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Characterization of osteosarcoma subtypes mediated by 
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Background: Macrophages are the main immune components in the microenvironment of osteosarcoma. 
The treatment strategy centered on macrophages has become a hot topic to improve cancer treatment. 
However, the research on the role of macrophages in the treatment of osteosarcoma is still in its infancy.
Methods: The data of osteosarcoma samples were downloaded from the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) and GSE21257 datasets, and the macrophage 
enrichment fraction of osteosarcoma samples in TARGET was calculated by single-sample gene set 
enrichment analysis (ssGSEA) method to screen macrophage-related genes for consensus clustering. 
Differential expression analysis, univariable Cox, and least absolute shrinkage and selection operator (LASSO) 
regression were conducted to select reliable predictors and create a risk score system. The GSE21257 dataset 
was used as a verification set to verify the accuracy of risk score system.
Results: We identified 2 osteosarcoma clusters mediated by 22 macrophage score-related genes, namely 
cluster 1 (C1) and cluster 2 (C2). Compared with C2, C1 had a significant advantage in prognosis, and 
the degree of immune cell infiltration in tumor microenvironment (TME) was significantly higher, 
the expression of immune checkpoint molecules was significantly enhanced, and the Tumor Immune 
Dysfunction and Exclusion (TIDE) score was also significantly down-regulated. A robust risk score system 
was presented and validated, which demonstrated accuracy and independence in assessing the risk of death 
of osteosarcoma. The risk score system could also monitor TME infiltration in osteosarcoma samples and 
showed a close relationship with osteosarcoma biology, including metastasis and immunity.
Conclusions: We identified 2 types of clusters mediated by macrophage-related genes and helped 
to analyze the cluster suitable for immunotherapy. A new prognostic risk score system was created to 
quantitatively evaluate the prognosis and TME of osteosarcoma, and to provide a new entry point for the 
design of personalized treatment.
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Introduction

Osteosarcoma is an advanced malignant stromal tumor 
composed of mesenchymal cells that produce osteoid 
and immature bone, accounting for 3–6% of childhood 
cancers and 1% of adult cancers (1,2). The combination 
of surgery and chemotherapy greatly has improved the 
prognosis of patients with osteosarcoma, and the overall 
survival (OS) has reached 70%. However, up to 25% of 
patients show evidence of metastatic disease at the time of 
diagnosis, of which the lung is the most common metastasis 
site (3). For osteosarcoma patients with metastasis or poor 
response to treatment, the prognosis is not satisfactory, 
and the OS is only 25% (4,5). No effective treatment has 
been developed to improve the treatment of osteosarcoma 
for more than 30 years (6). At present, the difficulty of 
designing and verifying new therapies in osteosarcoma 
lies in 2 levels of complexity, the most important of which 
is that the pathology is highly heterogeneous and there 
are no obvious targeted events (2,7). However, most 
immunotherapies have not reached the desired level of 
success in the treatment of osteosarcoma. Immunotherapy 
depends on the anti-tumor immunity of immune cells. 
Tumor immune microenvironment (TIME) has become a 
recent research hotspot, which provides a new and valuable 
insight for tumor heterogeneity and the mechanism of 
tumor progression and metastasis, as well as for improving 
the prognosis of patients and successful implementation 
of immunotherapy (8,9). The tumor microenvironment 
(TME) of osteosarcoma is a very complex and highly 
dynamic environment composed of osteocytes, stromal 
cells, vascular cells, and immune cells, embedded in the 

mineralized extracellular matrix (7,10). Tumor-associated 
macrophages (TAM) are the most common immune cells 
in the TME of osteosarcoma, accounting for more than 
50% of the immune cells, and may play an important role 
in tumorigenesis, angiogenesis, immunosuppression, drug 
resistance, and metastasis (11). In OS, TAM promotes 
tumor growth and angiogenesis and upregulates the cancer 
stem cell (CSC)-like phenotype. Paracrine communication 
between TAM and surrounding mesenchymal stem cells 
(MSCs) and CSCs in TME plays a key role in supporting 
the stem cell niche and increasing the malignant behavior 
of the tumor (12,13). The highly infiltrated TAM in 
most malignant tumors is mainly M2-type cells, which 
can promote tumor metastasis. It is worth noting that in 
high-grade OS, TAMs are characterized by both M1 type 
and M2 type cells. The more M1/M2 type TAM there 
is, the lower the probability of metastasis and the longer 
the survival time of OS patients (14). Macrophages have 
become the central drug targets for many kinds of cancers, 
including osteosarcoma, and can be used in clinical practice 
as a tool for adjuvant cell therapy and immunotherapy 
(14,15). Nevertheless, the research on the role of TAM in 
osteosarcoma is still in its infancy, and the TAM-centered 
treatment strategy still has great research potential (14).

Bioinformatics contributes to the research of targeted 
therapies for diseases (16,17). In this study, we calculated the 
activity score of 28 different immune cell types, including 
macrophages, by single-sample gene set enrichment analysis 
(ssGSEA), and explored the potential use of macrophage-
related genes in the Therapeutically Applicable Research 
to Generate Effective Treatments (TARGET) database in 
molecular classification, prognosis, and immunotherapy of 
osteosarcoma samples, and constructed a prognostic risk 
score system for osteosarcoma after molecular classification. 
This study provided insight into the heterogeneous 
effects of TAM on osteosarcoma TME, and highlighted 
a potential assessment model for risk stratification, laying 
the foundation for precision treatment of osteosarcoma. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-5613/rc).

Methods

Clinical data collection of osteosarcoma samples

The transcriptome data and corresponding clinicopathological 
information of osteosarcoma samples were obtained through 
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2 approaches. The first approach was the pediatric oncology 
database TARGET, of which 79 osteosarcoma samples were 
included in our study. The second approach was to download 
the transcript spectrum of 45 osteosarcoma samples by visiting 
the osteosarcoma data set GSE21257 obtained from the Gene 
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Screening of macrophage-related genes

According to the extracted major hallmarks of 28 different 
immune cell types (18), the immune cell enrichment 
fraction of osteosarcoma samples was calculated by ssGSEA 
method. The correlation between the ssGSEA score of 
macrophages and all genes in TARGET was calculated 
using ‘Hmisc’ package (19), genes meeting |R| >0.6 & 
P<0.05 were chose as macrophage score related genes, and 
they were inputted into ‘clusterProfiler’ package for Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis.

Consensus clustering for osteosarcoma samples

The “Hc” clustering algorithm with 500 repetitions and 
Spearman’s correlation was used as a distance metric for 
clustering were conducted by ‘ConsensusClusterPlus’ R 
package (The R Foundation for Statistical Computing, 
Vienna, Austria), and each iteration included 80% of 
the samples and minK =2 and maxK =9. The final K was 
selected according to cumulative distribution function 
(CDF), the change in the area under the CDF curves, and 
the consensus heatmap.

Infiltration of cells in immune microenvironment

We chose 3 algorithms to estimate the fraction of 
infiltrating cells in the immune microenvironment of 
osteosarcoma. ssGSEA analysis was performed using 
the ‘gsva’ package in R program Using the “GSVA” 
package, ssGSEA was conducted to infer infiltration of  
28 immune microenvironment cells based on transcriptome 
data of osteosarcoma samples (20). Correlation analysis 
was performed using the ‘corrplot’ package in R. The 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) 
algorithm measured the infiltration of stromal and immune 
cells by calculating stromal score and immune score based 

on matrix and immune characteristic genes (21). The 
enrichment pattern of immune microenvironment cells was 
estimated by quantifying the fraction of leukocyte subsets 
using the Cell-type Identification by Estimating Relative 
Subsets of RNA Transcripts (CIBERSORT) tool (22).

Immunotherapy response and drug sensitivity analysis

Immune checkpoint molecules are key regulators of tumor 
immune response (13). To associate macrophage-associated 
molecular subtypes with immunotherapy, we examined 
differences in immune checkpoint gene expression between 
subtypes. The Tumor Immune Dysfunction and Exclusion 
(TIDE) is a predictive tool to reflect tumor response 
to immune checkpoint blockade (ICB) therapy (23).  
The signature scores of different macrophage-related 
subtypes were determined by TIDE. The Genomics of 
Drug Sensitivity in Cancer (GDSC) portal is the largest 
public source of information on molecular markers of drug 
sensitivity and drug response in cancer cells (24). The 
drug response data were collected from GDSC and the 
half-maximal inhibitory concentration (IC50) values was 
estimated using the ‘pRRophetic’ package in R. A lower 
IC50 indicated a higher sensitivity of the drug.

Construction of prognostic models based on differentially 
expressed genes (DEGs) between macrophage-associated 
subtypes

Differences between macrophage-related subtypes were 
analyzed by ‘limma’ package in R, with the criteria of 
|log2fold change (FC)| >1 as well as false discovery rate 
(FDR) <0.05. The obtained DEGs was filtered by univariate 
Cox regression analysis, and least absolute shrinkage 
and selection operator (LASSO) regression analysis was 
performed by R ‘glmnet’ package to select the most reliable 
genes related to the prognosis of osteosarcoma and to create 
a signature that combines these genes and their coefficients.

Prognostic performance assessment of risk score

The risk model was adopted to assess the risks of 
osteosarcoma by calculating the risk score for each 
osteosarcoma sample. Kaplan-Meier survival analysis 
and receiver operating characteristic (ROC) analysis 
were implemented to assess the prognostic ability of the 
risk score using the ‘timeROC’, ‘survival’ packages in R. 
Univariate and multivariate Cox regression analysis were 

https://www.ncbi.nlm.nih.gov/geo/
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implemented with the ‘survival’ package in R to determine 
whether risk score had independent predictive value for the 
prognosis of osteosarcoma.

Analysis of biological regulatory pathway

The h.all.v7.5.1.entrez.gmt geneset was selected in the 
Molecular Signatures Database (MSigDB), and GSEA was 
run in the TARGET and GSE21257 datasets. The cutoff 
criteria of |normalized enrichment score (NES)| >1.0 
and nominal P<0.05 was used to identify the differences of 
biological regulatory pathways between different macrophage-
related subtypes and between different risk groups, and the 
enrichment results were visualized by R packet ggplot2.

Generation and evaluation of decision tree and nomogram

Decision tree and nomogram are commonly used algorithms 
to optimize risk stratification. Recursive partitioning analysis 
was conducted using the ‘rpart’ package in R to generate a 
survival decision tree based on age, gender, metastasis, and 
risk score. A nomogram was created using the ‘rms’ package 
in R based on independent prognostic factors obtained by 
univariate and multivariate Cox regression analysis, and its 
survival prediction performance was judged by calibration 
curve, decision curve analysis (DCA), and ROC analysis.

Statistical analysis

The statistical analysis packages used in this study were 
all in R. Correlation analysis was conducted by Pearson 
correlation test. Student’s t-tests and Wilcoxon signed 
rank test compared the differences in continuous variables 
between two groups. ANOVA was used to analyze the 
differences in the distribution of clinical features between 
two groups. If not specifically mentioned, P<0.05 was 
considered statistically significant.

Results

Classification of osteosarcoma based on macrophage-related 
genes

According to the correlation analysis between macrophages 
score calculated by ssGSEA and gene expression profile 
in TARGET, 204 macrophage score-related genes were 
screened. GO analysis revealed that these genes were 
enriched in a total of 410 GO terms of biological process 

(BP), 60 GO terms of cellular component (CC), and 20 GO 
terms of molecular function (MF). The GO terms with the 
most significant enrichment of 204 genes were neutrophil 
mediated immunity, major histocompatibility complex (MHC) 
class II protein complex, and MHC class II protein complex 
binding (Figure 1A). A total of 204 macrophage score-related 
genes were also significantly associated with 40 KEGG  
pathways, most of which were involved in immune 
regulation, such as allograft rejection, autoimmune thyroid 
disease, intestinal immune network for immunoglobulin A 
(IgA) production, antigen processing and presentation, and 
other KEGG pathways (Figure 1B). A total of 22 prognostic 
genes were identified by univariate Cox regression analysis 
of 204 macrophage score-related genes. According to the 
calculated hazard ratio (HR) values, we determined that 
BNIP3 and PLCB4 were the risk genes for prognosis, and 
the other 20 genes were of protective significance to the 
prognosis (Figure 1C). These 22 genes showed a strong 
expression correlation (Figure 1D), indicating that there 
may be a potential relationship between them.

Consensus clustering of osteosarcoma samples in 
TARGET was performed according to the expression of  
22 genes. Osteosarcoma samples from the TARGET dataset 
were divided into 2 clusters: cluster 1 (C1) and cluster  
2 (C2) (Figure 2A-2C). Among the 22 genes, 2 risk genes 
for the prognosis of osteosarcoma were overexpressed in 
C2, 20 genes with protective significance for prognosis 
were overexpressed in C1, and lacking expression in C2  
(Figure 2D). According to the same clustering steps, we found 
that the osteosarcoma samples in the GSE21257 dataset 
were also divided into 2 subtypes (Table S1). In TARGET, 
samples belonging to type C1 had more survival advantages 
than samples belonging to type C2 (Figure 2E). There was 
also this trend in the survival trend of 2 types of samples in 
GSE21257 dataset (Figure 2F). By analyzing the distribution 
of clinical characteristics of the 2 types of osteosarcoma, we 
statistically found that the distribution of metastatic and vital 
state showed significant differences between the 2 types of 
osteosarcoma, and C2 had a higher proportion of metastatic 
and dead samples (Figure 2G).

Immune microenvironment of 2 clusters of osteosarcoma

The OS and the expression patterns of 22 macrophage-
related genes with prognostic significance of the 2 clusters 
were different. We analyzed the status of immune cells 
and the expression of immune molecules in the immune 
microenvironment of the 2 subtypes in the TARGET 

https://cdn.amegroups.cn/static/public/ATM-22-5613-Supplementary.pdf
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Figure 1 Identification of macrophage-related genes with prognostic significance in osteosarcoma. (A) GO terms enriched by 204 
macrophage score-related genes. (B) The first 20 KEGG pathways annotated by macrophage score-related genes. (C) The univariate 
Cox regression forest plot showed the HR and P values of 22 genes. (D) The correlation of 22 macrophage-related genes with prognostic 
significance for osteosarcoma. The significance of the difference is referred to by *, and *P<0.05, **P<0.01, ***P<0.001. FDR, false discovery 
rate; GO, Gene Ontology; MHC, major histocompatibility complex; CI, confidence interval; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; IgA, immunoglobulin A; HR, hazard radio.
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Figure 2 Classification of osteosarcoma based on macrophage-related genes. (A) CDF curve for each category number k. (B) The 
relative change in area under the CDF curve of each category number k. (C) Consensus matrix for k=2. (D) The expression heatmap of 
22 macrophage-related genes with prognostic significance of osteosarcoma in two osteosarcoma clusters. (E) Survival difference between 
samples belonging to C1 and those belonging to C2 in the TARGET dataset. (F) Comparison of survival trend between C1 samples and 
C2 samples in GSE21257 dataset. (G) Comparison of clinical characteristics of C1 and C2 samples in TARGET dataset. CDF, cumulative 
distribution function; C1, cluster 1; C2, cluster 2; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.

dataset. The ESTIMATE algorithm assessed stromal score, 
immune score, and ESTIMATE score, all of which had 
significantly higher levels in C1 than in C2 (Figure 3A).  
Cells involved in anti-tumor immunity, including activated 
CD4+ T cells and activated CD8+ T cells, central memory 
CD4+ T cells, central/effector memory CD8+ T cells, 
gamma delta cells, immature B cell, memory B cells, T 
follicular helper cell, type 1 T helper cells, type 17 T 
helper cells, dendritic cell lineage (activated dendritic cell, 
immature dendritic cell, and plasmacytoid dendritic cell) 
natural killer cells, as well as cells involved in promoting 
tumor immunity, including regulatory T cells, macrophages, 
and myeloid-derived suppressor cells (MDSCs) were 

found to infiltrate relative to C2 significantly more in C1 
(Figure 3B). The expression of a large part of costimulatory 
checkpoint molecules, such as PDCD1 (PD-1), CTLA4, and 
CD274 (PD-L1) in C1 was significantly higher than that in 
C2 (Figure 3C). Therefore, C1 might be an immunological 
“hot” tumor, and C2 might be an immunological “cold” 
tumor.

Sensitivity to immunotherapy/antitumor agents in  
2 clusters

The infiltration of immune cells and the characteristics of 
immune molecules in TME reflect the state of immune 
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Figure 3 TME and sensitivity to immunotherapy/antitumor agents in 2 osteosarcoma categories. (A) ESTIMATE evaluates the levels of stromal score, 
immune score, and ESTIMATE score in C1 and C2 of the TARGET dataset. (B) Differences in the scores of 28 immune cells calculated by ssGSEA 
between C1 and C2 in TARGET dataset. (C) The expression of immune checkpoint molecules in C1 and C2 in TARGET dataset. (D) TIDE score, IFNG 
score, exclusion score, dysfunction score, MDSC score and response to ICB treatment of C1 and C2 samples in TARGET dataset. (E) Potential responses 
of two osteosarcoma clusters to five antitumor agents in the TARGET dataset. The significance of the difference is referred to by *, and *P<0.05, **P<0.01, 
***P<0.001, ****P<0.0001. C1, cluster 1; C2, cluster 2; ns, no significant; TIDE, Tumor Immune Dysfunction and Exclusion; ANOVA, analysis of variance; 
TME, tumor microenvironment; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; TARGET, 
Therapeutically Applicable Research to Generate Effective Treatments; ssGSEA, single-sample gene set enrichment analysis; IFNG, interferon gamma; 
MDSC, myeloid-derived suppressor cells; ICB, immune checkpoint blockade.
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response and affect the therapeutic effect of immunotherapy. 
The TIDE score of C1 and C2 samples in the TARGET 
dataset was evaluated by TIDE and compared by t-test. 
The TIDE score of C1 was significantly lower than that 
of C2. Moreover, compared with C2, the exclusion score 
and MDSC score of C1 were significantly down-regulated, 
while interferon gamma (IFNG) score and dysfunction 
score were significantly increased. The response rate of 
C1 to ICB therapy was significantly higher than that of 
C2 (Figure 3D). We also tried to evaluate the potential 
response of 2 osteosarcoma clusters to 5 antitumor agents. 
By comparing the IC50 values of C1 and C2, we observed 
that there was a significant difference in the estimated IC50 
values of erlotinib, AZ628, Z-LLNle-CHO, CGP-60474, 
and TGX221 between the 2 clusters, and it was lower in 
C1, which indicates that C1 might be more sensitive to  
5 kinds of antitumor agents (Figure 3E).

Differences in regulatory pathways between 2 osteosarcoma 
categories

The difference of pathway between C1 and C2 in 
osteosarcoma dataset was compared. The results revealed 
that there were significant differences in signal pathways 
between the 2 clusters. C1 was significantly enriched in 
many signaling pathways related to immune response, 
including interferon alpha (IFNA/IFNG) response, IL6/
JAK/STAT3 signaling, allograft rejection, inflammatory 
response, and IL2/STAT5 signaling. Pathways significantly 
associated with C2 mainly regulate cell cycle progression, 
such as G2M checkpoint, E2F targets, MYC targets, 
and mitotic spindle (Figure 4A,4B). In addition, in the 2 
osteosarcoma datasets, the NES of C1 vs. C2 in the above 
immunomodulatory pathways was >1, and the NES in 
the above cell cycle related signal pathways was negative, 
indicating that the consistency of the regulation mechanism 
of C1 vs. C2 in the 2 datasets (Figure 4C).

Construction and validation of prognostic risk score system

Since there were different degrees of heterogeneity 
between the 2 osteosarcoma subclasses based on 22 
macrophage score-related genes in clinical phenotype, 
immune microenvironment characteristics, regulated signal 
pathways, and sensitivity to immunotherapy/antitumor 
agents, we were compelled to identify the key genes related 
to the osteosarcoma prognosis from the DEGs between the 
2 subclasses. Difference analysis showed that there were 

347 DEGs within the threshold defined by us between 
the 2 subtypes, of which 131 were prognostic genes of 
osteosarcoma (Figure 5A). LASSO Cox regression analysis 
was used to calculate the coefficient of each gene and select 
9 genes whose coefficient was not 0 for integration into the 
prognostic risk score system (Figure 5B,5C). The created 
prognostic risk score system formula was described as 
each base factor multiplied by its LASSO coefficient and 
added. According to the prognostic risk score system, each 
osteosarcoma sample from the TARGET and GSE21257 
datasets was given a risk score, and the risk score was 
standardized by z-score and further classified into high- 
and low-risk groups. In the TARGET dataset, the survival 
results obtained by Kaplan-Meier analysis were significantly 
different between the high-risk group and the low-risk 
group. Compared with the low-risk group, the OS time 
of the high-risk group was shorter, and the survival rate 
was lower (Figure 5D). The ROC curve obtained from the 
TARGET dataset showed that prognostic risk score system 
predicted the area under the curve (AUC) of the sample OS 
in 1–5 years, and the AUC of each year was 0.82 or more, 
indicating that the accuracy of prognostic risk score system 
in predicting the sample OS in the TARGET dataset 
was very high (Figure 5E). The survival results of patients 
in the high-risk group and the low-risk group in the 
GSE21257 dataset were compared, and it was also revealed 
that the survival results of the high-risk group were at a 
disadvantage compared with the low-risk group (Figure 5F).  
The prognostic risk score system predicted that the 3-, 4-, 
and 5-year AUC of the sample OS in the GSE21257 dataset 
were equal to or higher than 0.75, and increased year by 
year, and the AUC reached 0.86 in 5 years (Figure 5G).  
These results confirmed the potential of risk score system 
to accurately predict the prognosis of patients with 
osteosarcoma.

Potential effects of risk score on immune microenvironment 
infiltration and tumor regulatory pathways

To elucidate the biological relevance of risk score from the 
perspective of TME infiltration and functional regulation 
pathways. In the aspect of TME infiltration, the stromal 
score, immune score, ESTIMATE score and ssGSEA score 
of 28 immune cells were calculated. The performance 
of stromal score, immune score, and ESTIMATE score 
in the low-risk score group was significantly higher than 
that in the high-risk score group (Figure 6A). There was 
extensive infiltration of immune cells in low-risk score 
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group, and the infiltration activity scores of activated B 
cell, activated CD8+ T cell, central memory CD4+ T cell, 
central memory CD8+ T cell, effector memory CD4+ T 
cell, effector memory CD8+ T cell, gamma delta T cell, 
immature B cell, regulatory T cell, T follicular helper cell, 
type 1 T helper cell, activated dendritic cell, macrophage, 
MDSC, monocyte, natural killer cell, natural killer T 
cell, neutrophil, and plasmacytoid dendritic cell were 
significantly higher than those in the high-risk score group 
(Figure 6B). There was a significant negative correlation 
between risk score and the activity score of these immune 
cells, indicating that the higher the risk score, the worse 
the immune microenvironment (Figure 6C). From the 
perspective of functional regulatory pathways, risk score 
was associated with cell metastasis and a variety of different 
immune-related signaling pathways, such as the JAK/
STAT signaling pathway, cell adhesion molecules (CAMs), 
complement and coagulation cascades, antigen processing 
and presentation, autoimmune thyroid disease, allograft 
rejection, intestinal immune network foe IgA production, 
natural killer cell-mediated cytotoxicity, cytokine-cytokine 
receptor interaction, toll-like receptor signaling pathway, 
hematopoietic cell lineage, chemokine signaling pathway, 
leukocyte transendothelial migration, T cell receptor 
signaling pathway, and B cell receptor signaling pathway 
(Figure 6D). Moreover, compared with the samples with 
low-risk score, the NES of immune-related signaling 
pathways of the samples with high-risk score were all 
negative, indicating that the immune response of the high-
risk score group was inactive or suppressed (Figure 6E). 
These results suggested that risk score may have a certain 
potential in reflecting immune infiltration and immune 
response.

Independence analysis of prognostic risk score system and 
construction of prognostic decision tree and nomogram

We constructed a decision tree based on the clinical 
characteristics of osteosarcoma samples and risk score 
system. Only age, metastasis, and risk score were retained in 
the decision tree, which divided osteosarcoma samples into 
4 subgroups (C1, C2, C3, C4) (Figure 7A). Kaplan-Meier 
analysis showed that there were significant differences in 
survival results among the 4 subgroups, in the order from 
long to short: C1 > C2 > C3 > C4 (Figure 7B). By analyzing 
the risk distribution in each subgroup, it was obvious that 
only low risk samples were distributed in C1 and C2, and 
only high-risk samples were distributed in C3 and C4  

(Figure 7C). From the perspective of survival state, there was 
a significant difference in the proportion of survival samples 
among the 4 subgroups. The proportion of survival samples 
in C1 was the highest, and the order of survival ratio from 
high to low was C1 > C2 > C3 > C4 (Figure 7D).

Univariate and multivariate Cox regression analyses 
were performed to determine the prognostic independence 
of risk score system and clinical features. Risk score 
and metastasis remained independent in predicting the 
prognosis of osteosarcoma (Figure 7E,7F). To provide 
an accurate and quantitative tool for predicting the 
prognosis of osteosarcoma, risk score and metastasis 
were incorporated into the ‘rms’ package to construct a 
nomogram (Figure 7G). The calibration chart showed that 
the nomogram was very close to the 1-, 3-, and 5-year 
OS performance predicted by the best prediction model 
(Figure 7H). The nomogram surpassed the highest net 
income of risk score and metastasis, and reached an AUC 
higher than 0.8 (Figure 7I,7J).

Discussion

Osteosarcoma is an osteoblast cell line tumor. However, 
osteoclasts play a crucial role in the pathogenesis 
of osteosarcoma. Osteoclasts are specialized tissue 
macrophages  that  occupy the  bone.  Monocytes , 
macrophages are specialized phagocytes (25). Anti-
osteoclast drugs have been reported to significantly reduce 
patient mortality and morbidity by preventing tumor 
progression and local spread (26). Macrophages represent 
the main immune components in the microenvironment 
of osteosarcoma, and the therapy focused on targeting 
TAM has become a hot topic of immunotherapy (13). 
The macrophage activator agent mifamurtide targeting 
immune system is the latest progress in the treatment of 
osteosarcoma since multidrug chemotherapy. However, 
the use of antibodies against PD-1/PD-L1 to stimulate the 
immune system in osteosarcoma remains controversial. 
Major controversies include the toxicity of antibodies, poor 
CD8+ T lymphocyte infiltration, no histological evidence 
of PD-1/PD-L1 in most osteosarcoma samples, and no 
correlation with tumor outcome to date (7). In response 
to these disputes, we started with the identification of 
macrophage-related genes, divided osteosarcoma into 
2 molecular categories according to 22 macrophage-
related genes, and explored the infiltration of a variety of 
immune cells in each molecular category, including CD8+ 
T cells, as well as the expression of immune checkpoints 
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Figure 7 Independence analysis of prognostic risk score system and construction of prognostic decision tree and nomogram. (A) A decision 
tree was constructed based on the clinical characteristics of osteosarcoma samples and risk score system. (B) Kaplan-Meier analysis of 4 
subgroups divided by decision tree. (C) The risk distribution in each subgroup divided by the decision tree. (D) The ratio of survival samples 
and death samples in the 4 subgroups divided by the decision tree. (E,F) Univariate and multivariate Cox regression analysis determine 
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constructed by rms package. (H) Calibration chart of the nomogram. (I) Comparison of net income of nomogram, risk score, and metastasis. 
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including PD-1/PD-L1 and the response to ICB treatment. 
Among the 2 molecular subclasses of osteosarcoma, C1 
had a significantly longer survival time, and several cells 
including activated CD8+ T cells, central memory CD8+ 

T cells, effector memory CD8+ T cells involved in anti-
tumor immunity and several cells involved in promoting 
tumor immunity had significantly higher infiltration. 
The IFNA/IFNG response (27,28), complement (29,30), 
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and inflammatory response (31) are crucial mechanisms 
contributing to the efficacy of cancer immunotherapy. Here, 
all of these mechanisms were active in C1. In addition, a 
large group of costimulatory immune checkpoint molecules, 
including PD-1 and PD-L1, were significantly promoted 
in C1 relative to C2. More importantly, C1 showed a 
significantly lower TIDE score than C2. This evidence 
suggested that immunotherapy, including PD-1/PD-L1 
antibodies, can be targeted in osteosarcoma.

Although clusters with prognostic advantages and 
suitable for immunotherapy were identified based on 
clustering algorithm, an accurate method is needed to 
quantitatively evaluate osteosarcoma OS and reflect TME 
and signal transduction. Here, we identified the DEGs 
between 2 osteosarcoma clusters mediated by macrophage-
related genes, and created a prognostic risk score system 
with a combination of 9 DEGs by machine learning. 
Some genes in the prognostic risk score system have been 
studied in different cancers. BNIP3 has been found to be 
highly expressed in many types of tumors and described as 
a major independent factor in OS of cancer patients (32).  
GRN is a growth factor and secreted glycosylated peptide, 
which is involved in the invasion of colorectal cancer and 
is a marker of survival in patients (33). DDN has been 
identified as underexpressed in glioblastoma and is a 
biomarker candidate for prognosis (34). FPR1 participates 
in cancer immune surveillance and is regarded as a potential 
immunopharmacological target for neuroblastoma (35,36). 
A pan-cancer study showed that APBB1IP could be used as 
prognostic biomarkers of pan-cancer, and the up-regulation 
of APBB1IP was associated with increased immune cell 
infiltration (37). MUC1 drives drug resistance and immune 
evasion and is described as the main target for the design 
and development of cancer vaccines (38,39). The GBP1 may 
be a double-edged sword in cancer environment, which 
can inhibit cancer cell proliferation in the environment of 
breast and colorectal cancer, but is hijacked by upstream 
tumorigenic events in ovarian cancer and glioblastoma, 
inducing cancer drug resistance and tumor progression (40). 
In our study, we considered the association between the risk 
score system of these genes and the prognosis, TME, and 
biological pathway of osteosarcoma. According to risk score 
system, osteosarcoma samples can obtain a risk score and be 
assessed for the risk of death. A higher risk score means a 
higher risk of death. A risk score system could also monitor 
TME infiltration in osteosarcoma samples and showed a 
close relationship with osteosarcoma biology, including 
metastasis and immunity.

The limitations of this study cannot be ignored. First of 
all, all data were downloaded from public databases, and the 
sample size and clinical information were limited. Second, 
although a risk score system consisting of 9 genes has 
been created, the regulatory network and biological effects 
between these genes remain to be explored.

Conclusions

In summary,  we identif ied 2 macrophage-related 
gene-mediated clusters, which had different degrees 
of  heterogenei ty  in  c l in ica l  phenotype,  immune 
microenvironment characteristics, regulated signal pathway, 
and sensitivity to immunotherapy/antitumor agents. Based 
on the DEGs between the 2 clusters, a new prognostic risk 
score system was created to quantitatively evaluate the OS 
and TME of osteosarcoma. Our research provides a new 
perspective for identifying cancer subtypes suitable for 
immunotherapy and a new entry point for the design of 
personalized therapy.
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