulations of EMD models with one-dimensional receptive fields. (A) Panoramic high dynamic range
input image II (Fig. 2) used exemplarily for stimulation. (B) Logarithmic color coded standard deviation describing the mean pattern-dependent
modulation for one-dimensional receptive fields differing in vertical receptor position and azimuthal receptive field size (# of receptors included
horizontally) for all models. In all models pattern-dependent modulation amplitude decreases with horizontal receptive field extent. With increasing
receptive field extent pattern-dependent modulations are reduced to a higher extent in models with contrast saturation (C&D). Further, pattern-
dependent modulation amplitude depends on the contrast distribution of the input image, as can be seen, when comparing pattern-dependent
modulation amplitudes corresponding to the upper (trees) and lower part (ground) of the input image.
doi:10.1371/journal.pone.0021488.g004
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as two-dimensional EMD arrays. The models with saturating non-

linearities and gain control in the input lines (Fig. 1C&D) show a

steeper decay in mean pattern-dependent modulations with

increasing array size. This can be observed for both one- and

two-dimensional EMD arrays and complies with the data depicted

in figure 4 & 5.

The decrease in pattern-dependent modulations in all models

depends on the aspect ratio of the array. One-dimensional arrays

show a relatively strong decay of amplitudes with increasing

number of receptors integrated horizontally, i.e. along the

direction of motion. The decay achieved by extending two-

dimensional EMD arrays is less effective. This becomes obvious

when comparing the decay of pattern-dependent modulations

between receptive fields differing in the number of receptors

included. Pattern-dependent modulations for one-dimensional

arrays with 256 receptors (see Fig. 6) are reduced, on average,

for all models by approx. 97%, when compared to an EMD array

with only two receptors. For a same-sized square array (shown as +
in Fig. 5) in the basic EMD model and the adaptive EMD model

modulations are reduced on average by only approx. 71% and in

the EMD model with contrast saturation and the EMD model

with gain control in input lines on average by approx. 78%.

Estimated HSE cell receptive field
Figure 7 shows the normalized responses of the model EMD

arrays, weighted with an estimated HSE cell receptive field. This

HSE model has been successful in accounting for experimentally

determined time-dependent HSE responses even to complex

natural optic flow patterns as flies experience during free flight

[19]. Here the HSE model was stimulated with constant velocity

Figure 5. Pattern-dependent modulations of EMD models with two-dimensional receptive fields. (A) Panoramic high dynamic range
input image used exemplarily for stimulation. (B) Color coded standard deviation describing the mean pattern-dependent modulation for two-
dimensional receptive field arrays for all models. Receptive field size is defined via the number of receptors included in the integration of EMD signals
in elevation and azimuth. Two-dimensional receptive fields are achieved by expansion of a one-dimensional receptive field located at the center of
horizon in its vertical and horizontal size. The iso-line describes exemplarily receptive field sizes with 10 receptors included. The cross corresponds to
a square receptive field (m = n) with 256 receptors included.
doi:10.1371/journal.pone.0021488.g005

Figure 6. Mean pattern-dependent modulations for one- and
two-dimensional EMD array responses. Mean pattern-dependent
modulations over all input images for the different (color-coded)
models: blue = Basic EMD model, green = Adaptive EMD model, red =
EMD model with contrast saturation and yellow = EMD model with gain
control in the input lines. Solid lines correspond to pattern-dependent
modulations of one-dimensional EMD array responses, symbols
correspond to responses of square EMD arrays. Mean pattern-
dependent modulations decay stronger with increasing receptive field
extent in one-dimensional EMD arrays, compared to square arrays. Black
dashed line indicates receptive field size with 256 receptors integrated.
doi:10.1371/journal.pone.0021488.g006
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horizontal motion of the panorama images in the cell’s preferred

direction. Response traces of the HSE model with basic EMDs

and with adaptive EMDs modulate in the amplitude range of

approximately +/20.2 relative response units. Standard deviation

for the basic EMD model is 0.099 and 0.106 for the adaptive

EMD model, respectively. The pattern-dependent modulations

and the temporal response characteristics between both models

differ only slightly.

Pattern-dependent modulation of the HSE model with EMDs

containing contrast saturation or gain control in the input lines

(Fig. 1 C&D) are reduced compared to the models lacking contrast

saturation; except for the response trace for image III of the EMD

array with contrast saturation, the modulation bandwidth is

approximately +/20.1 relative response units. The standard

deviation for the response trace of the EMD array with contrast

saturation is 0.062 and 0.058 for the EMD model with gain

control in the input lines. Whereas pattern-dependent modulations

and temporal characteristics differ slightly between these two

models, more pronounced differences can be seen in the responses

of EMD arrays lacking contrast saturation.

Discussion

In insects the outputs of arrays of EMD-like motion-detectors

are assumed to be spatially integrated by LPTCs. Different types

of LPTCs have been associated with a variety of different tasks

based on optic flow processing [2]. When HS cells, one type of

LPTCs, are stimulated visually with moving natural images, the

responses were found to depend on motion velocity. Nonetheless,

the responses also show pronounced pattern-dependent response

modulations. Such modulations are mimicked by our LPTC

models. The pattern-dependent modulations reflect the structure

of the visual scene. Although the responses of LPTCs increase with

contrast in the low contrast range [15], they are relatively invariant

to the significantly differing global contrast values characteristic of

natural images [21]. Mechanisms that may contribute to this

Figure 7. EMD array responses with an estimated HSE cell receptive field. (A) Weight field estimate of the spatial sensitivity distribution of a
model HSE cell. The brighter the gray level the larger the local weight of the corresponding EMDs and, thus, the spatial sensitivity. The frontal
equatorial viewing direction is at 0u azimuth and 0u elevation. (B) Normalized response traces of HSE models with the four types of EMD variants as
indicated in the figure. Image motion was performed for 12s in preferred direction with an angular velocity of 60u/s. Responses to all image datasets
are shown.
doi:10.1371/journal.pone.0021488.g007
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relative contrast invariance have been proposed [15,8], and some

of these features have been implemented in the LPTC model

versions used in our study.

We show that the number of EMD outputs integrated by LPTC

models influences pattern-dependent response modulations to a

great extent (Fig. 6), as spatial changes in contrast and spatial

wavelength within the visual field are smoothed out by the

integration of many phase-shifted EMD outputs. The pattern-

dependent modulations decay with increasing number of integrat-

ed EMD outputs. Small changes in receptive field size lead to

strong effects in the pattern-dependent modulations of LPTC

models for relatively small receptive fields. For larger receptive

field sizes a much larger increase is required to achieve a similar

decrement in the pattern-dependent modulations.

Furthermore, the aspect ratio of the receptive field influences

pattern-dependent modulations in the responses of LPTC models,

especially if the EMDs do not contain elements in their input lines

that normalize contrast in some way (Fig. 6). A similar dependency

has also been described by Rajesh and colleagues [7]. In the

models including a kind of contrast saturation in the peripheral

processing stages, the relation between aspect ratio and pattern-

dependent modulations is no longer prominent. Contrast satura-

tion reduces the modulations and their decay with increasing

receptive field size, as the contrast range is computationally

compressed. Consequently, responses become more invariant with

respect to variations in pattern contrast [15]. However, even

then pattern-dependent response modulations may be very

pronounced. The influence of receptive field shape on pattern-

dependent modulations in the models without contrast saturation

is likely to be the consequence of differences in the variations in

pattern contrast along the horizontal and the vertical axis of the

input image, respectively. When considering the images of natural

environments used for simulation, contrast distributions and image

statistics may differ considerably in the upper and the lower part of

the images (for instance, due to differences in the structure of sky

and ground). In the simulations of the consequences of the aspect

ratio of the LPTC models’ receptive fields, their location was

centred at an elevation close to the horizon of the input images.

Hence, a differential extension of the receptive fields along the

horizontal and vertical axis of the visual field, respectively, may

lead to different pattern-dependent modulations due to different

variations in pattern contrast along the two axes. When contrast

saturation is included, this effect is reduced, as the model response

is more invariant to the differing local pattern contrasts in the

upper and lower part of the input images, respectively.

In contrast to saturation-like non-linearities in the input lines of

EMDs (Fig.1C&D), the other computational elements additionally

included in the EMD models affect pattern-dependent modula-

tions only to a relatively small degree. When the basic model

(Fig 1A) is elaborated by adaptive elements as proposed by Borst

and colleagues [14] (Fig. 1B), mean pattern-dependent modula-

tions are reduced only relatively little (Figs.4-6; see also [8]).

However, this EMD variant was previously shown to affect the

transient modulations of the step response while having only a

small influence on the steady-state velocity tuning [14]. Conse-

quently the influence of adaptive EMDs on pattern-dependent

modulations is relatively small for the constant-velocity stimulus

used in the present study.

The sensitivity distribution within the receptive field of

biological LPTCs differs from that of the LPTC models we

studied systematically with respect to their consequences for

pattern-dependent modulation amplitudes. In LPTCs the spatial

sensitivity distribution of the receptive field is not constant,

but may vary considerably in a graded way. To analyze the

consequences of such a spatial sensitivity distribution we simulated

the different LPTC model variants after the EMDs subserving the

receptive field were weighted according to the sensitivity values

measured experimentally for HSE cells. Although having a

relatively large receptive field [17,18], the HSE cell model shows

pronounced pattern-dependent modulations when stimulated with

natural images (Fig. 7). The amplitudes of the modulations of the

HSE model are affected by the EMD variants included into the

model in a similar way as was observed for the model LPTCs with

constant spatial sensitivity distribution. Depending on the EMD

model, the range of pattern-dependent modulations of the model

HSE cell varies between 20% and about 40% of the mean

response. These results suggest that a receptive field with a

sensitivity peak and a sensitivity tapering out towards the edges of

the receptive field leads to larger modulation amplitudes than

receptive fields with the same size, but constant sensitivity

distribution.

Irrespective of the details of how pattern-dependent modula-

tions depend on particular model features, one general conclusion

can be drawn from our model simulations. Receptive field size

is subject to a trade-off when considering velocity coding and

localization of pattern motion in the visual field: Large receptive

fields, on the one hand, improve the quality of velocity signals,

however, at the expense of their locatability. On the other hand, if

motion signals need to be localized by a neuron, its receptive field

should be sufficiently small; then, however, velocity coding is only

poor, but the signal provides – potentially useful – local pattern

information. This trade-off suggested by our modelling results,

thus, hints at an uncertainty in motion representation by

correlation type movement detectors: you cannot obtain both a

good and a localized velocity signal from the output of a single cell.

Hence, the size and geometry of receptive fields should be adjusted

according to the particular task of the motion sensitive neuron:

they should be large, if velocity signals without pattern-dependent

modulations are required, but should be relatively small, if motion

dependent pattern information is required that can be localized in

the visual field.

Materials and Methods

Input data sets
Five different panoramic high dynamic range images reflecting

possible habitats of flies and differing in spatial clutter, contrast

and luminance were used as input data sets (see Fig. 2). In each

scene a series of 30 color photographs was taken using a digital

single-lens reflex camera (Canon EOS 450D) equipped with a

rectilinear object lens (Canon Zoom Lens EF-S 18–55 mm 1:3.5–

5.6 IS). The camera was rotated longitudinally about the nodal

point of the lens at 36u intervals via a panoramic tripod

attachment. At each interval three images were taken at different

exposure levels (22.0, 0 and +2.0EV bracketing) in order to

capture details exceeding the dynamic range of the cameras

CMOS chip. Focal distance and aperture were fixed within scenes.

The images were stored in an 8-Bit high-quality JPG format. The

corresponding images were ‘stitched’ to high dynamic range

panorama images using the open-source software toolbox Hugin

(http://hugin.sourceforge.net/; author: Pablo d’Angelo; licensed

under GPL2). Due to the temporal latency between captures,

movements of details in the scene might have resulted in spatial

low-pass filter effects (’ghosting’ or ’blurring’) in image scenes with

different exposure levels or overlapping image regions. Further-

more, spatial corrections for lens distortions and software

alignment of the panels to produce panoramas may have reduced

the overall detail of the panorama scenes. The vertical extent of
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each scene after stitching ranged between approx. 235u to +35u,
with the horizon at center. After down-scaling the final sizes of the

images varied in the range of approximately 8000 by 1600 pixels.

Models
The compound eye of flies consists of a two-dimensional array

of hexagonally aligned ommatidia comprising the retina. Each

ommatidium contains a lens and a set of photoreceptor cells. After

photo-transduction in the retina, luminance signals in the visual

motion pathway are processed by three successive optical ganglia:

the lamina, medulla and lobula complex. Motion-sensitive LPTCs

reside in the lobula plate, a substructure of the lobula complex

[22,23]. According to the functional operations performed and the

physiological counterparts in the fly visual system each of the

models analyzed in this study can be divided into three successive

stages comprising the visual motion pathway up to the LPTCs: a)

input stage, (b) correlator stage, (c) integration stage. The input

stage pre-processes luminance changes in the input signals by

elements corresponding to the photoreceptors and their post

synaptic elements in the retina and lamina. The correlator stage is

built by local elementary motion detectors (EMDs) that are fed by

the pre-processed luminance signals and are believed to reside in

the medulla of the fly visual system. The basic EMD consists of

two mirror symmetrical units, the so-called half-detectors. In each

unit the time-delayed signal from one unit is multiplied with the

un-delayed signal from the complementary unit (Fig. 1). At the

integration stage, the motion detector outputs are spatially pooled

by elements corresponding to the dendrites of LPTCs in the lobula

plate. Therefore LPTCs will have their maximum response for

signals that have a distinct temporal delay in a distinct direction.

These three processing stages are common to all model variants

tested here (Fig. 1). All computational models were programmed

in MATLAB (The Mathworks, Natick, MA, USA). Model

parameters were adjusted according to [8], if not stated differently.

A basic EMD model formed the reference for the more elaborated

models.

Common computational elements of all model versions
The basic model (Fig. 1A) includes temporal filters in the EMD

input lines to mimic the dynamic properties of cells in the retina

and lamina, correlational EMDs, and nonlinear integration by the

model LPTC in the form of the ‘‘gain control’’ model [13].

Input stage. Fly compound eye optics have characteristics of

a spatial low-pass filter and blur the retinal image. The extent of

filtering is matched to the inter-ommatidial angles to avoid spatial

aliasing [24]. To mimic the spatial filtering of the eye, input

panorama images were sampled by a two-dimensional Gaussian-

shaped spatial low-pass filter F according to [8]:

F Wð Þ~exp {2:77W2= Drð Þ2
h i

ð1Þ

The inter-ommatidial angle W between equally spaced direct

photoreceptor neighbours was set to 1.25u and the acceptance

angle of the ommatidium Dr to 1.64u in order to approximate the

characteristics of the blowfly eyes [25]. Although blowflies in

general possess color vision, evidence suggests that the pathways

involved in motion detection are monochromatic [26]. Therefore

only the green color channel of the high dynamic range panorama

images was used for visual stimulation. After pre-processing each

input image was scaled to luminance values on a rectangular grid

of photoreceptors [19]. The photoreceptor grid covered a visual

field of 360u horizontally. Visual motion was simulated by stepwise

displacement of the input image in horizontal direction with a

sample rate of 1 kHz. The luminance changes due to displacement

of the input image at the subsampled image coordinates were

computed via bilinear interpolation between luminance values of

neighbouring samples.

Phototransduction in the receptors of the compound eye has

been shown to be nonlinear: the receptor membrane potential

depends on luminance in a logarithmic manner based on a

working point adapted to luminance history [27] to account for

differing dynamic contrast ranges in different environments (as

reflected by the different high dynamic range panorama images).

These characteristics were achieved by a Naka-Rushton transfor-

mation [28,8]:

U~
Ia

IazIa
0

ð2Þ

where I is the input intensity and I0 the mid-response intensity

level. The mid-response intensity level I0 was set according to an

estimate of the geometric mean of the luminance over the

corresponding input images. The parameter a defining the slope of

the transfer function was set to 0.7 [8].

In the visual pathway of the fly the output signals of each

receptor is processed by lamina monopolar cells (LMCs) located in the

first optic ganglion. To mimic the temporal band-pass-like

response characteristics of the LMCs [29], a temporal band-pass

filter function was included in the input stage. The transfer

function was implemented via serially aligned recursive first-order

low-pass and high-pass filters with the iterative approximation

lp xtð Þ~
1

t
xt{xt{1ð Þzlp xt{1ð Þ ð3Þ

for the low-pass filter and

hp xtð Þ~xt{lp xtð Þ ð4Þ

for the high-pass filter, respectively. The high-pass filter time-

constant tH was set to 400 ms and the low-pass filter time-constant

tL to 8 ms [8].

Correlator stage. Elementary motion detection in the fly

visual system is assumed to take place primarily in the medulla

[23]. Motion detection can be modelled based on the

multiplication of the delayed signal of one receptive unit with

the un-delayed signal originating from a neighboring unit [3–

5,30]. In our model EMDs only interactions between nearest

neighbors in the ommatidial array are taken into account. The

delay operator tlp in each half-detector was modelled by a

temporal first-order low-pass filter with a time-constant tlp of

40 ms [31].

Integration stage. The integration of EMD output signals is

assumed to be performed by LPTCs in the lobula plate of the fly.

The dendrites of LPTCs cover wide areas of the lobula plate [4].

Dendritic integration of LPTCs is modelled by integrating the

outputs of differently shaped arrays of EMDs with horizontal

preferred direction. The integration is not linear, but is

accomplished according to physiological findings on the basis of

a gain control mechanism [13]. This mechanism normalizes the

spatial sum of half-wave rectified EMD inputs for different

stimulus extents as an effect of synaptically varied and constant

leak membrane conductances. The interaction of excitatory and

inhibitory signals results in the strongly directional LPTC response

integrating weakly directional EMD outputs. The response of the
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integrated EMD arrays of all model variants are given by

Z~
XPz

ij Ez{P{
ij E{

Pz
ij zP{

ij zG0

ð5Þ

where Z is the cell response and E + and E2 the depolarizing and

hyperpolarizing reversal potentials. It is supposed that depolarizing

and hyperpolarizing classes of inputs correspond to the outputs P +

and P2 of complementary pairs of half-detectors. The index i

(i = 1...n) designate the principal directions with which EMDs are

aligned and j ( j = 1...m) indicate the position of the EMDs within

the receptive field area of a tangential cell. G0 describes the fixed

membrane leak conductance. For reasons of simplicity E+ and E2

and G0 were set to 1 resulting in

Z~

P
Pz

ij {
P

P{
ijP

Pz
ij {

P
P{

ij z1
ð6Þ

in order to simulate the membrane potential Z in the model.

Estimation of an HSE cell receptive field. The receptive

fields of HSE cells cover regions of up to approx. 120u in the

azimuth and 40u in the elevation of the fly’s eye [17,18]. However,

the sensitivity distribution within the receptive field of the HSE cell

is not constant. Rather, the sensitivity declines dramatically

towards the edges of the receptive field. Different local sensitivity

distributions correspond to different weightings of EMD outputs

during summation by the LPTC. The receptive field of a HS cell

was estimated by weighting the EMD outputs P +
i, j and P2

i, j with a

factor w using a two-dimensional Gaussian filter function of the

form.

wi, j~exp {
h{hc

selev

� �2
 !

� exp {
Q{Qc

saz

� �2
 !

, ð7Þ

where Qc ( = 215u) represents the azimuth and hc ( = 2u) the

elevation of the center of the receptive field. The vertical extent of

the receptive field is determined by selev which was set to 35u and

the horizontal extent given by saz was set to 120u for (h–hc).0 (i.e.

in the lateral part of the receptive field) and 25u (h–hc),0 (i.e. in

the frontal region of the receptive field). Zero degree corresponds

to the frontal equatorial direction. Receptive field data was

estimated according to [19].

The different model variants
Basic EMD model (Fig.1A). The basic EMD model consists

of the computational elements common to all tested model

variants as described above without further elaborations.

Adaptive EMD model (Fig.1B). When LPTCs are stimulated

by an abrupt onset of constant motion, transient response

oscillations can be observed [32,15,33]. The values experimentally

determined for the duration of these oscillations in different

adaptive states of LPTCs differ from those in EMD models with

only one delay filter. To resolve this problem, the basic EMD model

was extended by inserting a high-pass filter in the cross-arms of

the correlator stage (Fig. 1B, [14]). By dynamically adjusting the

high-pass filter time-constant according to the low-pass output of

the contralateral arm of the EMD, the authors additionally

implemented a mechanism for adaptation. Via this extension the

influence of the high- and the low-pass filter on various response

properties of the adaptive EMD model decouple in such a way that

the shortening of the high-pass filter time-constant strongly affects

the transient response oscillations of the step response while having

small influence on the steady-state velocity tuning [14]. The

adaptive EMD model is implemented via the extension of the

correlator stage of the basic EMD model with a first order high-pass

filter (see transfer function 3) in the cross-arms of the EMD. The

time-constant of the high-pass filter th is adjusted over time

according to

Dt

Dth

~{ th{minthð Þ � Sz maxth{thð Þ � K , ð8Þ

where S = lp(|L’|) represents the rate of change of the

corresponding low-pass signal (tS = 500 ms). L’ is the first

derivative of the low-pass filtered luminance signal. minth and

maxth define the range in which th is adaptive and K a constant

relaxation factor. K and S define the speed of adaptation

proportional to the position of th in the range defined by minth

and maxth. The modelling results were obtained for maxth =

500 ms and minth = 0 ms. The relaxation constant K was set to

0.1 kHz [14].

EMD model with contrast saturation (Fig.1C). Insect

EMDs show a saturating contrast response curve, which can be

accounted for most parsimoniously by introducing saturating non-

linearities [15]. Consequently the basic model was extended by

including saturating non-linearities in the input lines of the EMDs

(Fig. 1C).

Saturation of early vision signals (s) was modelled with

multiplication by a scaling factor a followed by application of a

hyperbolic tangent function of the form:

s xð Þ~tanh axð Þ ð9Þ

To quantify the degree of saturation, a was defined according to

a~1=Q75, where Q75 was the mean of the 3rd quartiles (75% of

data included) of all input signals after pre-processing by previous

model compartments.

EMD model with gain control in the input lines

(Fig.1D). When exposing the visual system of an intact animal

to strong motion stimuli, subsequently probed with small impulses

or steps in velocity, the response of a tangential cell is reduced

relative to that of the same cell before motion stimulation

[34,35,32]. This phenomenon – termed motion adaptation – is

implemented via a mechanism for controlling the gain in the input

lines of the EMDs in order to reduce contrast dependence (Fig. 1D,

[8]). The mean absolute deviation of each input signal is estimated

via full-wave rectification, followed by a linear, first-order low-pass

filter (transfer function see 2) with time-constant tA. The input

from each channel is divided by the mean absolute deviation, and

tA is a measure of the time scale of adaptation and was set to

200 ms.

Data acquisition
The response Z of the different model variants to horizontal

constant velocity motion of the panorama images was computed

for different sizes of EMD arrays. Image motion was performed for

t = 12 s in preferred direction with an angular velocity v = 60u/s,

resulting in two 360u horizontal image rotations. v was set to the

velocity response optimum of the EMD model according to [8].

This parametrization additionally comprised a good trade-off

between stimulation duration and computing time. The sizes of

EMD arrays (m-by-n) were adjusted by the number of correlator

outputs P + and P2 included horizontally and vertically in the

computation. To exclude transient effects at the onset of motion
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and thus to take only non-transient responses into account, the

initial 6 s of stimulation time (i.e. the first 360u rotation of the

input dataset) were discarded.
Data analysis Normalization. To compare the simulated

responses of the different models variants, their output was

normalized in the form of

Nt~Zt
1

Z
ð10Þ

where Nt represents the normalized cell output at time t, Z is the

mean cell response over time.
Standard deviation. The influence of different receptive

field sizes on pattern-dependent modulations in the normalized

response was quantified by computing the standard deviation s

from the mean response according to

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tmax

Xtmax

t~1

Nm,n
t {N

� �2

vuut , ð11Þ

where t represents time and Nm,n is defined as the normalized cell

response with a receptive field size of m-by-n. N is the cell response

with a receptive field comprising all receptive channels,

corresponding to the integration of the full input image set at

each time step.

Root mean square contrast. To estimate the global contrast

of the input panoramas, the root mean square (RMS) contrast c Ið Þ
was calculated by dividing the standard deviation s Ið Þ of

luminance values by the global luminance mean Ið Þ of each

image I :

c Ið Þ~ s Ið Þ
I

ð12Þ
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