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Abstract: The process analytical technology (PAT) initiative proposed by the US Food and Drug
Administration (FDA) suggests innovative methods to better understand pharmaceutical processes.
The development of analytical methods that quantify active pharmaceutical ingredients (APIs)
in powders and tablets is fundamental to monitoring and controlling a drug product’s quality.
Analytical methods based on vibrational spectroscopy do not require sample preparation and can
be implemented during in-line manufacturing to maintain quality at each stage of operations. In
this study, a mid-infrared (MIR) quantum cascade laser (QCL) spectroscopy-based protocol was
performed to quantify ibuprofen in formulations of powder blends and tablets. Fourteen blends were
prepared with varying concentrations from 0.0% to 21.0% (w/w) API. MIR laser spectra were collected
in the spectral range of 990 to 1600 cm−1. Partial least squares (PLS) models were developed to
correlate the intensities of vibrational signals with API concentrations in powder blends and tablets.
PLS models were evaluated based on the following figures of merit: correlation coefficient (R2), root
mean square error of calibration, root mean square error of prediction, root mean square error of
cross-validation, and relative standard error of prediction. QCL assisted by multivariate analysis
was demonstrated to be accurate and robust for analysis of the content and blend uniformity of
pharmaceutical compounds.

Keywords: quantum cascade laser; PAT; infrared spectroscopy; blend uniformity; content uniformity

1. Introduction

The high demand for medicine by patients with high-risk medical conditions is
one of the pharmaceutical industry’s motivations to research alternatives to improve
manufacturing processes. The development of analytical methods requiring minimal,
or no sample preparation, a short analysis time, and high sensitivity is fundamental to
minimizing specification products.

The traditional analytical methods for quantifying active pharmaceutical ingredients
(API) include chromatographic [1–4] and optical techniques (UV–Vis) [5–7]. These methods
have high reproducibility and low detection limits, although they involve destroying
the samples or transporting them to the laboratory for further analysis. Alternatively,
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analytical methods based on infrared spectroscopy (IRS) and Raman spectroscopy in diffuse
reflectance mode facilitate the analysis of several chemical compounds [8,9], including
drug substances in different pharmaceutical products, from their manufacture until the
final product validation, in a non-invasive way as well as in situ [10–14].

Near-infrared spectroscopy (NIRS) is becoming a mature approach for developing non-
invasive methods in pharmaceutical applications, especially for API in powder blends and
tablets in a diffuse reflectance configuration [15]. The method facilitates the inspection of
multiple compressed tablets in a non-destructive fashion. However, one of the drawbacks
of NIRS is its low sensitivity due to the low absorptivity of the overtones and combination
bands present in this region of the electromagnetic spectrum; in addition to this, the
signals are broad bands that require significant chemometric analysis to extract relevant
information from the spectra. Furthermore, NIRS instruments have a weak radiation
source, i.e., a globar, which produces a higher detection limit. Despite these limitations,
NIRS is preferred for process analytical technology (PAT) applications due to its flexibility
with acquisition modes such as transmittance and reflectance. [16].

The nature of mid-infrared (MIR) light restricts the analysis of condensate phases to a
shallower depth of penetration than NIRS. In the MIR region, the molecules’ vibrational
signatures are unique narrow bands, providing fingerprint identification; therefore, the
specificity needed to identify the chemical compounds with high confidence is possible
even in complex matrices. The high absorptivity of the vibrational bands limits the diffuse
reflectance measurements, and in consequence, results in a low signal-to-noise ratio. To
overcome these limitations, new technology with higher optical power could lead to more
sensitive analytical methods.

Quantum cascade lasers (QCLs) are powerful semiconductor lasers that emit co-
herent high collimated MIR light [17] with a higher brightness than FTIR [18] and syn-
chrotrons [19]. Some of the QCL applications reported include the long-distance detection
of chemical compounds [20–22], sensing of proteins in aqueous solutions [23], quantifi-
cation of explosives in soil [24] and petroleum in soil [25], and monitoring of chemical
reactions [26]. These are a few of the challenging conditions wherein measurements were
possible due to the high optical power of QCL. Due to the high brightness, QCL requires
less integration time than FTIR and NIRS to operate in a higher signal-to-noise spectrum.
Due to the high resolution of QCL, the analysis monitoring of gases [27,28] at extremely
low concentrations with high selectivity is feasible, demonstrating the versatility of this
instrument. Ostendorf et al. [29] have shown the capabilities of QCL in diffuse reflectance
mode for the analysis of food quality, detection of the presence of molds in peanuts, and
remote detection of explosives with back reflection measurements.

This study is the continuation of a proposed reproducible methodology using MIR
QCL spectroscopy in a diffuse reflectance mode [30] with a high analytical sensitivity
equivalent of 0.05% (w/w) API in the formulation, high repeatability (2.7% (w/w)), and
high reproducibility (5.4% (w/w)). Three diodes were used to cover a spectral region of
990 to 1600 cm−1 and multivariate analysis (MVA) was used to quantify drug content and
validate the API, ibuprofen (IBU). We compared the spectral differences between tablets
and powders and showed the possibility of implementing them in both presentations.
Moreover, we suggested that it is possible to use a single laser with a smaller spectral
region which minimizes the system and scanning time. Several partial least squares (PLS)
models were developed for each preprocessing treatment of the spectroscopic data. A
discussion of the three best PLS models and the effect of the focal distance in the prediction
error was presented. The proposed method could be implemented in real time, providing
accurate data to enable control strategies.

2. Materials and Methods
2.1. Reagents and Materials

The materials used in this study included IBU as an API and excipients. API (≥98% GC
grade) was purchased from Sigma-Aldrich (Millipore Sigma, St. Louis, MO, USA). Four
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excipients were used and blended with IBU to obtain powders and tablets in the concentra-
tion range tested. Lactose monohydrate (LM; granular; Meggle Pharma, MEGGLE Group,
Wasserburg, Germany), microcrystalline cellulose (MCC; Vivapur® 102, JRS Pharma LP,
Patterson, New York, NY, USA), colloidal silicon dioxide (C-SiO2) (Aerosil® 200 Pharma,
Evonik Industries AG, Essen, Germany), and magnesium stearate (MgSt) (Mallinckrodt
Inc., Raleigh, NC, USA) were used.

2.2. Sample Preparation

Uncoated tablets and powder blends were prepared in our laboratory, changing the
formulation of the blends of five components (API, LM, MCC, C-SiO2, and MS). An un-
balanced ratio of active pharmaceutical ingredients to excipients may compromise drug
bioavailability and efficacy, resulting in adverse effects for patients. For that reason, this
method was focused on monitoring the IBU concentration. Fourteen different concentra-
tions were prepared in a range from 0% to 21% (w/w) IBU to develop a robust model that
could detect failures in the process monitoring. The detection of placebo samples would
indicate that the powder feeds were empty; in contrast, 21% (w/w) would represent that
the drug content surpassed the concentration limits.

Conventional analytical methods are based on a calibration curve with samples of
concentrations within ±30% of the target analyte. QCL is an emerging technology that
needs to be validated to identify its limitations and capabilities. Therefore, we decided to
cover a broad concentration range (0–21% API) to identify the linear dynamic range of this
method. Having a better understanding of the QCL capabilities and being adopted as a
routine analytical method, we expect future calibration samples to be capable of detecting
a narrower range of concentrations within the API concentration target.

The blending process was performed using a digital mini vortex (Thermo-Fisher Sci-
entific, Waltham, MA, USA) for 10 s at 3000 rpm. The powder blends were then pulverized
in an agate mortar and mechanically mixed to ensure no agglomerate of particulate matter
was present. The tablets were prepared using a manual laboratory press (Carver Standard
Unheated Manual Press; Carver, Inc., Wabash, IN, USA). Compaction pressure was applied
at 3000 psi (20.68 MPa).

2.3. QCL Instrument and Data Acquisition

A total of 280 spectra were obtained for both the samples of the tablets and powder
blends (Table 1). For each concentration, 20 spectra were acquired at different locations
within the sample surface using the back reflection mode of a LaserScan™ predispersive
spectrometer (Block Engineering, Southborough, MA, USA) containing 3 tunable MIR
lasers ranging from 990 to 1600 cm−1 as shown in Figure 1.
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The individual laser tuning ranges were from 990 to 1111 cm−1, 1111 to 1178 cm−1,
and 1178 to 1600 cm−1. The relative humidity and temperature remained at approximately
46% and 20 ◦C, respectively. A background spectrum of KBr was collected before any
spectral data were acquired. Spectra were recorded using one scan. The time to acquire
a complete scan was approximately 0.5 s for each laser, resulting in a total scan time of
1.5 s. The average power typically varied between 0.5 and 10 mW across the 600 cm−1

tuning range. Other laser parameters included a 100:1 transverse electromagnetic (TEM)
polarization mode and a beam divergence of <2.5 and <5 mrad on the x- and y-axes. The
fully contained spectrometer had a 3-inch-diameter ZnSe lens, which focused the MIR
beam, collected the reflected light, and focused the light onto an internal thermoelectrically
cooled mercury–cadmium–telluride detector. The spectroscopic system worked best at
a head-to-target distance of 15 ± 3 cm. Each laser produced an elliptical image with
4 × 2 mm dimensions at the target’s focal plane (15 cm from the laser head) due to the
difference in beam divergence in the axes.

Table 1. Composition of the sample sets used to develop the QCL method used to detect the API in
powder and tablet samples.

Type of Sample Tablets/Powder Blends

Total number of samples 21
Number of QCL spectra per sample 20

Calibration set 14
External validation set 7

API concentration level for the calibration set
0.00%, 1.10%, 3.17%, 5.15%, 7.65%, 9.53%,
11.57%, 12.39%, 14.06%, 15.44%, 16.10%,

17.22%, 18.68%, and 21.67%
API concentration level for the external

validation set
2.20%, 6.37%, 10.06%, 11.74%, 14.38%, 16.98%,

and 19.36%

2.4. MIR Multivariate Data Analysis

MIR vibrational data were obtained over the complete spectral range from 990 to
1600 cm−1. PLS regression models using the calibration data were developed and tested
to quantify IBU in the tablets and powder blends. Several PLS models were generated
based on the spectral range used using PLS Toolbox version 7.5.2 (Eigenvector Research
Inc., Wenatchee, WA, USA) with the MATLAB R2011b version 7.13 platform (MathWorks,
Natick, MA, USA). The performance of the calibration models was evaluated according
to the following figures of merit: correlation coefficient (R2), root mean square error of
calibration (RMSEC), root mean square error of prediction (RMSEP), root mean square
error of cross-validation (RMSECV), and relative standard error of prediction (RSEP).
Several PLS regression models were developed to quantify the IBU in the pharmaceutical
formulations of the tablets and powder blends for each preprocessing treatment applied
and each spectral analysis range. A few of these models were developed using the complete
spectral range (990–1600 cm−1) and a combination of preprocessing treatments. The best
models selected showed a similarity between the different parameters of the calibration and
validation models, including RMSEC, RMSECV, and RMSEP. This maintains the robustness
of the calibration and validation models for both the tablets and powder proposed. The
RSEP is represented by the Equation (1):

RSEP(%) =

√√√√√√∑n
j=1

(
ŷi,pred − yi,re f

)2

∑n
j=1

(
yi,re f

)2 × 100 (1)

This equation indicates the prediction error of the model compared to the reference
values (percentage). A simple inspection of the RSEP values can be used to determine
which of the models is the best for each tablet and powder sample.
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Several preprocessing treatments were applied to the spectroscopic data to reduce
noise and highlight the spectral features related to chemical variation. These data pretreat-
ments included a Savitzky–Golay (SG) first derivative (SG 1-D), a SG second derivative (SG
2-D), mean centering, multiplicative scattering corrections (MSC), standard normal variates
(SNV), transformation to Log (1/R), and baseline corrections and their combinations.

2.5. Comparison of Spectral Noise FTIR and QCL

A comparison between diffuse reflectance FTIR (DR-FTIR) and diffuse reflectance
QCL (DR-QCL) for C-SiO2, one of the most IR-absorbing excipients in the formulation,
was performed to assess their performance in terms of spectral noise. Figure 2A shows the
reflectance spectra of C-SiO2 in the spectral range from 1000 to 1600 cm−1. No significant
differences were observed by visual inspection between DR-FTIR and DR-QCL for the
acquired C-SiO2 spectrum. The sample does not exhibit any signal in the region from 1000
to 1300 cm−1; therefore, this spectral region was magnified (Figure 2B) for close visual noise
inspection. It was found that the DR-QCL spectrum had a better spectral profile than the
DR-FTIR spectra due to lower high-frequency noise. The calculations of the noise showed
that the C-SiO2 spectra obtained by DR-FTIR had 30 times more noise than the DR-QCL
C-SiO2 spectra; therefore, QCL spectroscopy provides less noisy spectra suitable for the
characterization of APIs in formulations. A comparison between DR-FTIR and diffuse
reflectance DR-QCL for IBU and other excipients is presented in Figure 3A–D, showing
agreement. All signals and their corresponding positions were verified.

A comparison of the spectra for blends and tablets at concentrations 0 and 20% w/w
was performed to identify the effects of the physical changes in the spectroscopic data
shown in Figure 4A. The powders exhibited a weaker diffuse reflectance than the tablets.
The compression forces exerted on the blends reduced the voids, making the tablet a
compact solid with a smooth surface, reducing the diffuse transmission, and increasing
the diffuse reflectance. This effect can be observed in the whole spectrum. The absorbance
(−Log (R/R0)) for the powder blend showed a stronger signal than the tablet blend.

Pharmaceutics 2021, 13, x 5 of 13 
 

 

PLS regression models were developed to quantify the IBU in the pharmaceutical formu-
lations of the tablets and powder blends for each preprocessing treatment applied and 
each spectral analysis range. A few of these models were developed using the complete 
spectral range (990–1600 cm−1) and a combination of preprocessing treatments. The best 
models selected showed a similarity between the different parameters of the calibration 
and validation models, including RMSEC, RMSECV, and RMSEP. This maintains the ro-
bustness of the calibration and validation models for both the tablets and powder pro-
posed. The RSEP is represented by the Equation (1): 

𝑅𝑆𝐸𝑃 % ∑ 𝑦 , 𝑦 ,∑ 𝑦 , 100  (1) 

This equation indicates the prediction error of the model compared to the reference 
values (percentage). A simple inspection of the RSEP values can be used to determine 
which of the models is the best for each tablet and powder sample. 

Several preprocessing treatments were applied to the spectroscopic data to reduce 
noise and highlight the spectral features related to chemical variation. These data pretreat-
ments included a Savitzky–Golay (SG) first derivative (SG 1-D), a SG second derivative 
(SG 2-D), mean centering, multiplicative scattering corrections (MSC), standard normal 
variates (SNV), transformation to Log (1/R), and baseline corrections and their combina-
tions. 

2.5. Comparison of Spectral Noise FTIR and QCL 
A comparison between diffuse reflectance FTIR (DR-FTIR) and diffuse reflectance 

QCL (DR-QCL) for C-SiO2, one of the most IR-absorbing excipients in the formulation, 
was performed to assess their performance in terms of spectral noise. Figure 2A shows 
the reflectance spectra of C-SiO2 in the spectral range from 1000 to 1600 cm−1. No signifi-
cant differences were observed by visual inspection between DR-FTIR and DR-QCL for 
the acquired C-SiO2 spectrum. The sample does not exhibit any signal in the region from 
1000 to 1300 cm−1; therefore, this spectral region was magnified (Figure 2B) for close visual 
noise inspection. It was found that the DR-QCL spectrum had a better spectral profile than 
the DR-FTIR spectra due to lower high-frequency noise. The calculations of the noise 
showed that the C-SiO2 spectra obtained by DR-FTIR had 30 times more noise than the 
DR-QCL C-SiO2 spectra; therefore, QCL spectroscopy provides less noisy spectra suitable 
for the characterization of APIs in formulations. A comparison between DR-FTIR and dif-
fuse reflectance DR-QCL for IBU and other excipients is presented in Figure 3A–D, show-
ing agreement. All signals and their corresponding positions were verified. 

 
Figure 2. Comparing the spectroscopic instruments and modes (DR, diffuse reflectance; TR, trans-
mission) used for the characterization of C-SiO2: FTIR and QCL. (A) Spectral range from 1000 to 
1600 cm−1; (B) zoom of the spectral range from 1000 to 1300 cm−1. 

Figure 2. Comparing the spectroscopic instruments and modes (DR, diffuse reflectance; TR, trans-
mission) used for the characterization of C-SiO2: FTIR and QCL. (A) Spectral range from 1000 to
1600 cm−1; (B) zoom of the spectral range from 1000 to 1300 cm−1.



Pharmaceutics 2021, 13, 985 6 of 13
Pharmaceutics 2021, 13, x 6 of 13 
 

 

 
Figure 3. Comparison of the QCL FTIR diffuse reflectance spectra of pure components (A) IBU, (B) ML, (C) MCC, and (D) 
MgST. 

A comparison of the spectra for blends and tablets at concentrations 0 and 20% w/w 
was performed to identify the effects of the physical changes in the spectroscopic data 
shown in Figure 4A. The powders exhibited a weaker diffuse reflectance than the tablets. 
The compression forces exerted on the blends reduced the voids, making the tablet a com-
pact solid with a smooth surface, reducing the diffuse transmission, and increasing the 
diffuse reflectance. This effect can be observed in the whole spectrum. The absorbance 
(−Log (R/Ro)) for the powder blend showed a stronger signal than the tablet blend. 

Figure 3. Comparison of the QCL FTIR diffuse reflectance spectra of pure components (A) IBU, (B) ML, (C) MCC, and (D) MgST.

Pharmaceutics 2021, 13, x 7 of 13 
 

 

 
Figure 4. (A) Comparison of the QCL reflectance spectra of the tablets and powders with 0% and 20% API and (B) weighted 
spectral subtraction between the tablet spectrum and that of the powder with 0% and 20% API. 

A weighted spectral subtraction (D) between the spectrum of the tablet and the spec-
trum of the powder blend was performed to find the differences in the tablet’s surface 
with respect to the powder formulation. The following equation was used to calculate the 
subtraction: 𝐷 𝑌 𝑌 𝑌 𝛼 𝛽 𝑌  (2) 

Y is −Log (R/R0), and the subscripts A and B indicate the minuend and subtrahend 
spectra, respectively. The parameter α is the difference of the spectral offset between spec-
tra A and B, and β is a compensation factor. The values of α and β can be calculated by 
classical least squares [31,32]. 

Figure 4B shows the spectral differences between tablets and powders. The difference 
observed is that the lactose signals are maintained in the 1000–1220 cm−1 region, high-
lighted in turquoise blue. The comparison is made with the pure lactose spectrum, indi-
cating that the amount of this excipient on the tablet’s surface may have increased. A slope 
is also observed in the 1500–1600 cm−1 region, possibly apart from the broad band. This 
spectral feature can be attributed to MgST, which has a band with these characteristics 
[33,34]. Other signals did not match the pure component’s signals, which may be at-
tributed to the interactions between them captured by this sensitive technique [30]. 

3. Results 
3.1. Temporary Measures 

The QCL spectra of a 10% IBU powder blend were measured 10 times at various areas 
in the blend and subsequently repeated after 15 and 60 days. The average spectra at 0, 15, 
and 60 days are shown in Figure 5A. Small changes in each spectrum were observed. To 
bring out these changes, a spectral subtraction was generated using Equation (1), where 
the average spectra at 15 and 60 days were subtracted from the average spectrum of day 
0 (see Figure 5B). Various signals were observed, which could be due to the degradation 
of the components of the formulation. 

Moreover, a strong signal of 1400 cm−1 at 60 days was observed, which should be 
attributed to the primary degradation product. Another possible explanation for these 
differences is the formulation of absorbed water vapor which generated strong interac-
tions and significantly modified the infrared spectrum. This is evidenced by the discovery 
of lines when we subtracted the average spectrum from each of the spectra taken at dif-
ferent sites (see Figure 5A i); strong signs of water vapor were observed in the 1500–1600 
cm−1 region at 15 and 60 days compared with day 0. 

Figure 4. (A) Comparison of the QCL reflectance spectra of the tablets and powders with 0% and 20% API and (B) weighted
spectral subtraction between the tablet spectrum and that of the powder with 0% and 20% API.

A weighted spectral subtraction (D) between the spectrum of the tablet and the
spectrum of the powder blend was performed to find the differences in the tablet’s surface
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with respect to the powder formulation. The following equation was used to calculate the
subtraction:

D[YA − YB] = YA − (α + β × YB) (2)

Y is −Log (R/R0), and the subscripts A and B indicate the minuend and subtrahend
spectra, respectively. The parameter α is the difference of the spectral offset between
spectra A and B, and β is a compensation factor. The values of α and β can be calculated by
classical least squares [31,32].

Figure 4B shows the spectral differences between tablets and powders. The differ-
ence observed is that the lactose signals are maintained in the 1000–1220 cm−1 region,
highlighted in turquoise blue. The comparison is made with the pure lactose spectrum,
indicating that the amount of this excipient on the tablet’s surface may have increased. A
slope is also observed in the 1500–1600 cm−1 region, possibly apart from the broad band.
This spectral feature can be attributed to MgST, which has a band with these character-
istics [33,34]. Other signals did not match the pure component’s signals, which may be
attributed to the interactions between them captured by this sensitive technique [30].

3. Results
3.1. Temporary Measures

The QCL spectra of a 10% IBU powder blend were measured 10 times at various areas
in the blend and subsequently repeated after 15 and 60 days. The average spectra at 0, 15,
and 60 days are shown in Figure 5A. Small changes in each spectrum were observed. To
bring out these changes, a spectral subtraction was generated using Equation (1), where
the average spectra at 15 and 60 days were subtracted from the average spectrum of day 0
(see Figure 5B). Various signals were observed, which could be due to the degradation of
the components of the formulation.

Moreover, a strong signal of 1400 cm−1 at 60 days was observed, which should be
attributed to the primary degradation product. Another possible explanation for these
differences is the formulation of absorbed water vapor which generated strong interactions
and significantly modified the infrared spectrum. This is evidenced by the discovery of
lines when we subtracted the average spectrum from each of the spectra taken at different
sites (see Figure 5A i); strong signs of water vapor were observed in the 1500–1600 cm−1

region at 15 and 60 days compared with day 0.
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Figure 5. (A) Comparison between the average QCL reflectance spectra of the powder with 10% API to different times,
figure inserted i (spectral subtraction between the 10 spectra of powder with 10% API in different sites and the average
spectrum for each time), figure inserted (spectral subtraction between the 10 spectra of the powder with 10% API in the
same site and the average spectrum). (B) Comparison between spectral subtraction of the spectra at other times and time
zero and the components of the formulation.
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3.2. Partial Least Squares Models Results

Figure 6 shows the three best PLS regression models for each sample type (tablets and
powder blends prepared from 0% to 20% IBU with excipients). The results are presented
in terms of measured values (w/w%) versus predicted values (w/w%) for API. The tablet
calibration and external validation sets are represented by red circles and black diamonds,
respectively. The powder calibration set and external validation set are represented by red
squares and black triangles, respectively. The dispersion of the calibration and validation
data through the y = x line varies for the three different preprocessing methods selected,
SNV, SG-1D + SNV, and SNV + MSC.

A model was developed with the raw spectra to obtain a reference model without
pretreatment for further comparison. Considering the data dispersion, the best pretreat-
ment for tablet calibration and validation models was SG-1D + SNV (Figure 6C). The best
pretreatment for powder calibration and validation models was SNV and SNV + MSC,
which were very similar (Figure 6E,F, respectively). Six models were selected in total, based
on the statistical parameters summarized in Table 2.

Table 2. MVA results obtained for tablets and powder blends using the PLS models of QCL re-
flectance data.

Calibration Test

Sample Preprocess RMSEC (%) RMSECV (%) R2CV BiasCV

Tablets
None 1.68 1.69 0.933 −0.02
SNV 1.33 1.38 0.955 −0.0009

SG-1D + SNV 1.13 1.16 0.968 −0.004
Powder None 1.33 1.34 0.958 −0.06
Blend SNV 0.75 0.77 0.986 −0.001

SG-1D + SNV 0.767 0.787 0.985 0.0002

Test Set

Sample Preprocess R2Pred RMSEP (%) RSEP (%) LVs

Tablets
None 0.825 3.11 2.93 2
SNV 0.942 1.95 1.16 3

SG-1D + SNV 0.963 1.38 0.58 4
Powder None 0.928 2.15 1.42 2
Blend SNV 0.973 1.16 0.41 3

SG-1D + SNV 0.972 1.18 0.43 3

An additional test was conducted to explore the reduction of the data acquisition
time by developing PLS models and reducing the spectral range by using single QCL
diodes. The best pretreatments previously discussed were applied using the complete
spectral range/diode for the powder and tablet samples. Table 3 shows the parameters
of RMSECV and RMSEP according to the type of sample, preprocessing, and diode used.
The RMSECV and RMSEP values obtained for the QCL–PLS tablet and powder models
using D3 are lower than D1 and D2. These results show that D3 contains a broader spectral
region than the other two diodes, corresponding to more molecular information in the
API’s vibrational signals.
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Figure 6. PLS regressions obtained for the measured API values in % w/w versus the predicted IBU
values in % w/w for the calibration set and the external validation set. (A) API prediction in tablets
with no preprocessing; (B) API prediction in tablets with SNV preprocessing; (C) API prediction in
tablets with SG-1D + SNV preprocessing; (D) API prediction in powder blends with no preprocessing;
(E) API prediction in powder blends with SNV preprocessing; and (F) API prediction in powders
blend with SNV + MSC preprocessing.

Table 3. Multivariate analysis results obtained for QCL–PLS models by using individual diodes.

Sample Spectral
Preprocessing Diodes

Spectral
Region
(cm−1)

RMSECV (%) RMSEP (%)

Tablets SG-1D + SNV
D1 990–1111 2.05 2.49
D2 1111–1178 1.82 2.28
D3 1178–1600 1.33 1.8

Powder SNV
D1 990–1111 1.29 2.51
D2 1111–1178 1.19 2.56
D3 1178–1600 0.92 1.33

However, the RMSEP value of the models obtained using the spectral region of D3 for
the tablets and powder blends is slightly worse than the RMSEP value obtained using all
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spectral regions. Therefore, the remaining spectral region of D3 (990–1178 cm−1) contributes
to improving the multivariate model. The characteristic bands of the API are observed in
this region.

3.3. Effect of Depth of Focus on Predictability

The distance from the target to the detector is a significant factor when performing
remote detection measurements in an online analysis. The QCL system was focused on a
15 cm depth, representing a 0 cm depth of focus as shown in Figure 7.

The distance between the QCL spot and the target was adjusted on the z-axis (depth) to
defocus the system and then measure the effects of those changes in the error of prediction
(% error) of the sample concentration. A sample with 10 (w/w%) API was prepared, and the
depth of the z-coordinate was changed from 6 to 22 cm. The best depth of focus conditions
for a correct prediction of this sample were ±3 (corresponding to 15 ± 3 cm), with a ± 10%
prediction error. For the depth of focus values above 3 or below −3 cm, the prediction of
the API concentration in the sample was erroneous, and the deviation from the reference
value of 10 w/w% API was significant.
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Figure 7. Variation in the percentage of error (%) and predicted concentration (%, w/w) as a function
of the depth of focus for the QCL beam in predicting a sample with 10% w/w API.

4. Conclusions

Quantum cascade laser technology can significantly impact the pharmaceutical man-
ufacturing of oral solid dosages due to QCL’s high signal-to-noise spectra with a short
integration time, enabling the monitoring of the fast dynamics process with high confi-
dence. Sudden changes in the process will be detectable with this system, considering that
the system requires only 1.5 s to acquire a spectrum.

The MIR region provides a unique absorption spectrum for different components; it
also enables the detection of polymorphic transformation. The analytical method based on
QCL laser spectroscopy successfully quantified the API at concentrations (0–21% w/w) in
tablets and powders. Therefore, the system could detect the API in complex matrices of
several excipients with high specificity. The PLS models developed to quantify the API
from tablets and powders required only the first derivative and SNV as preprocessing
steps, yielding excellent R2 and RMSEP values.

The MVA results of the QCL–PLS models obtained by individual diodes showed
that the best results were obtained using D3 (1178–1600 cm−1). This diode covers a more
extensive spectral range, where the vibrational signatures of the API are present. Therefore,
a QCL using only this diode would reduce the acquisition time of the spectra.
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Conventional FTIR spectrometers are well-established instruments, but QCL has a
higher spectral power density. The spectral analysis of C-SiO2 in the spectral range from
1000 to 1600 cm−1 was performed using two techniques, DR-FTIR and MIR laser DR-QCL,
showing that QCL has a better signal-to-noise ratio, which suggests that it is helpful for
online sensing.

The best depth of focus conditions for a correct API prediction were 15 ± 3 cm,
with a ±10% prediction error; therefore, implementing this method for online sensing
should involve careful adjustment of the experimental setup to focus the laser. Thus,
implementing this approach in a continuous manufacturing line must involve consideration
of the distance of the sample from the laser during the calibration measurements to make a
robust system method that accounts for these variations, particularly for the powder blends.

The QCL system provides a highly collimated laser spot, resulting in a high spatial
resolution suitable for surface mapping to evaluate the distribution of the pharmaceutical
components in the tablet. Researchers have demonstrated that photothermal imaging
of pharmaceutical tablets using quantum cascade lasers provides information on the
distribution of the API and excipients [35]. The detection limits of this method were
reported to be 1% w/w in previous studies [30]; therefore, implementing this method for
cleaning validation of the equipment in pharmaceutical sites would reduce downtime.

Finally, the integrity of the pharmaceutical formulations was evaluated by temporary
measurements that confirmed the degradation or moisture absorption in the formulations.
The versatility of QCL to analyze liquid, solid, and gas samples makes it suitable for
pharmaceutical operations as it is portable, powerful, and provides high specificity.
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