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Presently, as one of the three types of muscles in the human body, smooth muscle carries out many biological activities.
Meanwhile, its abnormal development also leads to many diseases. Circular RNA, belonging to the noncoding RNA family, is
demonstrated to function importantly in various diseases including smooth muscle. Here, we assumed circFAT1(e2) probably
exhibited a primary role in vascular smooth muscle. Therefore, we conducted cell viability and cell apoptosis assay to validate
the effects of circFATI(e2) on vascular smooth muscle progression. Then, we supposed miR-298 was one target of
circFAT1(e2) and executed corresponding experiments to test this hypothesis. Dual-luciferase reporter assay indicated miR-298
could bind to circFAT1(e2) and then modulated MYB level, thus regulating smooth muscle progression. Subsequently, based
on the GSE41177 dataset, we identified 1982 differentially expressed genes (DEGs) in atrial fibrillation, and all DEGs were
upregulated, including MYB. Finally, enrichment analysis of upregulated genes indicated that they were related to endodermal
cell differentiation. The protein-protein interaction network revealed that EGFR, GNG2, and FPR2 were related to atrial
fibrillation. In conclusion, our data find that circFAT1(e2) sponges miR-298 and then regulates MYB expression, thus affecting
atrial fibrillation progression. Our findings provide a newly produced indicator and target for vascular smooth muscle

diagnosis and treatment.

1. Introduction

Smooth muscle is the nonstriated muscle tissue, is ubiqui-
tous in the walls of human arteries and veins, has male
and female reproductive tracts, and so on [1]. Although
the functional traits of smooth muscle in multiple organs
can be distinguished greatly, it can generally be divided into
two categories: multiunit and single-unit smooth muscle [2].
The abnormal expressions of smooth muscle in different tis-
sues can lead to leiomyoma, bronchial asthma, gallstones,
kidney and ureteral stones, and so on [3]. Leiomyoma
belongs to benign tumors of skin smooth muscle cells,
caused by abnormal proliferation of smooth muscles [4].
The treatment of leiomyomas is mainly surgical resection.
The tumor should be excised completely in case of high

recurrence [5]. Therefore, the latent mechanism of smooth
muscle is still vital to study.

MYB is a transcription factor that displays importance in
regulating hematopoietic cell proliferation and differentia-
tion. Its cellular counterpart is subsequently separated as c-
MYB. It is highly increased in the thymus, hematopoietic
cells, and nerve tissues and necessary for erythroid matura-
tion and T and B lymphocyte development. It is worth not-
ing that c-MYB is essential for human survival and deletion
of two alleles of this gene in an embryonic stem cell can
cause its death. Moreover, c-MYB also serves as a vital role
in the generation of vascular smooth muscle cells (VSMCs)
from embryonic stem cells (ESCs). ESCs give rise to progen-
itor cells that express vascular endothelial growth factor
receptor type-2 (VEGFR-2) and then give rise to VSMCs
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in a process involving c-MYB. c-MYB not only activates the
expression of VEGFR2 but also enables the ability of
VEGFR2" progenitor cells to differentiate into VSMCs.

In the last two decades, several proteomics studies have
revealed dysregulation of multiple genes can support malig-
nant transformation [6]. Circular RNA, a sort of naturally
occurring noncoding RNA, is highly expressed in abnor-
mally expressed smooth muscle [7]. Although the function
and mechanism of circular RNA are not well understood,
recent researches have revealed circRNA is probably consid-
ered as potential molecular indicators for the diagnosis and
treatment of numerous diseases [8]. Up to date, some break-
ing researches are focusing on the links between circRNAs
and cancers and finally arrive at solid conclusions. circRNA
regulates gene expression by affecting the transcription,
mRNA conversion, and translation of RNA binding proteins
and microRNA [9]. Some circRNAs regulate the expression
of messenger RNA (mRNA) by acting as a microRNA
(miRNA) sponge. In lung cancer, hsa_circRNA_101237 pro-
motes the expression of MAPKI1 through miRNA-490-3p
sponge, thereby affecting NSCLC as an important onco-
circRNA [10]. In hepatocellular carcinoma, circRNA-5692
inhibits the progression of hepatocellular carcinoma by
enhancing DAB2IP expression through sponge miR-328-
5p [11]. However, no reports on the association between cir-
cRNA and smooth muscle are shown.

Presently, circRNA is identified to display importance in
smooth muscle with next-generation sequencing methods
emerging, like RNA sequencing [12]. circRNA hsa_circ_
0132266 (circ_0132266) is abated in the peripheral blood
mononuclear cells (PBMCs) of smooth muscle patients and
can sponge miR-337-3p to suppress PML and then reduce
cell viability [13]. circFAT1(e2) is overexpressed in smooth
muscle cells and acts as a promoter to induce cell viability
and cell cycle, but retard cell apoptosis, compared to normal
cells [14]. Thus, it would be a promising field to study cir-
cRNA mechanisms in smooth muscle.

We here attempt to detect circFAT1(e2) functions in
vascular smooth muscle. CCK-8 assay and cell apoptosis
analysis are conducted to reveal the function of cir-
cFAT1(e2) in vascular smooth muscle. Our data reveal
miR-298 interplay with circFAT1(e2) and then affect down-
stream target MYB expression. Then, we identify differential
expression genes (DEGs) between patients with atrial fibril-
lation and normal people using dataset GSE41177. Finally,
GO, KEGG, and PPI analyses are conducted to illustrate
the potential mechanism of upregulated DEGs in atrial
fibrillation.

2. Materials and Methods

2.1. Dataset and Differential Expression Genes. The gene
expression dataset GSE41177 which included 16 left atria
junctions of patients with atrial fibrillation and 3 controls
was obtained in Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi). GEO is an inter-
national open repository of storage and free-used microar-
rays, second-generation sequencing, and high-throughput
functional genomic datasets with other forms. The limma
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package in R was employed for upregulated differential
expression genes (DEGs) identification between patients
with atrial fibrillation and normal people. The cut-off criteria
were FC > 1.5 and P < 0.001; FC stands for fold change.

2.2. Enrichment Analysis of Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway and Gene Ontology (GO) Term.
KEGG is a database for the comprehensive analysis of gene
functions based on networks of genes and molecules. GO
is a knowledgebase for annotating genes and their products
from the aspects of biological process (BP), cell component
(CC), and molecular function (MF). The Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) is
a systematic online tool providing a systematic set of func-
tional annotation information of genes and proteins, so that
researchers can acquire biological information. KEGG path-
way and GO term enrichment analysis were carried out using
DAVID. P less than 0.05 was significant in statistics.

2.3. Protein-Protein Interaction (PPI) Network. PPI network
reveals the interactions among protein molecules, which is
vital to achieving a detailed description of their functions
and relevant mechanisms in organisms. Presently, PPI is
annotated at many online resources, including the Search
Tool for the Retrieval of Interacting Genes/Proteins database
(STRING, http://string-db.org/) which provides multiple
perspectives. In this study, the PPI network of upregulated
DEGs was constructed by STRING.

2.4. Cell Culture and Transfection. HUASMC and HASMC
cells (human smooth muscle cell lines) got both ordered
from the American Type Culture Collection. Both of them
were incubated in DMEM (Invitrogen, USA) added with
10% FBS (Biochrom, USA) under a 37°C incubator with
10% CO,. The abovementioned cells were transfected with
demonstrated plasmids by Lipofectamine 2000 (Invitrogen,
USA) as the manual described. The sequence of siRNAs
was as follows: si-circFAT1(e2): 5'-GAGACAGATTCCCG
ACAGTTA-3" and si-NC: 5'-UUCUCCGAACGUGUCA
CGUTT-3'.

2.5. Cell Viability Assay. 3 x 10° VSMCs after sorting in each
well were reseeded into 96-well plates as indicated. Cell pro-
liferation assay was conducted on the following day. 10 ul of
CCK-8 solution (Dojin Laboratories, Kumamoto, Japan) was
put down at scheduled times for 2 h incubation. Absorbance
value in 450 nm was detected by a spectrophotometer. The
representative data indicated cell viability.

2.6. Cell Apoptosis Assay. Cells were firstly fixed with 70%
precold ethanol and then grew in RNase A. Then, VSMCs
stained with Annexin V/PI reagent (eBioscience, USA) were
subjected to FACS analysis for cell apoptosis measurement
using flow cytometry (BD Biosciences, San Jose, CA, USA).

2.7. Reverse Transcription and qRT-PCR. TRIzol reagent
(Invitrogen, USA) was prepared to extract total RNA from
cells and tissues as the manual’s description. Reverse tran-
scription system was conducted as follows: 10yl volume
included 500ng RNA with PrimeScript RT Reagent Kit
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FiGure 1: Ablated circFAT1(e2) decreased the proliferation but induced the apoptosis of vascular smooth muscle cells. (a) Relative
expression of circFAT1(e2) in HUASMC and HASMC cells transfected with si-NC (negative control) or si-circFAT1(e2). (b, ¢) Cellular
proliferation was detected in HUASMC and HASMC cells using the CCK-8 kit at indicative time points. (d) Cellular apoptosis was
demonstrated in HUASMC and HASMC cells transfected with si-NC or circFAT1(e2). *P < 0.05 and **P < 0.01.

(Invitrogen, USA) and RNase-free ddH,O, followed by sub-
jecting to qRT-PCR with SYBR Premix Ex Taq (TaKaRa,
China). The pertinent RNA expression was measured by the
2744€t method. The primers were as follows: circFAT1(e2):
forward 5'-AACAGAAGAGAACTGGGGCG-3', reverse 5'-
GATCAGGGTGCCAATGGTGA-3'; miR-298: forward 5'-
GGCAGAGGAGGGC-3', reverse 5'-GTGCGTGTCGT
GGAGT-3'; MYB: forward 5 -ACATCTCCAGTCACGT
TCCC-3', reverse 5'-GGATCCTCACATGACCAGAGT
TCGAG-3'; and GAPDH: forward 5'-TGTTCGTCATG
GGTGTGAAC-3, 5'-ATGGCATGGACTGTGG
TCAT-3'.

reverse

2.8. Luciferase Reporter Assay. The binding sites of miRNAs
and circFAT1(e2) are predicted based on the web-based pro-
gram CircInteractome [15]. The molecular targets of miR-
298 are predicted using the online database starBase (based
on miRNA target prediction programs, namely, TargetScan,
miRanda, microT, PITA, miRmap, and PicTar) [16]. Wild-

type (WT) or mutated circ-FAT1(e2) with the assumed
binding site was amplified and then inserted into pmirGLO
construct (Promega, USA). Similarly, WT or mutated
sequence of MYB 3'-UTR was also ligated into pmirGLO
construct (Promega, USA). The positive clones were then
transfected into indicated cells by Lipofectamine 2000.
Dual-luciferase reporter assay was performed as the previous
description. Relative luciferase activity was observed by
dual-luciferase reporter kit at 48h after transfection (Pro-
mega, USA).

2.9. Statistical Analysis. All the data were analyzed by SPSS
15.0 software (SPSS, Inc., Chicago, IL, USA) and GraphPad
Prism (version 6.0; GraphPad Software, Inc., La Jolla, CA,
USA). The representative data shown as the mean + SD were
derived from experiments in triplicate. The difference that
existed in the two comparison groups or multiple groups
was determined by Student’s t-test or one-way ANOVA. P
value < 0.05 indicated an obvious difference.
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FIGURE 2: circFAT1(e2) promoted MYB expression by sponging miR-298. (a, b) Luciferase reporter assay showed an interaction between
miR-298 and circFAT1(e2) or MYB 3'-UTR. HASMC cells were cotransfected with luciferase reporter and miR-298 mimics. (c)
circFAT1(e2) knockdown resulted in elevated expression of miR-298 in HUASMC and HASMC cells. (d) Ectopic expression of miR-298
led to decreased expression of MYB in HUASMC and HASMC cells. *P < 0.05 and **P < 0.01.

3. Results

3.1. Abated circFATI1(e2) Resulted in Inhibition of Vascular
Smooth Muscle Cell Viability but Induction of Cell Apoptosis.
circFAT1(e2) in HUASMC and HASMC cells was silenced
after transfection of si-circFAT1(e2) (Figure 1(a)). CCK-8
assay was then conducted to determine cell viability on special
days. Our data revealed that reduced circFAT1(e2) greatly
curbed HUASMC and HASMC cell viability (Figures 1(b)
and 1(c)). To further verify reduced cell viability resulted from
the aberrant cell cycle, cell apoptosis was measured by FACS
after staining of Annexin V/PL The data suggested that accu-
mulated HUASMC and HASMC cell apoptosis was observed
after downregulation of circFAT1(e2) (Figure 1(d)). Collec-
tively, our data displayed that reduced circFAT1(e2) repressed
vascular smooth muscle cell viability and promoted cell
apoptosis.

3.2. circFATI(e2) Sponged miR-298 and Promoted MYB
Expression. Here, we wanted to validate the function of cir-
cFATI1(e2) in the progression of vascular smooth muscle.
circRNAs were reported to display as ceRNAs to sponge
miRNAs in tumor cells. Therefore, we searched for the prob-

able target miRNAs, corresponding to circFAT1(e2) referred
to online data. miR-298 was chosen and used in the follow-
ing studies. Additionally, we deeply uncovered the down-
stream targets of miR-298 because miRNAs modulated the
expression level of genes via targeting mRNAs. MYB was
selected as one candidate for miR-298. Luciferase reporter
assay was executed to confirm the above assumptions. Our
data illustrated that luciferase activity could be obviously
decreased in cells transfected with circFAT1(e2)-WT or
MYB 3'-UTR-WT with miR-298 (Figures 2(a) and 2(b)),
implying that miR-298 was a mediator between cir-
cFATI1(e2) and MYB. Collectively, our results displayed that
circFAT1(e2) functioned as a sponge of miR-298, thus facil-
itating the expression of MYB in smooth muscle.

3.3. circFATI1(e2) Enhanced Vascular Smooth Muscle via
miR-298/ MYB Axis. Expressions of miR-298 and MYB were
measured in vascular smooth muscle cell lines (HUASMC
and HASMC) with si-circFAT1(e2) or miR-298, respectively.
The results indicated that the silencing of circFAT1(e2)
increased the expression of miR-298 (Figure 2(c)), and
miR-298 had an opposite relation with MYB (Figure 2(d)).
To conclude, circFAT1(e2) promoted MYB, while inhibiting
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FiGUure 3: Hierarchical clustering diagram of the DEGs between patients with atrial fibrillation and normal person. Red represents

upregulation and green represents downregulation.

miR-298 in vascular smooth muscle. Therefore, it was veri-
fied that circFAT1(e2) enhanced vascular smooth muscle
via miR-298/MYB axis.

3.4. Detection of DEGs in Atrial Fibrillation. Next, we
screened the DEGs between the normal person and patients
with atrial fibrillation in GSE41177 and it was found that a
total of 1982 increased genes were screened at FC> 1.5
and P < 0.001. As shown in Figure 3, we could observe that
the gene expression patterns of the DEGs among the array

data of GSE41177 were similar, demonstrating that the
molecular changes were accordant and might be a novel
gene marker in atrial fibrillation. Specifically, the fold change
and P value of MYB were 1.58 and 5.48562E — 07, respec-
tively. Then, the GO, KEGG, and PPI analyses of these
increased genes were conducted to illustrate their potential
mechanism in smooth muscle.

3.5. KEGG and GO Enrichment Analysis of DEGs. To delve
into the biological classifications and functions of DEGs,
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FIGURE 4: GO and KEGG enrichment analysis of upregulated DEGs. (a, b, ¢) The identified enriched GO terms of upregulated DEGs in
biological process, cellular component, and molecular function. (d) The identified enriched KEGG pathways of upregulated DEGs.

KEGG and GO enrichment analyses were performed using
DAVID. Figure 4(a) reveals that GO terms in BP were chiefly
concentrated on estrogen metabolic process (GO:0008210),
positive regulation of vasoconstriction (GO:0045907), fore-
brain neuron differentiation (G0:0021879), endodermal cell
differentiation (G0:0035987), positive regulation of protein
kinase B signaling (GO:0051897), T cell differentiation
(G0:0030217), regulation of vascular endothelial growth fac-
tor production (GO:0010574), positive regulation of T-helper
1 type immune response (GO:0002827), plasminogen activa-
tion (GO:0031639), and hormone secretion (GO:0046887).
Figure 4(b) shows that GO terms in CC were mainly enriched
in condensed chromosome kinetochore (GO:0000777), lat-
eral element (GO:0000800), platelet alpha granule lumen
(GO:0031093), bicellular tight junction (GO:0005923),
platelet alpha granule (GO:0031091), and HFE-transferrin

receptor complex (GO:1990712). Figure 4(c) demonstrates that
GO terms in MF were mainly enriched in phosphatidylinositol
3-kinase activity (GO:0035004), cyclic-nucleotide phospho-
diesterase activity (GO:0004112), phosphatidylinositol-4,5-
bisphosphate 3-kinase activity (GO:0046934), 3',5'-cyclic-
GMP phosphodiesterase activity (GO:0047555), phos-
phatidylinositol bisphosphate kinase activity (G0:0052813),
WW domain binding (GO:0050699), 3',5'-cyclic-nucleo-
tide phosphodiesterase activity (GO:0004114), cGMP bind-
ing (GO:0030553), transmitter-gated ion channel activity
(G0O:0022824), and ionotropic glutamate receptor activity
(GO:0004970). As shown in Figure 4(d), the identified
significant KEGG enrichment pathways were bladder can-
cer, transcriptional misregulation in cancer, nicotine
addiction, one carbon pool by folate, and the p53 signal-
ing pathway.
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the interaction of proteins.

3.6. PPI Network Construction and Analysis. The PPI net-
work of DEGs was built by STRING. Given a protein list,
STRING could search for their direct interactors and then
generate a PPI network composed of all these proteins and
all the interactions between them. As shown in Figure 5,
there were 1433 nodes and 2588 edges in the dense network,
indicating that these genes were closely related to each other

and together played a role in atrial fibrillation. We used the
degree analysis method in Cytoscape to screen hub genes.
The average degree of the identified DEGs was 3.61. The
degrees of EGFR, GNG2, and FPR2 were 50, 44, and 41,
respectively. We could conclude that EGFR, GNG2, and
FPR2 were the most closely related to patients with atrial
fibrillation.
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4. Discussion

Smooth muscle is very common in human body tissues [17].
The abnormality of smooth muscle can trigger many diseases,
like leiomyoma, bronchial asthma, and gallstones [1]. As for
the treatment of smooth muscle-related diseases, there exist
alarming limitations. For instance, uterine fibroids frequently
belong to benign tumors of female reproductive organs, com-
posed of smooth muscle and connective tissues [18]. Hyper-
uricemia promotes the occurrence of atrial fibrillation by
promoting the proliferation of vascular smooth muscle [19].
Due to few symptoms of fibroids, the clinical incidence rate
is much lower than the true incidence rate [20]. Currently,
the main therapies, including myomectomy, intervention,
and drug therapy, all have the possibility of recurrence [21].

circRNA has been reported to regulate other genes’
expressions and be involved in many disease progressions.
For instance, circRNA-0067835 can regulate liver fibrosis
by sponging miR-155, thereby promoting FOXO3a expression
[22]. Aberrant expression of hsa_cirRNA_0054633 perhaps
exerts a great impact on gestational diabetes mellitus progres-
sion [23]. circFAT1(e2) is dysregulated in various diseases,
including smooth muscle-related diseases [24]. It is reasonable
to suppose that circFAT1(e2) plays a crucial role in smooth
muscle as previously described. Therefore, we study the func-
tion and mechanism of circFAT1(e2) in vascular smooth mus-
cle by knocking down its expression herein. Data display that
reduced circFAT1(e2) represses vascular smooth muscle cell
viability and promotes cell apoptosis.

circRNA is revealed to sponge miRNAs and then regu-
late downstream gene expression in cells [25]. Here, we
screened miR-298 as the potential target of circFAT1(e2)
and further regulating MYB expression level. Dual-
luciferase reporter assay was performed, and the results
demonstrated the luciferase activity was reduced in miR-
298 overexpressed cells transfected with plasmids containing
circFAT1(e2) or 3'-UTR of MYB, while no change of the
luciferase activity happened in cells after transfection of
mutant circFAT1(e2) or mutant 3’ -UTR of MYB. Besides,
low-expressed circFAT1(e2) increased miR-298 expression
and overexpressed miR-298 decreased MYB in HUASMC
and HASMC. Therefore, these data suggested circFAT1(e2)
could sponge miR-298 and positively regulate MYB in the
smooth muscle cell.

To delve into the mechanism of how circRNAs exert
their functions, we investigated the downstream target of
circFAT1(e2). miR-298 and MYB were found and validated
to be the most potential downstream targets. Evidence has
seen that the miR-298 dysregulation is associated with can-
cer development [26]. Arabsorkhi et al. find miR-298 has
special functions in colon cancer invasion by targeting
PTEN [27]. MYB belongs to a big family whose members
mostly function as transcription factors via binding with
DNA [23]. So far, many reports have revealed that MYB
has an influence on cancers [23]. For example, Liu et al.
demonstrate the value of MYB as a biomarker for adenoid
cystic carcinoma prognosis [23]. In this study, based on
dataset GSE41177, we found that the expression levels of
MYB in 16 left atria junctions of patients with atrial fibrilla-

Computational and Mathematical Methods in Medicine

tion were significantly upregulated (FC=1.58, P =5.48562
E—-07) compared with a normal person. MYB has been
shown to regulate the differentiation of ESCs to VSMCs in
vitro and plays an important role in the proliferation and
hematopoiesis of VSMCs. Moreover, MYB also regulates
the proliferation and differentiation of adult vessel progeni-
tor cells that participate in neointimal remodeling.

Through the GSE41177 database, we identified 1982
DEGs in atrial fibrillation. Interestingly, 1982 DEGs were
all upregulated. Then, we performed GO and KEGG analysis
of these upregulated DEGs and the results indicated that
they participated in many biological processes related to
endodermal cell differentiation. Summing up the above dis-
cussion, it could be concluded that circFAT1(e2) facilitated
the proliferation and reduced the cell apoptosis of smooth
muscle via the miR-298/MYB axis. The PPI network analysis
illustrated that the hub genes related to atrial fibrillation are
EGFR, GNG2, and FPR2. Epidermal growth factor (EGF) is
a single transmembrane domain receptor tyrosine kinase
that shows the importance of growth signal transmission.
Sette et al. point out that in synthetic phenotypic VSMCs,
the activation of epidermal growth factor (EGF) receptor
(EGFR) leads to a continuous increase in intermediate con-
ductance. Petri et al. find that the formyl peptide receptor
2 (FPR2) has the specificity of stimulating proinflammatory
and prodissociation reactions. FPR 2/ALX has a proathero-
sclerotic effect on bone marrow-derived cells through its
influence on smooth muscle cells to promote the stability
of the plaque phenotype.

In conclusion, our data reveal that miR-298 interplays
with circFAT1(e2) and then affect MYB expression. cir-
cFAT1(e2) accelerates the abnormal vascular smooth muscle
via sponging miR-298 and regulating MYB. circFAT1(e2)/
miR-298/MYB would be considered as a new pathway to
explore vascular smooth muscle development. Subsequently,
MYB expression is identified to significantly upregulate in
atrial fibrillation based on dataset GSE41177. And bioinfor-
matics analysis of upregulated genes indicates that pathway
endodermal cell differentiation and key genes EGFR,
GNG2, and FPR2 are related to atrial fibrillation. Taken
together, these findings supply a forecaster for diagnosing
smooth muscle-related disease and uncover a promising
strategy to treat them.
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