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Characterization of osteosarcoma subtypes mediated by
macrophage-related genes and creation and validation of a
risk score system to quantitatively assess the prognosis of
osteosarcoma and reflect the tumor microenvironment
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Background: Macrophages are the main immune components in the microenvironment of osteosarcoma.
The treatment strategy centered on macrophages has become a hot topic to improve cancer treatment.
However, the research on the role of macrophages in the treatment of osteosarcoma is still in its infancy.
Methods: The data of osteosarcoma samples were downloaded from the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) and GSE21257 datasets, and the macrophage
enrichment fraction of osteosarcoma samples in TARGET was calculated by single-sample gene set
enrichment analysis (ssGSEA) method to screen macrophage-related genes for consensus clustering.
Differential expression analysis, univariable Cox, and least absolute shrinkage and selection operator (LASSO)
regression were conducted to select reliable predictors and create a risk score system. The GSE21257 dataset
was used as a verification set to verify the accuracy of risk score system.

Results: We identified 2 osteosarcoma clusters mediated by 22 macrophage score-related genes, namely
cluster 1 (Cl1) and cluster 2 (C2). Compared with C2, CI had a significant advantage in prognosis, and
the degree of immune cell infiltration in tumor microenvironment (TME) was significantly higher,
the expression of immune checkpoint molecules was significantly enhanced, and the Tumor Immune
Dysfunction and Exclusion (TIDE) score was also significantly down-regulated. A robust risk score system
was presented and validated, which demonstrated accuracy and independence in assessing the risk of death
of osteosarcoma. The risk score system could also monitor TME infiltration in osteosarcoma samples and
showed a close relationship with osteosarcoma biology, including metastasis and immunity.

Conclusions: We identified 2 types of clusters mediated by macrophage-related genes and helped
to analyze the cluster suitable for immunotherapy. A new prognostic risk score system was created to
quantitatively evaluate the prognosis and TME of osteosarcoma, and to provide a new entry point for the
design of personalized treatment.
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Introduction

Osteosarcoma is an advanced malignant stromal tumor
composed of mesenchymal cells that produce osteoid
and immature bone, accounting for 3-6% of childhood
cancers and 1% of adult cancers (1,2). The combination
of surgery and chemotherapy greatly has improved the
prognosis of patients with osteosarcoma, and the overall
survival (OS) has reached 70%. However, up to 25% of
patients show evidence of metastatic disease at the time of
diagnosis, of which the lung is the most common metastasis
site (3). For osteosarcoma patients with metastasis or poor
response to treatment, the prognosis is not satisfactory,
and the OS is only 25% (4,5). No effective treatment has
been developed to improve the treatment of osteosarcoma
for more than 30 years (6). At present, the difficulty of
designing and verifying new therapies in osteosarcoma
lies in 2 levels of complexity, the most important of which
is that the pathology is highly heterogeneous and there
are no obvious targeted events (2,7). However, most
immunotherapies have not reached the desired level of
success in the treatment of osteosarcoma. Immunotherapy
depends on the anti-tumor immunity of immune cells.
Tumor immune microenvironment (TIME) has become a
recent research hotspot, which provides a new and valuable
insight for tumor heterogeneity and the mechanism of
tumor progression and metastasis, as well as for improving
the prognosis of patients and successful implementation
of immunotherapy (8,9). The tumor microenvironment
(TME) of osteosarcoma is a very complex and highly
dynamic environment composed of osteocytes, stromal
cells, vascular cells, and immune cells, embedded in the
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mineralized extracellular matrix (7,10). Tumor-associated
macrophages (TAM) are the most common immune cells
in the TME of osteosarcoma, accounting for more than
50% of the immune cells, and may play an important role
in tumorigenesis, angiogenesis, immunosuppression, drug
resistance, and metastasis (11). In OS, TAM promotes
tumor growth and angiogenesis and upregulates the cancer
stem cell (CSC)-like phenotype. Paracrine communication
between TAM and surrounding mesenchymal stem cells
(MSCs) and CSCs in TME plays a key role in supporting
the stem cell niche and increasing the malignant behavior
of the tumor (12,13). The highly infiltrated TAM in
most malignant tumors is mainly M2-type cells, which
can promote tumor metastasis. It is worth noting that in
high-grade OS, TAMs are characterized by both M1 type
and M2 type cells. The more M1/M2 type TAM there
is, the lower the probability of metastasis and the longer
the survival time of OS patients (14). Macrophages have
become the central drug targets for many kinds of cancers,
including osteosarcoma, and can be used in clinical practice
as a tool for adjuvant cell therapy and immunotherapy
(14,15). Nevertheless, the research on the role of TAM in
osteosarcoma is still in its infancy, and the TAM-centered
treatment strategy still has great research potential (14).
Bioinformatics contributes to the research of targeted
therapies for diseases (16,17). In this study, we calculated the
activity score of 28 different immune cell types, including
macrophages, by single-sample gene set enrichment analysis
(ssGSEA), and explored the potential use of macrophage-
related genes in the Therapeutically Applicable Research
to Generate Effective Treatments (TARGET) database in
molecular classification, prognosis, and immunotherapy of
osteosarcoma samples, and constructed a prognostic risk
score system for osteosarcoma after molecular classification.
This study provided insight into the heterogeneous
effects of TAM on osteosarcoma TME, and highlighted
a potential assessment model for risk stratification, laying
the foundation for precision treatment of osteosarcoma.
We present the following article in accordance with the
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-5613/rc).

Methods
Clinical data collection of osteosarcoma samples

The transcriptome data and corresponding clinicopathological
information of osteosarcoma samples were obtained through
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2 approaches. The first approach was the pediatric oncology
database TARGET, of which 79 osteosarcoma samples were
included in our study. The second approach was to download
the transcript spectrum of 45 osteosarcoma samples by visiting
the osteosarcoma data set GSE21257 obtained from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The study was conducted in accordance with
the Declaration of Helsinki (as revised in 2013).

Screening of macrophage-related genes

According to the extracted major hallmarks of 28 different
immune cell types (18), the immune cell enrichment
fraction of osteosarcoma samples was calculated by ssGSEA
method. The correlation between the ssGSEA score of
macrophages and all genes in TARGET was calculated
using ‘Hmisc’ package (19), genes meeting |RI >0.6 &
P<0.05 were chose as macrophage score related genes, and
they were inputted into ‘clusterProfiler’ package for Gene
Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGQ) analysis.

Consensus clustering for osteosarcoma samples

The “Hc” clustering algorithm with 500 repetitions and
Spearman’s correlation was used as a distance metric for
clustering were conducted by ‘ConsensusClusterPlus’ R
package (The R Foundation for Statistical Computing,
Vienna, Austria), and each iteration included 80% of
the samples and minK =2 and maxK =9. The final K was
selected according to cumulative distribution function
(CDF), the change in the area under the CDF curves, and

the consensus heatmap.

Infiltration of cells in immune microenvironment

We chose 3 algorithms to estimate the fraction of
infiltrating cells in the immune microenvironment of
osteosarcoma. ssGSEA analysis was performed using
the ‘gsva’ package in R program Using the “GSVA”
package, ssGSEA was conducted to infer infiltration of
28 immune microenvironment cells based on transcriptome
data of osteosarcoma samples (20). Correlation analysis
was performed using the ‘corrplot’ package in R. The
Estimation of STromal and Immune cells in MAlignant
Tumor tissues using Expression data (ESTIMATE)
algorithm measured the infiltration of stromal and immune
cells by calculating stromal score and immune score based
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on matrix and immune characteristic genes (21). The
enrichment pattern of immune microenvironment cells was
estimated by quantifying the fraction of leukocyte subsets
using the Cell-type Identification by Estimating Relative
Subsets of RNA Transcripts (CIBERSORT) tool (22).

Immunotherapy response and drug sensitivity analysis

Immune checkpoint molecules are key regulators of tumor
immune response (13). To associate macrophage-associated
molecular subtypes with immunotherapy, we examined
differences in immune checkpoint gene expression between
subtypes. The Tumor Immune Dysfunction and Exclusion
(TIDE) is a predictive tool to reflect tumor response
to immune checkpoint blockade (ICB) therapy (23).
The signature scores of different macrophage-related
subtypes were determined by TIDE. The Genomics of
Drug Sensitivity in Cancer (GDSC) portal is the largest
public source of information on molecular markers of drug
sensitivity and drug response in cancer cells (24). The
drug response data were collected from GDSC and the
half-maximal inhibitory concentration (ICs;) values was
estimated using the ‘pRRophetic’ package in R. A lower
1C;y indicated a higher sensitivity of the drug.

Construction of prognostic models based on differentially
expressed genes (DEGs) between macrophage-associated
subtypes

Differences between macrophage-related subtypes were
analyzed by ‘limma’ package in R, with the criteria of
llog,fold change (FC)I >1 as well as false discovery rate
(FDR) <0.05. The obtained DEGs was filtered by univariate
Cox regression analysis, and least absolute shrinkage
and selection operator (LASSO) regression analysis was
performed by R ‘glmnet’ package to select the most reliable
genes related to the prognosis of osteosarcoma and to create
a signature that combines these genes and their coefficients.

Prognostic performance assessment of risk score

The risk model was adopted to assess the risks of
osteosarcoma by calculating the risk score for each
osteosarcoma sample. Kaplan-Meier survival analysis
and receiver operating characteristic (ROC) analysis
were implemented to assess the prognostic ability of the
risk score using the ‘timeROC’, ‘survival’ packages in R.
Univariate and multivariate Cox regression analysis were
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implemented with the ‘survival’ package in R to determine
whether risk score had independent predictive value for the
prognosis of osteosarcoma.

Analysis of biological regulatory pathway

The h.all.v7.5.1.entrez.gmt geneset was selected in the
Molecular Signatures Database (MSigDB), and GSEA was
run in the TARGET and GSE21257 datasets. The cutoff
criteria of Inormalized enrichment score (NES)| >1.0
and nominal P<0.05 was used to identify the differences of
biological regulatory pathways between different macrophage-
related subtypes and between different risk groups, and the
enrichment results were visualized by R packet ggplot2.

Generation and evaluation of decision tree and nomogram

Decision tree and nomogram are commonly used algorithms
to optimize risk stratification. Recursive partitioning analysis
was conducted using the ‘rpart’ package in R to generate a
survival decision tree based on age, gender, metastasis, and
risk score. A nomogram was created using the ‘rms’ package
in R based on independent prognostic factors obtained by
univariate and multivariate Cox regression analysis, and its
survival prediction performance was judged by calibration
curve, decision curve analysis (DCA), and ROC analysis.

Statistical analysis

The statistical analysis packages used in this study were
all in R. Correlation analysis was conducted by Pearson
correlation test. Student’s #-tests and Wilcoxon signed
rank test compared the differences in continuous variables
between two groups. ANOVA was used to analyze the
differences in the distribution of clinical features between
two groups. If not specifically mentioned, P<0.05 was
considered statistically significant.

Results

Classification of osteosarcoma based on macrophage-related
genes

According to the correlation analysis between macrophages
score calculated by ssGSEA and gene expression profile
in TARGET, 204 macrophage score-related genes were
screened. GO analysis revealed that these genes were
enriched in a total of 410 GO terms of biological process
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(BP), 60 GO terms of cellular component (CC), and 20 GO
terms of molecular function (MF). The GO terms with the
most significant enrichment of 204 genes were neutrophil
mediated immunity, major histocompatibility complex (MHC)
class 1I protein complex, and MHC class II protein complex
binding (Figure 14). A total of 204 macrophage score-related
genes were also significantly associated with 40 KEGG
pathways, most of which were involved in immune
regulation, such as allograft rejection, autoimmune thyroid
disease, intestinal immune network for immunoglobulin A
(IgA) production, antigen processing and presentation, and
other KEGG pathways (Figure 1B). A total of 22 prognostic
genes were identified by univariate Cox regression analysis
of 204 macrophage score-related genes. According to the
calculated hazard ratio (HR) values, we determined that
BNIP3 and PLCB4 were the risk genes for prognosis, and
the other 20 genes were of protective significance to the
prognosis (Figure 1C). These 22 genes showed a strong
expression correlation (Figure 1D), indicating that there
may be a potential relationship between them.

Consensus clustering of osteosarcoma samples in
TARGET was performed according to the expression of
22 genes. Osteosarcoma samples from the TARGET dataset
were divided into 2 clusters: cluster 1 (C1) and cluster
2 (C2) (Figure 24-2C). Among the 22 genes, 2 risk genes
for the prognosis of osteosarcoma were overexpressed in
C2, 20 genes with protective significance for prognosis
were overexpressed in C1, and lacking expression in C2
(Figure 2D). According to the same clustering steps, we found
that the osteosarcoma samples in the GSE21257 dataset
were also divided into 2 subtypes (Table S1). In TARGET,
samples belonging to type C1 had more survival advantages
than samples belonging to type C2 (Figure 2E). There was
also this trend in the survival trend of 2 types of samples in
GSE21257 dataset (Figure 2F). By analyzing the distribution
of clinical characteristics of the 2 types of osteosarcoma, we
statistically found that the distribution of metastatic and vital
state showed significant differences between the 2 types of
osteosarcoma, and C2 had a higher proportion of metastatic

and dead samples (Figure 2G).

Immune microenvironment of 2 clusters of osteosarcoma

The OS and the expression patterns of 22 macrophage-
related genes with prognostic significance of the 2 clusters
were different. We analyzed the status of immune cells
and the expression of immune molecules in the immune
microenvironment of the 2 subtypes in the TARGET
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Figure 1 Identification of macrophage-related genes with prognostic significance in osteosarcoma. (A) GO terms enriched by 204
macrophage score-related genes. (B) The first 20 KEGG pathways annotated by macrophage score-related genes. (C) The univariate
Cox regression forest plot showed the HR and P values of 22 genes. (D) The correlation of 22 macrophage-related genes with prognostic
significance for osteosarcoma. The significance of the difference is referred to by *, and *P<0.05, **P<0.01, ***P<0.001. FDR, false discovery
rate; GO, Gene Ontology; MHC, major histocompatibility complex; CI, confidence interval; KEGG, Kyoto Encyclopedia of Genes and
Genomes; IgA, immunoglobulin A; HR, hazard radio.
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Figure 2 Classification of osteosarcoma based on macrophage-related genes. (A) CDF curve for each category number k. (B) The

relative change in area under the CDF curve of each category number k. (C) Consensus matrix for k=2. (D) The expression heatmap of

22 macrophage-related genes with prognostic significance of osteosarcoma in two osteosarcoma clusters. (E) Survival difference between

samples belonging to C1 and those belonging to C2 in the TARGET dataset. (F) Comparison of survival trend between C1 samples and
C2 samples in GSE21257 dataset. (G) Comparison of clinical characteristics of C1 and C2 samples in TARGET dataset. CDE, cumulative
distribution function; C1, cluster 1; C2, cluster 2; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.

dataset. The ESTIMATE algorithm assessed stromal score,
immune score, and ESTIMATE score, all of which had
significantly higher levels in C1 than in C2 (Figure 3A4).
Cells involved in anti-tumor immunity, including activated
CD4" T cells and activated CD8" T cells, central memory
CD4" T cells, central/effector memory CD8" T cells,
gamma delta cells, immature B cell, memory B cells, T
follicular helper cell, type 1 T helper cells, type 17 T
helper cells, dendritic cell lineage (activated dendritic cell,
immature dendritic cell, and plasmacytoid dendritic cell)
natural killer cells, as well as cells involved in promoting
tumor immunity, including regulatory T cells, macrophages,
and myeloid-derived suppressor cells (MDSCs) were

© Annals of Translational Medicine. All rights reserved.

found to infiltrate relative to C2 significantly more in C1
(Figure 3B). The expression of a large part of costimulatory
checkpoint molecules, such as PDCD1 (PD-1), CTLA4, and
CD274 (PD-L1I) in C1 was significantly higher than that in
C2 (Figure 3C). Therefore, C1 might be an immunological
“hot” tumor, and C2 might be an immunological “cold”
tumor.

Sensitivity to immunotherapy/antitumor agents in
2 clusters

The infiltration of immune cells and the characteristics of
immune molecules in TME reflect the state of immune

Ann Transl Med 2022;10(24):1318 | https://dx.doi.org/10.21037/atm-22-5613
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Figure 3 TME and sensitivity to immunotherapy/antitumor agents in 2 osteosarcoma categories. (A) ESTIMATE evaluates the levels of stromal score,
immune score, and ESTIMATE score in C1 and C2 of the TARGET dataset. (B) Differences in the scores of 28 immune cells calculated by ssGSEA
between C1 and C2 in TARGET dataset. (C) The expression of immune checkpoint molecules in C1 and C2 in TARGET dataset. (D) TIDE score, IFNG
score, exclusion score, dysfunction score, MDSC score and response to ICB treatment of C1 and C2 samples in TARGET dataset. (E) Potential responses
of two osteosarcoma clusters to five antitumor agents in the TARGET dataset. The significance of the difference is referred to by *, and *P<0.05, **P<0.01,
***P<0.001, ***P<0.0001. C1, cluster 1; C2, cluster 2; ns, no significant; TIDE, Tumor Immune Dysfunction and Exclusion; ANOVA, analysis of variance;
TME, tumor microenvironment; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; TARGET,
Therapeutically Applicable Research to Generate Effective Treatments; ssGSEA, single-sample gene set enrichment analysis; IFNG, interferon gamma;
MDSC, myeloid-derived suppressor cells; ICB, immune checkpoint blockade.
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response and affect the therapeutic effect of immunotherapy.
The TIDE score of C1 and C2 samples in the TARGET
dataset was evaluated by TIDE and compared by z-test.
The TIDE score of C1 was significantly lower than that
of C2. Moreover, compared with C2, the exclusion score
and MDSC score of C1 were significantly down-regulated,
while interferon gamma (IFNG) score and dysfunction
score were significantly increased. The response rate of
C1 to ICB therapy was significantly higher than that of
C2 (Figure 3D). We also tried to evaluate the potential
response of 2 osteosarcoma clusters to 5 antitumor agents.
By comparing the ICs, values of C1 and C2, we observed
that there was a significant difference in the estimated IC;,
values of erlotinib, AZ628, Z-LLLLNle-CHO, CGP-60474,
and T'GX221 between the 2 clusters, and it was lower in
C1, which indicates that C1 might be more sensitive to
5 kinds of antitumor agents (Figure 3E).

Differences in regulatory pathways between 2 osteosarcoma
categories

The difference of pathway between C1 and C2 in
osteosarcoma dataset was compared. The results revealed
that there were significant differences in signal pathways
between the 2 clusters. C1 was significantly enriched in
many signaling pathways related to immune response,
including interferon alpha (IFNA/IFNG) response, IL6/
JAK/STAT3 signaling, allograft rejection, inflammatory
response, and [L2/STATS signaling. Pathways significantly
associated with C2 mainly regulate cell cycle progression,
such as G2M checkpoint, E2F targets, MYC targets,
and mitotic spindle (Figure 44,4B). In addition, in the 2
osteosarcoma datasets, the NES of C1 vs. C2 in the above
immunomodulatory pathways was >1, and the NES in
the above cell cycle related signal pathways was negative,
indicating that the consistency of the regulation mechanism
of C1 vs. C2 in the 2 datasets (Figure 4C).

Construction and validation of prognostic visk score system

Since there were different degrees of heterogeneity
between the 2 osteosarcoma subclasses based on 22
macrophage score-related genes in clinical phenotype,
immune microenvironment characteristics, regulated signal
pathways, and sensitivity to immunotherapy/antitumor
agents, we were compelled to identify the key genes related
to the osteosarcoma prognosis from the DEGs between the
2 subclasses. Difference analysis showed that there were

© Annals of Translational Medicine. All rights reserved.
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347 DEGs within the threshold defined by us between
the 2 subtypes, of which 131 were prognostic genes of
osteosarcoma (Figure 5A4). LASSO Cox regression analysis
was used to calculate the coefficient of each gene and select
9 genes whose coefficient was not 0 for integration into the
prognostic risk score system (Figure 5B,5C). The created
prognostic risk score system formula was described as
each base factor multiplied by its LASSO coefficient and
added. According to the prognostic risk score system, each
osteosarcoma sample from the TARGET and GSE21257
datasets was given a risk score, and the risk score was
standardized by z-score and further classified into high-
and low-risk groups. In the TARGET dataset, the survival
results obtained by Kaplan-Meier analysis were significantly
different between the high-risk group and the low-risk
group. Compared with the low-risk group, the OS time
of the high-risk group was shorter, and the survival rate
was lower (Figure 5D). The ROC curve obtained from the
TARGET dataset showed that prognostic risk score system
predicted the area under the curve (AUC) of the sample OS
in 1-5 years, and the AUC of each year was 0.82 or more,
indicating that the accuracy of prognostic risk score system
in predicting the sample OS in the TARGET dataset
was very high (Figure SE). The survival results of patients
in the high-risk group and the low-risk group in the
GSE21257 dataset were compared, and it was also revealed
that the survival results of the high-risk group were at a
disadvantage compared with the low-risk group (Figure 5F).
The prognostic risk score system predicted that the 3-, 4-,
and 5-year AUC of the sample OS in the GSE21257 dataset
were equal to or higher than 0.75, and increased year by
year, and the AUC reached 0.86 in 5 years (Figure 5G).
These results confirmed the potential of risk score system
to accurately predict the prognosis of patients with
osteosarcoma.

Potential effects of risk score on immune microenvironment
infiltration and tumor regulatory pathways

To elucidate the biological relevance of risk score from the
perspective of TME infiltration and functional regulation
pathways. In the aspect of TME infiltration, the stromal
score, immune score, ESTIMATE score and ssGSEA score
of 28 immune cells were calculated. The performance
of stromal score, immune score, and ESTIMATE score
in the low-risk score group was significantly higher than
that in the high-risk score group (Figure 64). There was
extensive infiltration of immune cells in low-risk score

Ann Transl Med 2022;10(24):1318 | https://dx.doi.org/10.21037/atm-22-5613
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Figure 4 Differences in regulatory pathways between 2 osteosarcoma categories. (A) GSEA assesses the difference in signal pathways
between C1 and C2 in TARGET datasets. (B) Differences in regulatory pathways of C1 vs. C2 in GSE21257 dataset. (C) GSEA of Cl1 vs.
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group, and the infiltration activity scores of activated B
cell, activated CD8" T cell, central memory CD4" T cell,
central memory CD8" T cell, effector memory CD4" T
cell, effector memory CD8" T cell, gamma delta T cell,
immature B cell, regulatory T cell, T follicular helper cell,
type 1 T helper cell, activated dendritic cell, macrophage,
MDSC, monocyte, natural killer cell, natural killer T
cell, neutrophil, and plasmacytoid dendritic cell were
significantly higher than those in the high-risk score group
(Figure 6B). There was a significant negative correlation
between risk score and the activity score of these immune
cells, indicating that the higher the risk score, the worse
the immune microenvironment (Figure 6C). From the
perspective of functional regulatory pathways, risk score
was associated with cell metastasis and a variety of different
immune-related signaling pathways, such as the 7AK/
STAT signaling pathway, cell adhesion molecules (CAMs),
complement and coagulation cascades, antigen processing
and presentation, autoimmune thyroid disease, allograft
rejection, intestinal immune network foe IgA production,
natural killer cell-mediated cytotoxicity, cytokine-cytokine
receptor interaction, toll-like receptor signaling pathway,
hematopoietic cell lineage, chemokine signaling pathway,
leukocyte transendothelial migration, T cell receptor
signaling pathway, and B cell receptor signaling pathway
(Figure 6D). Moreover, compared with the samples with
low-risk score, the NES of immune-related signaling
pathways of the samples with high-risk score were all
negative, indicating that the immune response of the high-
risk score group was inactive or suppressed (Figure 6E).
These results suggested that risk score may have a certain
potential in reflecting immune infiltration and immune
response.

Independence analysis of prognostic risk score system and
construction of prognostic decision tree and nomogram

We constructed a decision tree based on the clinical
characteristics of osteosarcoma samples and risk score
system. Only age, metastasis, and risk score were retained in
the decision tree, which divided osteosarcoma samples into
4 subgroups (Cl1, C2, C3, C4) (Figure 74). Kaplan-Meier
analysis showed that there were significant differences in
survival results among the 4 subgroups, in the order from
long to short: C1 > C2 > C3 > C4 (Figure 7B). By analyzing
the risk distribution in each subgroup, it was obvious that
only low risk samples were distributed in C1 and C2, and
only high-risk samples were distributed in C3 and C4

© Annals of Translational Medicine. All rights reserved.
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(Figure 7C). From the perspective of survival state, there was
a significant difference in the proportion of survival samples
among the 4 subgroups. The proportion of survival samples
in C1 was the highest, and the order of survival ratio from
high to low was C1 > C2 > C3 > C4 (Figure 7D).

Univariate and multivariate Cox regression analyses
were performed to determine the prognostic independence
of risk score system and clinical features. Risk score
and metastasis remained independent in predicting the
prognosis of osteosarcoma (Figure 7E,7F). To provide
an accurate and quantitative tool for predicting the
prognosis of osteosarcoma, risk score and metastasis
were incorporated into the ‘rms’ package to construct a
nomogram (Figure 7G). The calibration chart showed that
the nomogram was very close to the 1-, 3-, and 5-year
OS performance predicted by the best prediction model
(Figure 7H). The nomogram surpassed the highest net
income of risk score and metastasis, and reached an AUC
higher than 0.8 (Figure 71,77).

Discussion

Osteosarcoma is an osteoblast cell line tumor. However,
osteoclasts play a crucial role in the pathogenesis
of osteosarcoma. Osteoclasts are specialized tissue
macrophages that occupy the bone. Monocytes,
macrophages are specialized phagocytes (25). Anti-
osteoclast drugs have been reported to significantly reduce
patient mortality and morbidity by preventing tumor
progression and local spread (26). Macrophages represent
the main immune components in the microenvironment
of osteosarcoma, and the therapy focused on targeting
TAM has become a hot topic of immunotherapy (13).
The macrophage activator agent mifamurtide targeting
immune system is the latest progress in the treatment of
osteosarcoma since multidrug chemotherapy. However,
the use of antibodies against PD-1/PD-L1I to stimulate the
immune system in osteosarcoma remains controversial.
Major controversies include the toxicity of antibodies, poor
CD8" T lymphocyte infiltration, no histological evidence
of PD-1/PD-L1I in most osteosarcoma samples, and no
correlation with tumor outcome to date (7). In response
to these disputes, we started with the identification of
macrophage-related genes, divided osteosarcoma into
2 molecular categories according to 22 macrophage-
related genes, and explored the infiltration of a variety of
immune cells in each molecular category, including CD8"
T cells, as well as the expression of immune checkpoints
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Figure 7 Independence analysis of prognostic risk score system and construction of prognostic decision tree and nomogram. (A) A decision
tree was constructed based on the clinical characteristics of osteosarcoma samples and risk score system. (B) Kaplan-Meier analysis of 4
subgroups divided by decision tree. (C) The risk distribution in each subgroup divided by the decision tree. (D) The ratio of survival samples
and death samples in the 4 subgroups divided by the decision tree. (E,F) Univariate and multivariate Cox regression analysis determine
the prognostic independence of risk score system and clinical features. (G) Risk score and metastasis were included in the nomogram
constructed by rms package. (H) Calibration chart of the nomogram. (I) Comparison of net income of nomogram, risk score, and metastasis.
(J) Capacity for survival prediction of nomogram, risk score, and clinical features of osteosarcoma was compared by AUC. The significance

of the difference is referred to by *, and *P<0.05, ***P<0.001. C1, cluster 1; C2, cluster 2; C3, cluster 3; C4, cluster 4; CI, confidence interval;

OS, overall survival; AUC, area under the curve.

including PD-1/PD-L1I and the response to ICB treatment.
Among the 2 molecular subclasses of osteosarcoma, C1
had a significantly longer survival time, and several cells
including activated CD8" T cells, central memory CD8"

© Annals of Translational Medicine. All rights reserved.

T cells, effector memory CD8" T cells involved in anti-
tumor immunity and several cells involved in promoting
tumor immunity had significantly higher infiltration.
The IFNA/IFNG response (27,28), complement (29,30),
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and inflammatory response (31) are crucial mechanisms
contributing to the efficacy of cancer immunotherapy. Here,
all of these mechanisms were active in Cl. In addition, a
large group of costimulatory immune checkpoint molecules,
including PD-1 and PD-LI, were significantly promoted
in C1 relative to C2. More importantly, C1 showed a
significantly lower TIDE score than C2. This evidence
suggested that immunotherapy, including PD-1/PD-L1
antibodies, can be targeted in osteosarcoma.

Although clusters with prognostic advantages and
suitable for immunotherapy were identified based on
clustering algorithm, an accurate method is needed to
quantitatively evaluate osteosarcoma OS and reflect TME
and signal transduction. Here, we identified the DEGs
between 2 osteosarcoma clusters mediated by macrophage-
related genes, and created a prognostic risk score system
with a combination of 9 DEGs by machine learning.
Some genes in the prognostic risk score system have been
studied in different cancers. BNIP3 has been found to be
highly expressed in many types of tumors and described as
a major independent factor in OS of cancer patients (32).
GRN is a growth factor and secreted glycosylated peptide,
which is involved in the invasion of colorectal cancer and
is a marker of survival in patients (33). DDN has been
identified as underexpressed in glioblastoma and is a
biomarker candidate for prognosis (34). FPRI participates
in cancer immune surveillance and is regarded as a potential
immunopharmacological target for neuroblastoma (35,36).
A pan-cancer study showed that APBBIIP could be used as
prognostic biomarkers of pan-cancer, and the up-regulation
of APBBI1IP was associated with increased immune cell
infiltration (37). MUCI drives drug resistance and immune
evasion and is described as the main target for the design
and development of cancer vaccines (38,39). The GBPI may
be a double-edged sword in cancer environment, which
can inhibit cancer cell proliferation in the environment of
breast and colorectal cancer, but is hijacked by upstream
tumorigenic events in ovarian cancer and glioblastoma,
inducing cancer drug resistance and tumor progression (40).
In our study, we considered the association between the risk
score system of these genes and the prognosis, TME, and
biological pathway of osteosarcoma. According to risk score
system, osteosarcoma samples can obtain a risk score and be
assessed for the risk of death. A higher risk score means a
higher risk of death. A risk score system could also monitor
TME infiltration in osteosarcoma samples and showed a
close relationship with osteosarcoma biology, including
metastasis and immunity.
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The limitations of this study cannot be ignored. First of
all, all data were downloaded from public databases, and the
sample size and clinical information were limited. Second,
although a risk score system consisting of 9 genes has
been created, the regulatory network and biological effects
between these genes remain to be explored.

Conclusions

In summary, we identified 2 macrophage-related
gene-mediated clusters, which had different degrees
of heterogeneity in clinical phenotype, immune
microenvironment characteristics, regulated signal pathway,
and sensitivity to immunotherapy/antitumor agents. Based
on the DEGs between the 2 clusters, a new prognostic risk
score system was created to quantitatively evaluate the OS
and TME of osteosarcoma. Our research provides a new
perspective for identifying cancer subtypes suitable for
immunotherapy and a new entry point for the design of
personalized therapy.
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