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Abstract: During the last few decades, it has been established that messenger ribonucleic acid
(mRNA) transcription does not inevitably lead to protein translation, but there are numerous pro-
cesses involved in post-transcriptional regulation, which is a continuously developing field of
research. MicroRNAs (miRNAs) are a group of small non-coding RNAs, which negatively regulate
protein expression and are implicated in several physiological and pathological mechanisms. Aber-
rant expression of miRNAs triggers dysregulation of multiple cellular processes involved in innate
and adaptive immune responses. For many years, it was thought that miRNAs acted only within the
cell in which they were synthesised, but, recently, they have been found outside cells bound to lipids
and proteins, or enclosed in extracellular vesicles, namely exosomes. They can circulate throughout
the body, transferring information between cells and altering gene expression in the recipient cells,
as they can fuse with and be internalised by the recipient cells. Numerous studies on miRNAs
have been conducted in order to identify possible biomarkers that can be used in the diagnosis of
periodontal disease. However, as therapeutic agents, single miRNAs can target several genes and
influence multiple regulatory networks. The aim of this review was to examine the molecular role
of miRNAs and exosomes in the pathophysiology of periodontal disease and to evaluate possible
clinical and future implications for a personalised therapeutical approach.
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1. Introduction

For many years, it was simplistically assumed that biological information was trans-
ferred from DNA to messenger RNA (mRNA) and proteins in a linear and sequential
manner. This concept was defined as the ‘central dogma of molecular biology’ and was
introduced by Crick in 1958 [1]. Today, it is clear that mRNA transcription does not
inevitably lead to protein translation, but there are numerous processes involved in post-
transcriptional regulation [2], which is a continuously developing field of research. A
prominent role in this context is attributed to epigenetic events, which induce changes
in gene expression patterns without altering the DNA sequence [3]. These include DNA
methylation, histone modification, chromatin remodelling and microRNA (miRNA) in-
terference [4,5]. Epigenetic mechanisms play an important role in chronic inflammatory
conditions, as observed in several diseases including cardiovascular disease, Alzheimer’s
disease, rheumatoid arthritis and periodontal disease. In periodontal disease in particular,
it has been observed that epigenetic alterations promote microbial persistence, creating a
microenvironment more favourable to microbial insults. This causes oral pathogens to in-
duce long-lasting interference with the host genome, promoting the onset and development
of the disease [6].
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MiRNAs are short, non-coding, single-stranded RNA sequences that induce post-
transcriptional gene silencing. They consist of 18–22 nucleotides, which bind to comple-
mentary sequences in the coding or 3’ untranslated region of target messenger RNAs,
blocking translation or inducing degradation of target mRNAs [7] (Figure 1). More than
850 mature miRNA sequences have been identified in humans and, although this represents
less than 2% of human genes, 30% of mRNAs are predicted to be targeted by miRNAs [8].
Scientific evidence suggests that inhibition of protein synthesis by miRNAs is implicated in
several physiological and pathological mechanisms [8]. Indeed, it has been observed that
aberrant expression of miRNAs leads to dysregulation of the cellular responses involved
in innate and adaptive immune responses, contributing to the development of chronic
inflammatory diseases and cancer [9]. Periodontal disease is associated with the host’s
immune and inflammatory response induced by pathogenic bacteria, which leads to the de-
struction of periodontal tissues, with loss of the connective tissue and bone supporting the
teeth [10]. The severity and speed of disease progression depend on the dynamic balance
of interaction between changes in the oral microbiota and the host’s immune-inflammatory
response [11]. The host response to oral bacteria implicated in the development of peri-
odontitis consists of two distinct but interconnected lines of defence: Innate immunity and
adaptive immunity [10]. MiRNA regulates the function of neutrophils and their migration
from blood capillaries into inflamed tissues by regulating both their adhesion and the
stability of chemokine mRNAs [10,12]. It is currently believed that miRNAs may play a
role in the pathogenesis of periodontitis, as it has been observed that their dysregulation
can be induced by certain bacterial components that are part of the oral bacterial plaque.
The action of miRNAs causes the innate and adaptive immune systems to be ineffective
in counteracting microbial alteration or to develop an excessive catabolic response [13].
Substantial changes in cellular miRNA levels in diseased tissues compared to healthy ones
have been described in several studies. This has been observed in periodontal disease,
cardiovascular disease and Alzheimer’s disease [14–16]. Therefore, the resulting miRNA
profiles have great potential for both diagnostic and prognostic purposes for diseased
tissues, including in periodontal disease [13].

For many years, it was thought that miRNAs only acted within the cell in which they
were synthesised. However, recently, miRNAs have been found outside cells, bound to
lipids and proteins or enclosed in extracellular vesicles, namely exosomes. Exosomes are
small, 40–130 nm lipid vesicles (bubble-like structures) of endosomal origin used by cells
to export material to the space outside the cells [17]. Exosomes containing miRNAs can
circulate throughout the body, transferring information between cells and altering gene
expression in recipient cells, as they can fuse with and be internalised by recipient cells.
Exosomes provide a mechanism for cells to communicate with each other. The critical
involvement of exosomes in different types of diseases may clarify potential mechanisms
of disease processes [17,18]. Exosomes have been observed to play a role in the regulation
of inflammatory, immune and tumour diseases of the oral cavity and beyond, such as
rheumatoid arthritis, Sjogren’s syndrome, systemic lupus erythematosus, periodontitis and
squamous cell carcinoma of the oral cavity [19]. Therefore, exosomes have captured the
interest of scientists, as they could have clinical applications in tissue regeneration, targeted
therapy and biomarker research [20,21].

The aim of this review is to examine the role of exosomes and miRNA in periodontitis
pathophysiology, and assessments of their clinical potential are discussed in detail.



Int. J. Mol. Sci. 2021, 22, 5456 3 of 17Int. J. Mol. Sci. 2021, 22, 5456 3 of 18 
 

 

 
Figure 1. miRNA and inhibiting gene expression changed the concept of the ‘central dogma of 
molecular biology’ [22]. 

2. MiRNA, Molecular Signalling and Periodontal Disease 
For years, bacterial exposure has been regarded as a prerequisite in periodontal in-

flammation, where microbial biofilm on the enamel surface and in the gingival sulcus in-
duces an immune response of the periodontium [23]. It is now known that bacterial expo-
sure is essential to initiate periodontal disease, but the host response determines the dis-
ease phenotype [24]. Epigenetic variations, including miRNAs, and genetic polymor-
phisms can alter innate or adaptive immune system responses, inducing variations in in-
dividual responses, modulation of clinical expression of inflammation and different ther-
apeutic responses. Such genetic and epigenetic influences may classify individuals at high 
risk of periodontal disease progression [25]. It is known that the host's periodontal inflam-
matory response has protective and destructive elements that pathogens can alter.  

Recently, it has been described how Porphyromonas gingivalis (P. gingivalis), a key 
pathogen in periodontal disease, manages to evade both innate and adaptive immune re-
sponses, facilitating its survival and colonisation within the periodontal pocket [26]. A 
recent study has shown that the formation of miRNA-584 is induced by P. gingivalis lipol-
ysaccharides (LPS). This miRNA, produced by bacterial induction, causes upregulation of 
IL-8 within gingival epithelial cells by inducing the repression of the lactoferrin receptor, 
which, if not inhibited, would induce an antimicrobial effect [13,27,28].  

Host defences generally react to LPS present on the bacterial membrane, involving 
several protein molecules including tool-receptors (TLRs), nuclear factor-kappaβ (NF-kβ) 
and so on. The downstream outcome of these activations is the release of cytokines and 
numerous other pro-inflammatory proteins [13]. Leukocyte migration from the blood-
stream into tissues is controlled by the expression of intercellular adhesion molecule-1 
(ICAM-1) and E-selectin, which are targets of the miRNA-31 and miRNA-17-3p, respec-
tively [15,29]. MiRNA-31 is downregulated while miR-17 is upregulated in the periodon-
tal tissue of periodontal patients [28].  

The role of miRNA-146 in periodontitis has been extensively investigated in several 
studies, because, in response to a bacterial stimulus, it appears to regulate TLR signalling 
negatively. In fact, once the pathogen has breached the host’s anatomical barriers, TLRs 
are recognised that activate immune responses [30]. By blocking this signalling process, 
miRNA 146 appears to favour bacteria’s pathogenic action (including periodontopathic 
bacteria). Furthermore, according to some studies, miRNA146 is often overexpressed in 
patients with generalised periodontitis compared to healthy control cases [31,32].  

Overexpression of this miRNA has been associated with decreasing numbers of cy-
tokines such as TNF-α and IL-1β and NF-κb; therefore, it is thought to prevent excessive 

Figure 1. miRNA and inhibiting gene expression changed the concept of the ‘central dogma of molecular biology’ [22].

2. MiRNA, Molecular Signalling and Periodontal Disease

For years, bacterial exposure has been regarded as a prerequisite in periodontal inflam-
mation, where microbial biofilm on the enamel surface and in the gingival sulcus induces
an immune response of the periodontium [23]. It is now known that bacterial exposure
is essential to initiate periodontal disease, but the host response determines the disease
phenotype [24]. Epigenetic variations, including miRNAs, and genetic polymorphisms
can alter innate or adaptive immune system responses, inducing variations in individual
responses, modulation of clinical expression of inflammation and different therapeutic
responses. Such genetic and epigenetic influences may classify individuals at high risk of
periodontal disease progression [25]. It is known that the host’s periodontal inflammatory
response has protective and destructive elements that pathogens can alter.

Recently, it has been described how Porphyromonas gingivalis (P. gingivalis), a key
pathogen in periodontal disease, manages to evade both innate and adaptive immune
responses, facilitating its survival and colonisation within the periodontal pocket [26].
A recent study has shown that the formation of miRNA-584 is induced by P. gingivalis
lipolysaccharides (LPS). This miRNA, produced by bacterial induction, causes upregulation
of IL-8 within gingival epithelial cells by inducing the repression of the lactoferrin receptor,
which, if not inhibited, would induce an antimicrobial effect [13,27,28].

Host defences generally react to LPS present on the bacterial membrane, involving
several protein molecules including tool-receptors (TLRs), nuclear factor-kappaβ (NF-kβ)
and so on. The downstream outcome of these activations is the release of cytokines and nu-
merous other pro-inflammatory proteins [13]. Leukocyte migration from the bloodstream
into tissues is controlled by the expression of intercellular adhesion molecule-1 (ICAM-1)
and E-selectin, which are targets of the miRNA-31 and miRNA-17-3p, respectively [15,29].
MiRNA-31 is downregulated while miR-17 is upregulated in the periodontal tissue of
periodontal patients [28].

The role of miRNA-146 in periodontitis has been extensively investigated in several
studies, because, in response to a bacterial stimulus, it appears to regulate TLR signalling
negatively. In fact, once the pathogen has breached the host’s anatomical barriers, TLRs
are recognised that activate immune responses [30]. By blocking this signalling process,
miRNA 146 appears to favour bacteria’s pathogenic action (including periodontopathic
bacteria). Furthermore, according to some studies, miRNA146 is often overexpressed in
patients with generalised periodontitis compared to healthy control cases [31,32].
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Overexpression of this miRNA has been associated with decreasing numbers of cy-
tokines such as TNF-α and IL-1β and NF-κb; therefore, it is thought to prevent excessive
tissue damage caused by a disproportionate response [31,33]. However, the literature is not
in agreement: in fact, some studies link high miRNA146 levels to the activation of NF-κb, a
transcription factor strongly associated with the release of pro-inflammatory molecules,
contrary to what was previously described [32]. Therefore, when miRNA146a increases,
TNF-α, IL-1β and IL-6 will decrease, inducing a change in the RANK/RANKL/OPG ratio
in favour of osteoclastogenesis [34]. This would explain the destruction of alveolar bone tis-
sue induced by the periodontal disease. In agreement with the above findings, Motedayyen
et al. found 32.6-fold higher levels of miRNA-146 in tissues with periodontal disease com-
pared to healthy subjects. They also reported a positive association between miRNA146
expression and increased probing depth [34]. Furthermore, the same authors associated
MiRNA146a with low levels of EGF (epidermal growth factor) and transforming growth
factor-beta (TGFβ) [34]. As both have a primordial role in regulating cell proliferation
and survival (especially epithelial), their downregulation, mediated by MiRNA146a, could
alter healing processes by promoting therapeutic failures. MiRNA-146a, miRNA-146b and
miRNA-155 play a role in regulating TLR release in inflammatory diseases.

In the study by Xie et al. [15], the expression levels of miRNA-146a and miRNA-146b
were found to be significantly higher in inflammatory tissues than in healthy controls.
In contrast, miRNA-155 expression levels were significantly reduced in inflamed tissues
compared to healthy controls [15]. However, previous studies showed that the expression
of miRNA-155 was upregulated in splenocytes, monocytes and macrophages of mice
treated with LPS or lipoprotein [35–37].

The activity of miRNA-200 also seems to be involved in the pathogenesis of periodon-
titis. Indeed, in a recent study, its activity in periodontitis was tested, both in vitro and in a
rat model, observing that overexpression of miRNA-200c significantly reduced interleukin
(IL)-6 and 8 and repressed the interferon-1-related developmental regulator (IFRD1) in
primary human gingival fibroblasts (HGF).

The rat model of periodontitis induced by an injection of LPS into the gingival sulcus of
the maxillary second molar (M2) investigated how mediators in the rat gingiva and alveolar
bone resorption responded to miRNA-200c treatment by local injection of miRNA-200
PEI-plasmid nanopolyses. Local injection of miRNA-200c significantly increased miRNA-
200c expression in the gingiva and reduced IL-6, IL-8, IFRD1 and the ratio of nuclear
factor receptor activator kappa-B ligand/osteoprotegerin. This study demonstrated that
local treatment with miRNA-200c effectively protected alveolar bone resorption in the
rat model of periodontitis, so miRNA-200c could serve as a unique means to prevent
periodontitis and associated bone loss [38]. Recently, in a Japanese study, microarrays
showed that miRNA-200b levels were increased in inflamed gums and reduced in healthy
gums [39]. Furthermore, it was seen that miRNA-200b/c have a regulatory effect on TLR4-
mediated signalling in macrophages. This will influence host immune responses to certain
periodontal pathogens [40].

MiRNA-21 is upregulated both in patients with periodontitis and in mice induced
with periodontitis. In a recent study, the role of miRNA-21 in periodontitis was tested
in macrophages challenged by the periodontitis pathogen P. gingivalis lipopolysaccha-
ride. MiRNA-21 expression is upregulated in macrophages stimulated by P. gingivalis
LPS. MiRNA-21 inhibits pro-inflammatory cytokine production by macrophages, whereas
miRNA-21 deficiency elevates pro-inflammatory cytokine production. Furthermore, the
absence of miRNA-21 promotes the activation of NF-Kb in cells stimulated by P. gingivalis
LPS. Therefore, miRNA21 has an anti-inflammatory function of miRNA-21 in vitro and
in vivo, indicating that miRNA-21 could be an interventional target for the control of
periodontitis [41].

Among the miRNAs overexpressed in periodontal tissue affected by disease is miRNA
let-7. Its expression increases following exposure to LPS from Aggregatibacter actinomycetem-
comitans (a typical periodontal pathogen), increasing the inhibition of TLR 4 synthesis
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and promoting bacterial aggression [42]. A 2018 study by Tiwari et al. hypothesised that
miR-let7 family members may play a role in the inhibition of angiogenesis through the up-
regulation of TSP-1. This would obviously have important pathological repercussions [43].
It has been shown that angiogenesis plays an essential role in maintaining periodontal
homeostasis. It is regulated by several growth factors and cytokines, including basic fi-
broblast growth factor (b-FGF), endoglin, platelet and endothelial cell adhesion molecules
(PECAM-1), vascular endothelial growth factor (VEGF), soluble intercellular adhesion
molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) [44].
MiRNA-let-7 is upregulated in the inflamed periodontal tissue of moderate-to-advanced
periodontitis patients [45].

In another study conducted in India in 2017, miRNA samples obtained from 100 sub-
jects with periodontitis and 100 periodontally healthy subjects were compared. Results
showed increased expression of miRNA-let7a and miRNA-21 in periodontopathic subjects.
Downregulated miRNAs included miRNA-125b and miRNA-100, which showed a 1.6-
fold reduction in periodontitis patients compared to healthy controls [46]. The levels of
miRNA-203 were also found to be reduced compared to healthy tissue, an observation that
fully agrees with their known anti-pluror function [28]. Interestingly, miRNA-203 activity
was correlated with keratinocytes, where it is an important regulator of wound-specific
cellular functions and the cytokine network associated with wound healing [10]. The
lower expression of miR-203 in periodontitis is consistent with increased angiogenesis in
periodontitis. In contrast, when its expression levels are normal, it targets vascular en-
dothelial growth factor alpha (VEGFA), inhibiting angiogenesis [8]. These findings would
suggest a protective role of miR-203 in chronic periodontitis and its potential to be used as
a healing-promoting therapeutic target.

MiRNA103, miRNA22 and miRNA106b have target genes related to inflammation
and bone metabolism (IL, PGE2, TNF, etc.). These miRNAs were found to be upregulated
in tissues with periodontal disease [28,47]. Another similar study by Xie et al. from
2011 [15] shows that there is a two-fold increase in 91 miRNAs in periodontopathic gum
sites compared to healthy gums and a decrease in another 34 miRNAs. Twelve of the
91 upregulated miRNAs, including miR-126-5p, miR-20a, miR-142-3p, miR-19a, let-7f,
miR-203, miR-17, miR-223, miR-146a, miR-146b, miR-155 and miR-205, are associated with
inflammatory processes, as reported by TargetScan and miRNA.org—databases storing all
miRNA data [15].

Luan et al. found that miRNAs upregulated due to periodontal disease in both
humans and mice included miRNA-15a, miRNA-29b, miRNA-125a, miRNA-146a, miRNA-
148/148a and miRNA-223, while miRNA-92 was downregulated [10]. It has also been
found that there are no major qualitative differences in miRNA expression in chronic
or aggressive periodontitis [48]. Different microarray studies have demonstrated the
over-regulation of miRNA-223 in gingival tissue biopsies from patients with periodonti-
tis compared to healthy gingiva [15,28,39]. Furthermore, Tomofuji et al. confirmed that
miRNA-223 was one of the miRNAs overexpressed in the serum of a periodontitis mouse
model. miRNA-223 works as a principal regulator of innate immunity and, under normal
conditions, participates in tissue homeostasis [49]. It has been found to be dysregulated
in many inflammation-related disorders. miRNA-223 is also involved in the differentia-
tion of several immune cells, particularly macrophages, by influencing their activation
patterns [50]. Therefore, miRNA-223 plays an essential role in the early stages of infection
and inflammation. Periodontitis is characterised by an exaggerated immune response to
periodontal pathogens [51], where neutrophils are highly predominant and their hyperacti-
vation is thought to be induced by miRNA-223 [52]. Numerous studies have documented
the potential function of miRNA-223 expression in controlling osteoblast differentiation,
where its involvement, along with miRNA-214 and miRNA-338, suppressed osteogenesis
by supporting osteoblast apoptosis and stimulating osteoclast differentiation by targeting
nuclear factor 1-A (NF1-A). Therefore, increased levels of miRNA-223 in inflamed gingival
tissue play a role in alveolar bone loss, which is an emblem of periodontitis [53].
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A summary of miRNAs relevant to the pathogenesis of the periodontal disease is
given in Table 1.

Table 1. Summary of relevant miRNAs in periodontal disease.

miRNAs miRNA in Diseased Tissues Functions Reference

miRNA-548 Upregulation Upregulation of IL-8 within the periodontal pocket [26,27]

miRNA-31 Upregulation Regulates the expression of ICAM-1, which controls the
migration of leukocytes from the bloodstream to the tissues [29]

miRNA-17 Upregulation Regulates the expression of E- Selectin, which controls the
migration of leukocytes from the bloodstream to the tissues [15]

miRNA146 Upregulation Negatively regulates the TLR signalling pathway [30,31]

miRNA-146a Upregulation Negatively regulates TLR signalling; reduced expression of
NF-κb, TNFα, IL-1β and IL-6, which induce osteoclastogenesis [54]

miRNA-146b Upregulation Negatively regulates TLR signalling [54]
miRNA-155 Downregulation Regulates TLR release in inflamed tissues [54]
miRNA-200 Upregulation Reduces the release of IL-6, IL-8, IFRD1 and NF-κb [38]
miRNA-200c Upregulation Regulatory effect on TLR4-mediated signalling in macrophages [39]
miRNA-21 Upregulation Decreases NF-κb activation [41]

miRNA-let-7 Upregulation Inhibits TLR4 [42]
miRNA-203 Downregulation Promotes neo-angiogenesis and regulates innate immunity [10,28]
miRNA-223 Upregulation Plays a role in alveolar bone loss [48,50]

Therefore, the expression of some miRNAs is associated with P. gingivalis itself [55],
while the expression of others, such as miRNA-128, miRNA-146, miRNA-203 and miRNA584,
is derived from the host’s response to infection. Interestingly, P. gingivalis-associated miR-
NAs can influence the host’s innate immune responses (directed against it), whereas its LPS
can alter and reduce miRNA–mRNA interactions of the infected organism. These miRNA-
dependent effects may complement other forms of deception exerted by P. gingivalis to
attempt to subvert the host’s innate and adaptive immune responses [13].

3. MiRNA as a Possible Link between Periodontal Disease and Various
Systemic Disorders

The role of the oral microbiota and its immune subversion strategies in supporting
local and systemic inflammation is well established [56]. The various deleterious effects
of periodontitis include bacteraemia, endotoxemia and low-grade systemic inflammation,
which have been associated with systemic diseases such as diabetes mellitus and coronary
artery disease [57]. Indeed, a disproportionate hyperinflammatory response leads to
chronic non-resolving inflammation in which epigenetic factors, oxidative stress and
cytokines play an important role [52].

The literature now recognises the link between cardiovascular disease and periodontal
disease [58,59]. However, the pathophysiological links between these two diseases are still
not entirely clear. MiRNAs, as seen above, are currently implicated in the regulation of
numerous cellular processes, including inflammatory disorders, and can be considered as
the key link between cardiac and periodontal disorders. However, the literature on this
subject is sparse, with very few recent studies. Considerable interest has been expressed in
a possible correlation between miRNA146, periodontal disease and cardiovascular disor-
ders [36]. The release of miRNA-146a leads to a reduction in adaptor proteins involved in
inflammatory responses such as TRAF6 and IRAK1 and their associated pro-inflammatory
cytokines. This reduction will reduce the NF-κB cascade, which leads to the formation
of pro-inflammatory cytokines [36]. Thus, miRNA-146a paradoxically acts as a negative
regulator of the inflammatory process [36]. Despite these properties, miRNA-146a has
been associated with disorders with inflammatory pathogenesis, such as atherosclerosis,
diabetes and periodontitis [30,60]. In a recent case–control study, Bagavad et al. analysed
and studied mir-146a in subjects with acute coronary syndrome (ACS) and in patients with
and without chronic periodontal disease (CP). Patients were divided into four groups, each
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consisting of 66 patients: group I with patients with ACS but without CP, group II with
patients with ACS and CP, group III containing patients with only periodontitis and, finally,
a control group of cardiac and periodontally healthy subjects. The results suggested that
miR-146a was often significantly associated with subjects in group II (patients with acute
coronary syndrome and periodontal disease) [30]. The study also found that circulating
miR-146a levels were upregulated in all groups of diseased subjects (groups I, II and III)
and downregulated in the healthy control group (group IV) [30]. The same study hypothe-
sised that these small ribonucleic acids could lead to the onset of inflammatory disorders
in both the heart and periodontal regions by acting against th1/th2 cells and shifting
the balance towards the th1 group [30]. In more recent study, miRNA-146a levels were
quantified in subgingival plaque samples and then correlated with periodontal and cardiac
parameters in patients with chronic periodontitis (CP) with and without coronary heart
disease (CHD) [61]. The periodontal parameters examined were plaque index, bleeding
on probing, pocket depth on probing and clinical attachment levels, while the cardiac
parameters taken into account were total cholesterol, high-density lipoprotein, low-density
lipoprotein, triglyceride levels and blood pressure (systolic and diastolic). Higher miRNA-
146a levels were found in the CP + CHD group and a positive correlation was shown with
index body mass and periodontal and cardiac parameters. Thus, it was further confirmed
that miR-NA-146a is involved in the pathogenesis of both periodontitis and coronary heart
disease [61].

A bidirectional relationship between diabetes and periodontitis has been demon-
strated for years. In fact, it has emerged that periodontitis is a very common complication
in patients with diabetes. In particular, periodontitis has emerged as the ’sixth complication’
of diabetes, after retinopathy, neuropathy, nephropathy, macrovascular and microvascular
disease [62]. It has been observed that the lower the glycaemic control, the higher the risk
of developing periodontitis [63]. The pathogenic processes linking the two diseases are
not well defined, but it is believed that the over-regulated inflammation resulting from
each condition adversely affects the other. Indeed, in diabetic patients, there is increased
deposition of advanced glycation end products (AGEs) in periodontal tissues, and inter-
actions between AGEs and their receptor on macrophages (RAGE) lead to activation of
the local immune system, resulting in increased cytokine secretion, oxidative stress and
bone resorption [64]. In contrast, the reverse relationship, or the impact of periodontitis on
diabetes, is explained by the production and release of inflammatory cytokines and other
mediators produced locally in inflamed periodontal tissues following bacterial stimulation,
passing into the circulation and contributing to over-regulated systemic inflammation.
This leads to impaired insulin signalling and insulin resistance, resulting in the exacer-
bation of diabetes [65]. Therefore, emerging evidence suggests that the interrelationship
between diabetes mellitus and periodontal disease, based on the intracellular level, reflects
a vicious circle among oxidative stress and inflammation [66,67]. Epigenetics could be
one of the main players in developing multifactorial diseases such as diabetes mellitus
and periodontal disease, and miRNAs could act as epigenetic regulators [68]. miRNA-
146a and miRNA-155, which are co-induced in many cell types responding to microbial
lipopolysaccharide, facilitate negative feedback control of NFκB target genes encoding
various mediators of inflammation [69] and are involved in oxidative stress by targeting
superoxide dismutase (SOD) [70]. Overexpression of miRNA146a and miRNA155 was
found in the crevicular fluid of diabetic and non-diabetic patients with chronic periodonti-
tis. These patients underwent non-surgical therapy, and in both groups, regardless of the
diabetes factor, a decrease in the expression of these miRNAs was observed. Furthermore,
at baseline, it was seen that miRNA146a expression levels were higher in the crevicular
fluid of diabetic patients with periodontitis than in patients with periodontitis alone [60].
The levels of miRNA-223, miRNA-203 and miRNA-200b were assessed in the gingival
crevicular fluid and serum of patients with chronic periodontitis, chronic periodontitis
and type 2 diabetes and healthy controls. The study indicated a significant increase in
miRNA-223 expression associated with a significant positive correlation with TNF-α and
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clinical parameters in the chronic periodontitis groups with and without diabetes compared
to healthy controls, associating miRNA-223 with inflammation, neutrophil recruitment
and the pathogenesis of chronic periodontitis [71]. In the study conducted by Chen, it was
indicated that TNF-α participates in the pathogenesis of periodontitis [72]. A significantly
lower expression of miR-203 was found in chronic periodontitis groups with and without
diabetes compared to healthy controls. Therefore, significantly lower expression of miR-203
in the patient groups and a significant negative correlation with TNF-α explain decreased
healing, suggesting its impact on irreversible damage caused by the disease [71]. MiRNA-
200b showed overexpression in both serum and gingival crevicular fluid of both patient
groups with respect a control group [71], results that agree with other works [39,73]. In
contrast, several studies have shown dysregulation of miR-223 in type 2 diabetes, induced
by advanced glycation end products, which consequently defines apoptosis of osteoblasts
and endothelial cells in diabetes mellitus [53]. Furthermore, it has been reported that some
miRNAs, including miR-223, have been deregulated years prior to the manifestation of
type 2 diabetes [74].

Obesity, a chronic inflammatory condition, has a major impact on the pathophysiology
of periodontal disease. Indeed, several studies have reported that obesity is associated
with a higher prevalence and severity of periodontal disease [75,76]. This relationship
has been associated with the exposure of macrophages to a hyperlipidaemic environment,
which alters their functional capacities, including decreased cytokine production [77,78].
In a study, differences in the miRNA expression profiles of gingival tissue in periodontitis
when obesity was present were evaluated, and miRNA microarray profiling of gingival
tissue samples revealed differential miRNA expression in obese individuals with peri-
odontitis compared to normal-weight participants. Among the 13 miRNAs upregulated
and 22 miRNAs downregulated in the presence of obesity, the expression of miR-200b-5p
was 1.6-fold. Gingival tissue biopsies from patients with periodontal disease also showed
an inverse correlation between miR-200b-5p expression and the mRNA expression of its
target genes, namely ZEB1, ZEB2, GATA2 and KDR. In detail, ZEB2 and GATA2 were
statistically significant and ZEB1 and KDR were close to significance [71]. These genes
play a central role in pathways involved in the re-epithelialisation of gingival wounds, an
important process in periodontal regeneration and restoration of tissue integrity, which
affects treatment outcome [79]. Upregulation of miRNA-200b/c alters TLR4 signalling
in macrophages, affecting innate host defences against periodontal pathogens [40], while
miR-200c-5p was found to be increased in patients with inflammatory bowel disease [80].
There are no other studies reporting miR-200b expression in the gingival tissue of obesity
patients. In experimental models of obesity, diet-induced liver damage was correlated with
increased levels of miRNA-200b in mouse plasma [81] and in mouse and rat liver tissue [82].
One of the known factors that regulates the hepatic expression of miRNA-200b [83] and
the regenerative capacity of the periodontium [60] is the metabolic hormone leptin. The
hormone leptin negatively interferes with periodontal ligament cells’ regenerative capacity,
suggesting leptin as a pathomechanical link between obesity and impaired periodontal
healing [84]. Angiogenesis plays a key role in periodontitis by facilitating the transport of
oxygen and nutrients to the site of injury and the removal of cellular debris from inflamed
tissue [85]. Under-regulation of endothelial miR-200b induces over-regulation of the activ-
ity of the transcription factor GATA2. This regulates the promoters of many endothelial
genes and thus positively regulates angiogenetic activity [86]. In obese individuals, upreg-
ulation of miR-200b results in decreased expression of GATA2 and KDR, both of which
play a central role in the angiogenic response and wound healing.

Table 2 presents a summary of the miRNAs implicated in periodontal disease and
related to other systemic diseases, heart disease, obesity and diabetes. It briefly summarises
the above.
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Table 2. miRNA profiles in periodontal disease and systemic disease.

mRNAs Correlation with
Systemic Disease Activity Expression References

mRNA-146a Heart disease

Chronic inflammatory disorders,
both cardiac and periodontal

diseases. Acts against Th1 and
Th2 cells, shifting the balance

towards Th1.

Upregulation in tissues of
patient with periodontal and

heart diseases
[30]

mRNA-let7 Heart disease Inhibition of angiogenesis
through up-regulation of TSP-1.

Upregulation in tissues of
patient with periodontal and

heart diseases.
[43,45]

mRNA-146 Diabetes

Negative feedback control of
NFκB target genes and are

involved in oxidative stress by
targeting SOD.

Overexpression in crevicular
fluid of diabetic patients with

periodontitis.
[60]

mRNA-155 Diabetes

Negative feedback control of
NFκB target genes and are

involved in oxidative stress by
targeting SOD.

Overexpression in crevicular
fluid of diabetic patients with

periodontitis.
[60]

mRNA-223 Diabetes Increased expression of TNF-α.

Upregulation in tissue,
crevicular fluid and serum in

patients with diabetes and
periodontitis.

[71]

mRNA-203 Diabetes Reduced expression of TNF-α.

Downregulation in tissue,
crevicular fluid and serum in

patients with diabetes and
periodontitis

[71]

mRNA-200-3p Diabetes Increased expression of TNF-α.

Upregulation in tissue,
crevicular fluid and serum in

patients with diabetes and
periodontitis.

[71]

mRNA-200b-5p Obesity

Reduced expression of its target
genes ZEB1, ZEB2, GATA2 and

KDR involved in
re-epithelisation.

Upregulation in tissue of obese
patients with periodontitis. [73]

mRNA-200b/c Obesity Alters TLR4 signalling in
macrophages.

Upregulation in tissue of obese
patients with periodontitis. [40]

4. Exosomes and Periodontal Disease

Exosomes are lipid vesicles enriched in specific miRNAs and other molecules (Figure 2).
It is known that exosomes play the role of intracellular and extracellular transporters.
Successful isolation of exosomes has been demonstrated by the detection of the exosome
markers, tetraspanins, CD9, CD63, Hsp70 and CD81. Tetraspanins can interact with in-
tegrins, mediating cell adhesion to the extracellular matrix and facilitating intracellular
transport (Figure 3). [87]. In recent years, exosomes have come to represent a new signalling
paradigm to mediate intercellular communication because of their capacity to exchange
components, including proteins, nucleic acids and lipids [88,89]. In recent years, the role of
exosomes in tumour development has been much discussed. Tumour-derived exosomes are
of great interest as they are implicated in the promotion of tumour proliferation, migration
capacity, invasion capacity and immune suppression in the tumour microenvironment [90].
Exosomes have been shown to play a role in the regulation of inflammatory and immune
diseases, such as rheumatoid arthritis, Sjogren’s syndrome and systemic lupus erythemato-
sus [91]. Only recently has research been showing interest in the possible pathogenetic
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relationship between periodontitis and exosomes, as recent evidence has highlighted their
potential in the diagnostic and therapeutic fields [19].
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Figure 2. Main constituents of molecules included in exosomes. Many proteins are common among all
exosomes regardless of their maternal cell types, including tetraspanins, fotillin, heat shock proteins
(HSP70, HSP90), MHC I, GTPases (Rab, RAL) and endosome-associated proteins (Alix, Tsg101).
Exosomes are also enriched in lipid rafts on their surfaces, including fotillin, LBPA, cholesterol,
sphingomylein and nucleic acids in the lumen, including DNAs (mtDNA, ssDNA, dsDNA) and
RNAs (mRNA, miRNA, rRNA and tRNA) [19].

Periodontal ligament fibroblasts (PDLFs) are the main cell population involved in
the early stages of periodontal inflammation [92]. After stimulation with lipopolysac-
charide (LPS), exosomes derived from human PDLFs slightly increase the expression of
IL-6 and TNF-α in osteoblasts and, at the same time, significantly inhibit the expression
of osteogenesis-related elements (including collagen-I and osteoprotegerin) by reducing
alkaline phosphatase activity [93]. Compared to exosomes extracted from periodontal
ligament stem cells normal (PDLSCs), exosomes derived from LPS-stimulated PDLSCs
have a higher amount of miRNA-155 and its downstream target Sirtuin-1. This results in
reduced expression of T-helper cells 17 (Th17) and increased expression of Treg (regulatory
T cells), reducing inflammation through the Th17/Treg/miRNA-155-5p/Sirtuin-1 regu-
latory network [94]. A recent publication on miRNAs as a salivary biomarker conducted
by Fujimori’s group indicated that out of 84 miRNAs profiled, only hsa-miRNA-381-3p
showed a significant difference between patients without periodontitis or with mild peri-
odontitis compared to the group with severe periodontitis. Confirming the above results,
quantitative real-time polymerase reaction (qPCR) showed no significant differences [95].
In a subsequent study, exosomal miRNA profiles were evaluated as possible biomarkers
for chronic periodontitis by analysing eight plasma and eight salivary–exosomal miRNA
samples. The results showed that plasma and salivary exosomes are a reliable subject for
miRNA studies. In fact, the miRNA profile detected in plasma and serum exosomes and
their expression is concordant with the profile of miRNAs found in tissue and crevicular
fluid in various studies in the literature [28,96]. Furthermore, it appears that miRNA-let-7d,
miRNA-126-3p and miRNA-199a -3p, in exosomal plasma samples, may be reliable candi-
dates for the development of possible biomarkers of periodontitis, whereas miR-125a-3p
could be a possible biomarker of periodontitis in lysosomal saliva samples. In conclusion,
these miRNAs are reliable candidates for the development of periodontitis biomarkers as
there were significant differences in their expression, with good discriminatory value and a
strong correlation with the mean value of periodontal pocket depth (PPD) [97].
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Figure 3. Schematic representation of exosome biogenesis, release and intercellular communication. Exosomes originate
from an endocytic compartment. The inward budding of plasma membrane forms an early endosome. During maturation
of the early endosome, the inward budding of limited areas of the endosomal membrane to form intraluminal vesicles
(ILVs) produces multivesicular bodies (MVBs). MVBs face two fates, where some of them are delivered to lysosomes or
autophasomes for degradation, while others fuse with the plasma membrane, inducing the secretion of exosomes. During
the inward process of ILVs, many cytoplasmic components are encapsulated, such as proteins, lipids and nucleic materials,
so they represent a new signalling paradigm to interfere with cell-to-cell communication. Moreover, this intercellular signal
transmission might be mediated through three pathways, including endocytosis/internalisation, direct membrane fusion
and receptor–ligand interaction [19].

In recent years, the potential of using exosomes in bone and periodontal regeneration
has been demonstrated. In fact, the use of exosomes has been tested in the diagnosis of
early-stage lung cancer [98] and in several other diseases as a diagnostic tool [99]. Exosomes
can also be isolated in saliva, leading to significant advantages due to its non-invasive
nature, no risk of bleeding, good patient compliance, plasma-like content and ease of
collection [100]. However, only a limited amount of clinical data are currently available.
The use of exosomes has been investigated in organs after ischemia–reperfusion injury in
animal models, and exosomes have been shown to provide potent cardio protection [101].
This can be attributed to the heat shock protein HSP-70 and the activation of the toll-like
receptor TLR-4. It has been shown that in skin regeneration, exosomes have the ability to
modulate each stage of healing through the delivery of various molecules, such as mRNA
and miRNA, trophic factors and functional proteins [102]. Several studies have been
conducted on the role of exosomes in bone and periodontal regeneration. They indicated
an improvement in bone and periodontal regeneration, determined by the activation of the
Wnt/β-catenin pathway, which induces angiogenesis/vasculogenesis [103]. Furthermore, it
has been indicated that lysosomes induce the promotion of cell migration and proliferation,
playing a role in tissue regeneration [104]. Thus, exosomes, according to Wang et al., may
have pro- or anti-inflammatory effects, depending on the component transported [105].
In order to improve the usefulness of exosome applications in healing outcomes, future
studies should focus on exosome sources and conditions. Several studies have shown that
exosome therapy appears to improve bone and periodontal regeneration significantly. A
dose-related effect has also been observed; however, no study has compared the influence
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of the source of the exosomes on the promotion of tissue healing and bone/periodontal
regeneration, as revealed by a recent systematic review [106].

5. Clinical Potential and Future Perspective in Periodontal Disease

Multiple studies on miRNAs have been conducted to find possible biomarkers that
can be used in the diagnosis of periodontal disease [107]. Initially, studies were conducted
on gingival tissue, but, recently, interest has shifted to gingival crevicular fluid and saliva
as possible sources of miRNAs [108]. The reason that biofluids have been proposed as
excellent research sources for candidate miRNA biomarkers are as follows: the ease of
isolation and identification of miRNAs by quantitative polymerase chain reaction (qPCR);
the less invasive nature of collecting miRNA samples (saliva and gingival crevicular fluid
provide an opportunity for non-invasive testing); and the high stability of miRNAs in
various biofluids commonly used in analytical assays [109,110]. Several miRNAs have been
proposed as future biomarkers for PD. Among the most relevant is miRNA-21-3p, which
is related to the MAPK tumour signalling pathway, T-lymphocyte receptors, adhesion
molecules, etc. [33]. MiRNA-146 in association with miRNA-155 is a key regulator of the
immune system, promoting the expression of certain cytokines, such as tumour necrosis
factor-alpha (TNF α), IL-1 β, type I and type II, interferons (IFN) or RANKL. The expression
of both miRNAs is implicated in chronic inflammation [111]. Finally, miRNA-200 is related
to the mesenchymal–epithelial transition by regulating the expression of the transcription
factor ZEB-1 [112]. Currently, it is difficult to clinically determine a group of miRNAs as
biomarkers for periodontal disease, as the studies performed represent only first phase of
their study. Therefore, further studies are required.

Individual miRNAs can be used as therapeutic agents. They can target several genes
and influence multiple regulatory networks. Furthermore, a combination of miRNAs and
their antagonists can be used to regulate different members of the same signalling pathway.
For example, to limit bone resorption, some miRNAs could be used to restore the function
of other lost or under expressed miRNAs related to osteoblastogenesis or vice versa to
inhibit the function of other upregulated miRNAs related to osteoclast differentiation and
function. More than a dozen miRNA delivery systems have been developed in recent years,
mainly divided into viral and non-viral. Viral miRNA delivery systems rely on the action
of retroviruses, lentiviruses and adenoviruses; however, these systems induce a strong
immune response, which could reduce their effectiveness [113–115]. On the other hand,
non-viral approaches face the difficult challenge of having to transport miRNAs, or some
of their antagonists, across the cell membrane, preserving their structure en route to the
nucleus [115]. These non-viral miRNA delivery approaches include lipid-based systems
(such as liposomes) and polymer-based approaches, including polyethylenimine (PEI),
poly(lactic-co-glycolic acid) (PLGA) and poly(amidoamine) (PAMAM). Other recently de-
veloped miRNA carriers include gold, iron and silica-based nanoparticles [115–118], as well
as chitosan, protamine and collagen [115]. Munagala et al. used exosomes to encapsulate
chemotherapeutic and chemopreventive agents against lung cancer. They demonstrated,
in vivo, that functionalised exosomes have an anti-tumour effect [118]. In another study,
curcumin, combined with peptides, was placed inside exosomes and it was shown to have
a greater anti-inflammatory effect than conventional exosomes [119]. Therefore, the use of
exosomes seems to be a future therapy with potential clinical application in the treatment of
periodontal defects. Recently, it was observed that periodontal regeneration was mediated
by mesenchymal stem cells (MSCs), through the secretion of exosomes. In fact, collagen
sponges containing human MSCs-Exos were used to treat periodontal intra-bony defects
in rats. The results showed that intra-bony defects healed more efficiently than in control
rats with newly formed bone and periodontal ligament (PDL). Subsequent experiments
conducted on PDL cells showed that human MSC-Exos are rapidly taken up by PDL cells,
promoting the migration and proliferation of PDL cells. This occurs due to CD73 adenosine
receptor-mediated activation of the AKT and ERK signalling pathways [120]. Furthermore,
it has been observed that exosomes secreted by adipose-derived stem cells (ASCs-Exos)
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have a better therapeutic effect on ligature-induced periodontitis than ADSCs themselves,
as they result in a greater area of newly formed tissue [121].

6. Conclusions

The literature shows that miRNAs have high diagnostic, prognostic and therapeutic
potential, although we still need to refine our knowledge of their activity in periodontal
disease. However, the results are very encouraging, especially those aimed at finding
possible miRNAs as biomarkers in saliva and gingival crevicular fluid, as their collection
is non-invasive and easy to perform. Therefore, the diagnostic, prognostic and thera-
peutic methods of tissue, salivary and gingival crevicular fluid miRNAs seem feasible,
but standardised and precisely followed criteria and protocols need to be established to
obtain comparable and reproducible results. In the future, exosomes could be excellent
biomarkers due to their ability to accurately reflect disease pathogenesis and their easy
and wide availability in different types of body fluids (such as crevicular fluid and saliva)
and in body cells and tissues. As diagnostic and prognostic biomarkers of periodontal
disease, they may have enormous potential, but this is still an under-explored area that
requires further investigation. Studies investigating the role of miRNAs and exosomes as
possible therapeutic agents are also promising. Considerable results have been achieved
in tissue regeneration. However, their use as therapeutic agents still needs to be defined
and investigated.
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