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Abstract: Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several
studies have found it to have healing and antioxidant properties, as well as effective action against
leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto
seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and
biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification
and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl
palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid
lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations
were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta
potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior,
X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance
(EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-
leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed
by TEM results), a PDI of less than 0.30, ZP between −12.6 and −31.2 mV, and more than 50% of
AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high
temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD).
In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The
results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a
potential therapeutic agent against leishmaniasis.

Keywords: annatto oil; Bixa orellana L.; cutaneous leishmaniasis; nanostructured lipid carriers (NLC);
lipid nanoparticles

1. Introduction

Presently, more than one billion people in the world have been affected by Neglected
Tropical Diseases (NTDs), which is considered to be an important public health issue [1,2].
Leishmaniasis is an emerging uncontrolled NTD [3]. There are twelve million people
who are currently infected worldwide, culminating in a high mortality rate (26,000 to
65,000 deaths/year). Epidemiological research indicates that there are 350 million people
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at risk from a zoonotic infection disease caused by Leishmania parasites in 102 countries,
areas, or territories, and large parts of the world, including the European continent [2,4]. In
Spain, for example, leishmaniasis is endemic and of increasing incidence [5].

There are different kinds of Leishmania infection: Visceral Leishmaniasis (VL) and
American Cutaneous Leishmaniasis (ACL), which is subdivided into Cutaneous Leishma-
niasis (CL), Diffuse Cutaneous Leishmaniasis (DCL), and Mucosal Leishmaniasis (ML) [6].
Although not lethal, ACL is the most common, affecting about one million people per year,
and can cause severe deformities [7].

The latest report from the World Health Assembly on leishmaniasis highlighted an
urgent need for its control and monitoring in endemic areas, and increased investment in
research and development for new drugs with better bioavailability and lower costs. In
addition, the same report stressed the need for an existing diagnostic protocols regimen,
especially for the worst case of Leishmania, VL [8].

Leishmania parasites are transmitted to humans through the bite of female sandflies
of the genera Lutzomyia and Phlebotomus. Like many protozoan parasites, Leishmania
parasites have a digenetic lifecycle: an extracellular mobile stage (promastigote), exclusive
to the invertebrate host, and an intracellular (amastigote) non-mobile stage in a mammalian
vertebrate host [9], where the parasites infect cells of the phagocytic mononuclear system,
where the macrophages are the main cellular compartment in the vertebrate host [10].

Currently, the first choices for antileishmanial drugs are Meglumine Antimoniate
(Glucantime®) and Sodium Stibogluconate (Pentostam®); an alternative treatment is ad-
ministered using Amphotericin B, Miltefosine, Paromomycin, and Pentamidine [11–13].
Although these drugs have been used for many years, numerous problems have been
reported, such as a high volume of adverse effects, with toxicity as the essential factor, low
adherence to treatment when parenteral administration is required, an extended period
of use, the high cost of some treatments, resistance (developed by the parasite), and a
lack of the medication itself. Considering the problems related to the drug therapy cur-
rently employed in the treatment of leishmaniasis, the search for new assets capable of
overcoming such limitations and promoting a cure for patients has become increasingly
necessary [3,14–16]. The use of secondary metabolites from nature to develop new drugs is
a promising area that deserves further research and development, but as yet, has not been
fully explored [17].

Annatto (Bixa orellana L.) is a native plant of the tropical regions of America [18].
Annatto seeds are typically composed of 50% carbohydrate, 12–17% protein, 9–13% water,
5–7% ash, 2–5% lipid, and 1–6% various pigments [19]. Also present are alkaloids, flavonoids,
other carotenoids, gallic acid, orelline, di, mono and sesquiterpenes, and palmitic and
linoleic acids. Bixin represents about 80% of the compounds present in the annatto oil
fraction (AO). Besides these compounds, the oil of annatto seeds is rich in tocotrienol-type
antioxidants (~90% delta-tocotrienol, 10% gamma-tocotrienol) [20]. The FDA has approved
annatto and it is frequently used in foods and beverages, cosmetics, pharmaceutical prod-
ucts, and in natural dyes in the textile industry [21].

The development of new nanotechnology platforms can help to overcome the limita-
tions of standard drugs against Cutaneous Leishmaniasis by concentrating on the reduction
of administered doses, targeting drugs, increasing drug stability, and overcoming problems
with immunological recognition delivery [22,23]. Furthermore, nanocarriers can improve
therapeutic efficacy by delivering leishmanicidal drugs in macrophage-rich organs such as
the bone marrow, liver, and spleen. Macrophages, the main phagocytic cells involved in
leishmaniasis infections, can internalize nanoparticles in the size range of 50–500 nm [24].

Lipid nanoparticles (LNP) comprise solid lipid nanoparticles (SLN), nanostructured
lipid carriers (NLCs), and lipid drug conjugates (LDCs). SLNs are carriers composed of
solid lipids at room temperature, while NLCs are obtained from both solid and liquid
lipids. As Leishmaniasis disseminates through the lymphatic and vascular systems, in-
fecting monocytes and macrophages in the liver, spleen, bone marrow, and lymph nodes,
NLCs appear to be an interesting strategy for leishmanicidal treatment, due to their ten-
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dency to target the lymphatic system [24]. NLCs have interesting properties and are
considered “NanoSafe”, mainly due to their excellent stability, biocompatibility, superior
loading efficiency for hydrophobic drugs (natural [25–27] or synthetic [28,29]), and low
nanotoxicity [30,31]. The versatile nature of their inner core, high encapsulation efficiency,
and the low amount of solid content makes them attractive candidates.

Thus, this study aimed to incorporate AO into an NLC suitable for the treatment
of CL. This study evaluated physicochemical parameters pertinent to the formulation
and stability of the obtained nanoparticles. In addition, the in vitro cytotoxicity assays
and leishmanicidal activity of AO in NLCs were evaluated as a potential source for the
development of phytopharmaceutical products.

2. Materials and Methods
2.1. Materials

Crodamol (cetyl palmitate, CP) and Synperonic™ PE (PL) were received as free
samples from Croda (Campinas, SP, Brazil). Myristyl myristate (MM) was donated by
Dhaymers Fine Chemicals (Taboão da Serra, SP, Brazil). Chr. Hansen (São Paulo, SP, Brazil)
supplied the oily fraction from Bixa orellana L. seeds. Hansen (São Paulo, SP, Brazil). Mouse
embryo BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells (HaCaT) were
purchased from Rio de Janeiro Cell Bank (Rio de Janeiro, RJ, Brazil). All other chemicals
and solvents were of analytical grade. Deionized water (18.2 MΩ cm) was obtained from a
Waters ultrapure water system.

2.2. Methods
2.2.1. Preparation of Nanoparticles

Nanoparticles were prepared by the hot emulsion technique and ultrasonication with
composition, provided in Table 1 [32,33]. The preparation of lipid nanoparticles involved
five steps as presented in Figure 1: (1) Heating: CP and MM were heated at 10 ◦C above
their melting point, and for NLC, AO was solubilized into the lipid previously melted
(CM or MM). The PL aqueous solution was also heated at the same temperature as the oil
phase. (2) Pre-emulsion production: the pre-emulsion (O/W) was obtained using a Turrax
mixer (IKA Werke GmbH & Co. KG; Staufen im Breisgau, Germany) under high speed
(10,000 rpm) for 3 min. (3) Homogenization process: Pre-emulsion was homogenized by
tip ultrasonication at 20 kHz for 15 min (15 s on and 15 s off) in a Vibra-Cell ultrasonic
processor (Sonics and Materials; Newtown, CT, USA). (4) Cooling: All samples were cooled
in an ice bath. (5) Packaging: Samples were placed in falcon tubes at room temperature.
The presence of AO favours the production of NLCs disorganized internal structure due to
the mix of different liquid lipid at room temperature [34].

Table 1. Composition of lipid nanoparticles.

Samples 1 CP (%) AO (%) PL (%) Water (%)

SLNcp 10 - 11.7 78.3
NLCcp2 10 2 11.7 76.6
NLCcp4 10 4 11.7 74.8

MM (%) AO (%) PL (%) Water (%)

SLNmm 10 - 11.7 78.3
NLCmm2 10 2 11.7 76.6
NLCmm4 10 4 11.7 74.8

Legend: cetyl palmitate, CP; myristyl myristate, MM; synperonic™ PE, PL; annatto oil fraction (AO). 1 Sample’s
concentration (%, w/w).
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2.2.2. Particle Size, Polydispersity Index, and Zeta Potential

Particle size, polydispersity index (PDI), and zeta potential (ZP) were all measured
by photon correlation spectroscopy (PCS), where samples were diluted (1:100) in Milli-Q
water at 25 ◦C with a scattering angle of 173◦ by ZetaSizer Nano ZS (Malvern® Instruments,
Malvern, UK).

2.2.3. Transmission Electron Microscopy (TEM)

TEM was applied to investigate the morphological aspect of the nanoparticles. For
this purpose, samples were analyzed using a JEOL JEM-2010HC TEM (JEOL Co. Ltd.;
Tokyo, Japan). Samples were diluted (1:50) in distilled water and placed on a 200 Mesh Cu
grid (Electron Microscopy Sciences; Hatfield, PA, USA). A uranyl acetate aqueous solution
(1%, pH 4.0) was mixed with the nanoparticles to improve contrast and then air-dried at
room temperature. The images were obtained for freshly prepared samples (one week
of storage).

2.2.4. Thermal Analysis

The thermal profile of the samples was evaluated through thermogravimetry. For this,
weight loss versus temperature was investigated using DTG-60 (Shimadzu®; Tamboré,
Barueri, SP, Brazil). The samples were previously frozen at −20 ◦C for six hours and then
freeze-dried for 24 h (Martin Christ Freeze-dryers; Osterode am Harz, Germany). The
freeze-dried samples were analyzed under temperatures ranging from 25–500 ◦C, under a
nitrogen atmosphere, a gas flow rate of 50 mL/min, and a heating rate of 10 ◦C/min, using
alumina crucibles. The samples also were analyzed by Differential Scanning Calorimetry
(DSC) using STA 449 F3 Jupiter® (NETZSCH Thermal Analysis; São Paulo, SP, Brazil)
under an atmosphere of nitrogen, 50 mL/min flow, under a temperature range of 25 ◦C
to 200 ◦C, and a heating rate of 10 ◦C/min. Indium was used to calibrate the equipment
(temperature and enthalpy).

2.2.5. X-ray Powder Diffraction (XRD)

XRD analysis was performed to confirm the crystalline arrangement, and to study the
polymorphism of the lipids and nanoparticles. The diffractograms were obtained using an
X-ray diffractometer (D2 Phaser, Bruker Corporation; Madison, WI, USA), where CuKα

(λ = 1.54 Å) radiation was used as X-ray source. The interlayer spacings were calculated
from the reflections using the Bragg’s equation (Equation (1)),

d =
λ

2 sen θ
(1)

where λ is the wavelength of the incident X-ray beam and θ is the scattering angle. The
parameter d, also termed interlayer spacing, is the separation between a particular set of
planes of the crystal lattice structure [35].
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For the analysis, the freeze-dried samples were placed in the aluminum sample
supports and analyzed from 5◦ to 45◦, with an acquisition time of 0.1 s, at 30 kV of
operating voltage, and a current of 10 mA, using a Lynxeye detector.

2.2.6. Electron Paramagnetic Resonance Spectroscopy (EPR)

EPR is a spectroscopic technique that operates in the microwave region (range 9 to
10 GHz). It consists of detecting, indirectly, one or more unpaired electrons (transitions
of electronic spin states) of chemical compounds (paramagnetic molecules), which, when
subjected to a magnetic field, reorient their electronic spins according to their magnetic spin
moments [36,37]. The EPR of spin labels incorporated into lipid vesicles or amphiphilic
aggregates has been broadly used to analyze the viscosity and polarity of the microenvi-
ronment where they are monitored [38]. EPR (Bruker EMX spectrometer (Bruker BioSpin
GmbH, Billerica, MA, USA) was employed to identify the effect of AO on the mobility
and organization of the lipid core of the nanoparticles. The stearic acid-derivative spin is
labelled at the 5th and the 16th carbon of the acyl chain (5- SASL and 16- SASL). The stearic
acid labelled at the 5th carbon atom monitors the nanoparticle region closer to its water
interface. In contrast, the 16 C-atom labels provide information about the nanoparticle core,
close to the end of the lipid (CP or MM) hydrocarbon chains.

5- SASL and 16- SASL were inserted into the lipid milieu of SLNcp, SLNmm, NLCcp4,
and NLCmm4, to monitor the molecular arrangements of CP or MM (with and without AO)
at 37 ◦C, up to 0.8 mol % (relative to total lipid concentration). The spectra were analyzed in
terms of an empirical parameter, ∆H0 (width of the central line), at a temperature between
15 and 50 ◦C [39]. The contribution of both order and mobility of the spin-label inserted
into lipid phases can be displayed using this parameter. Lower ∆H0 values correspond to
either lower order, or higher mobility, or both. We use the term organization to refer to the
sum of both contributions [38].

2.2.7. Encapsulation Efficiency (EE%)

EE% of AO was determined by the indirect ultrafiltration method. Samples were
initially diluted in ultrapure water (1: 500), passed through 10 KDa pore filtration units, and
then centrifuged (7000 rpm, 20 min, 10 ◦C). The supernatant containing the encapsulated oil
was diluted (1:3) in ethanol to allow the particles to rupture and quantified by spectropho-
tometer at 452 nm using Varian Cary® 50 UV–Vis (Palo Alto, Santa Clara, CA, USA) [40].
Calculations were performed using the following Equation (2):

EE (%) =
Encapsulated AO
Total AO added

× 100 (2)

2.2.8. In Vitro Cytotoxicity Assay

The cytotoxicity of free and encapsulated AO against BALB/c 3T3 and HaCaT cells
was investigated by MTT assay. Cells were cultured in a 75 cm2 flask in DMEM, supple-
mented with 10% (v/v) fetal bovine serum or bovine calf serum and antibiotics (strep-
tomycin (10 mg/mL), penicillin (10,000 U/mL) and amphotericin B (25 µg/mL)), un-
der a humidified atmosphere at 37 ◦C with 5% CO2 (Revco™, Thermo Fisher Scientific;
Waltham, MA, USA). Cells were inoculated onto a 96-well plate at 1.9 × 104 cells per well
for BALB/c 3T3 and 2.9 × 105 cells per well for HaCaT and were incubated under hu-
midity at 37 ◦C with 5% CO2 for 24 h. The medium was then replaced with nanoparticles
(SLNcp, NLCcp2, and NLCcp4) solubilized in a fresh medium at different concentrations
(25–300 µg/mL). The plate was incubated in the same conditions as previously described
for 24 h. MTT was added and after four hours of incubation, DMSO was added to the wells
to solubilize formazan crystals. Cell viability was quantified at 540 nm using an Epoch
Microplate Spectrophotometer (Biotek, Winooski, VT, USA) [32,41].
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2.2.9. In Vitro Antileishmanial Assay

An antileishmanial assay was carried out as reported by Bastos et al. (2017) but with
some modifications. Macrophages of the RAW 264.7 strain were kept in a humid oven at
37 ◦C with 5% CO2, with RPMI medium, pH 7.2, supplemented with sodium bicarbon-
ate (2 mg/mL), HEPES (25 mM–pH 7.2) L-glutamine (2 mM), penicillin (0.02 mg/mL),
gentamicin (20 µg/mL), and 10% (v/v) fetal bovine serum [42,43].

L. major cells were grown in Grace’s medium (pH 6.5) supplemented with L-glutamine
(2 mM), penicillin (0.02 mg/mL), and 10% (v/v) inactivated fetal bovine serum and steril-
ized by 0.2 µm pore nitrocellulose membrane filtration, then kept in a dry stove at 25 ◦C
and maintained every three to four days. The macrophages were initially transferred
(200 µL) to a 96-well plate at 1 × 105 macrophages/well and incubated at 37 ◦C for 24 h.
The L. major cells were centrifuged at 1500× g for ten mins at 4 ◦C and then inoculated
(200 µL) onto the plate at a concentration of 15 × 105 L. major/well. The plate was again
incubated at 37 ◦C for 24 h.

At the end of the incubation, each well was washed three times with RPMI base for
the removal of Leishmania cells that did not infect the macrophages. RPMI (200 µL) was
added, and the plate was incubated at 37 ◦C for 24 h. The metabolized medium was
removed, and a fresh medium was added to each well. DMSO (0.1%) was then added
to the control wells, macrophages in culture medium and infected macrophages without
treatment were maintained in internal control wells, and for the test wells, Amphotericin B
(0.3 and 3.125 µg/mL), Glucantime® (200 and 400 µg/mL), unencapsulated AO, and
SLNcp, NLCcp2, and NLCcp4 (2 and 5 µg/mL) were added.

The plate was incubated at 37 ◦C for 48 h. After incubation, each well was washed
three times with RPMI base to remove the substances. Posteriorly, RPMI (50 µL) plus 0.05%
of SDS was added to the wells, and the plate was exposed to room temperature for thirty
minutes to promote the lysis of macrophages. Grace’s supplemented medium was then
added to disrupt lysis and the plate was incubated at 25 ◦C for up to seven days. Finally,
resazurin (20 µL–1 mM) was added and the plate was again incubated for one hour, fol-
lowed by colorimetric analyses (Spectramax® M5, Molecular Devices; San Jose, CA, USA),
performed at wavelengths of 570 nm and 600 nm. The results were established consider-
ing the control wells with untreated infected macrophages as maximum viability, and by
comparing the others in percentage terms.

2.2.10. Statistical Analysis

Statistical analyses were performed using a student’s t-test, ANOVA, and a Tukey-
Kramer post-test performed on GraphPad Prism 6.0 software (GraphPad Software 2012;
San Diego, CA, USA). The level of significance (α) was 5%.

3. Results
3.1. Particle Size, Polydispersity Index, and Zeta Potential

The nanocarriers were analyzed for particle size, PDI, and ZP at 1, 30, 60, and 90 days
(see Figure 2). The ultrasonication method promotes the reduction of the oily droplet size
to the sub-micron scale, and typically forms particles of size less than 500 nm [44].

PDI is a parameter that gives information about the quality of the system’s dispersion,
distinguishing between mono and polydisperse systems. The low PDI values (ranging from
0.10 ± 0.01, and 0.27 ± 0.06) indicate a monodispersed system with a unimodal distribution,
which corroborates with DSC and XRD analyses, as discussed below, which demonstrates
a uniform dispersion of AO in the lipid matrix. However, SLNcp and NLCcp2 significantly
altered their sizes between 1 and 90 days (ANOVA, p < 0.05), suggesting a tendency to
increase particle diameters as the ZP values decreased. In addition, Figure 2 displays the
stability of the SLNmm over the studied period without a significant (p > 0.5) change
in size, PDI, or ZP in contrast to NLCmm (2 and 4) that, after 30 days, presented visual
phase separation. Figure 2 also displays similar zeta potential values for samples with,
and without, AO for both structural lipids (CP and MM), but SLNs (i.e., without AO)
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presented low zeta potential values (in modulus), indicating that the presence of AO is an
important factor related to changes in zeta potential values. Over the storage time, the ZP of
NLCcp2 and NLCcp4 varied by around −30 mV, while the SLNcp formulation underwent
a significant (p < 0.05) reduction (in modulus) throughout storage, indicating a reduction
in the stability of the system. However, the sample NLCcp4 (with a higher concentration
of AO) presented smaller size variation throughout storage, indicating that not only the
presence, but the quantity of this oil can be a determinant factor in the maintenance of
nanoparticle size.
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Figure 2. Particle size, polydispersity index, and zeta potential of CP (a,b) and MM (c,d) nanoparticles in different storage
times. Statistics: Mean ± SD, n = 3. The results of each sample obtained throughout the storage were analyzed through
ANOVA, with a Tukey-Kramer post-test. ‘a’ represents a statistical difference of day one vs. day ninety of the SLN and
NLCcp2 for particle size; ‘b’ day one vs. day ninety of SLN and NLCcp2 for zeta potential. Significance was considered
p < 0.05 for all tests. Observed a phase separation of NLCmm2 and NLCmm4 at day 60 and 90 (size, PDI, and zeta potential
data are presented in Supplementary Materials, Table S1).

The pH of the colloidal dispersion (between 5.0–6.0 for all samples) can also contribute
to zeta potential alteration due to the composition of AO. The main components are
apocarotenoids as bixin (pKa = 4.9), norbixin (pKa = 4.7), and fatty acids as palmitic
(pKa = 9.7), stearic (pKa = 10.15), oleic (pKa = 9.85), and linoleic (pKa = 9.24) [45–47]. In
general, carotenoid radical cations (Car*+) can be formed by electron transfer from the
carotenoid to Lewis acidic sites on a surface. Car*+ is a weak acid that can lose an H+ to
form a proton, less neutral radicals, resulting in the carboxyl group (COO−), explaining
the system’s most negative charge. Furthermore, fatty acids containing 18 carbons (C18)
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have an ion-dipole strong interaction between the carboxylic groups when the values of
environment pH are similar to the compound’s pKa. On the other hand, an additional
observation is the high tendency of compound aggregation when the pH is lower than pKa
with the possible formation of crystals or precipitates [47]. A zeta potential above ±30 mV
is a strong indication of a system’s stability because it reflects high repulsion of the particles,
preventing their aggregation or sedimentation [48].

3.2. Morphology

Figure 3a–c displays micrographs of the nanoparticles based on cetyl palmitate as a
solid lipid, SLNcp, NLCcp2, and NLCcp4. According to the images, it was possible to see
well-defined structures that were approximately spherical. The sizes of the nanoparticles
were similar for the three samples analyzed and were around 200 nm, corroborating
with the data obtained by the DLS technique. Similar results were obtained for SLNmm,
NLCmm2, and NLCmm4 (Figure S2 in Supplementary Materials).
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Figure 3. Transmission electron microscopy of SLNcp (a), NLCcp2 (b), and NLCcp4 (c) display
the morphology and size of the lipid-based nanoparticles. Images with 10,000× and 60,000× (red
highlight) of magnification give polydispersity and details of some nanoparticles, respectively.

3.3. Thermal Profile

Thermal characterization is essential for physicochemical evaluation of lipid-based
nanoparticles. The results can provide information about stability through to thermal be-
havior, crystallinity, and polymorphism of nanoparticle ingredients [49,50]. Figures 3 and 4
report the comparison between the thermogravimetric and calorimetric measurements
performed on raw materials and nanoparticles.

Figure 4a displays a loss of mass in a single event starting at 191 ◦C, 120 ◦C, and 245 ◦C
for CP, MM, and PL, respectively. Nevertheless, the AO presented mass loss in four steps.
The first occurred between 32 ◦C to 101 ◦C with an 11.5% mass loss due to the evaporation
of volatile components. Then, a loss of 42.8% occurred between 103 ◦C to 242 ◦C, this
being related to the material that started to degrade. The third reduction occurred between
247 ◦C and 323 ◦C, where 17.9% of the oil mass was lost due to the degradation of organic
compounds. Then, the final loss of 18.7% was observed between 324 ◦C and 479 ◦C, with
the carbonization of the material (Figure 4a); these results are in agreement with the results
obtained by Bitencourt and co-authors in 2018 [51].
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The four thermal events of the AO do not appear in Figure 3b,c. This behavior can be
explained by the molecular dispersion of the oil within the NLCs promoting a less ordered
structure, as demonstrated by DSC analysis. In addition, the encapsulation of AO in lipid
carriers promoted greater thermal stability compared to free AO.

DSC curves regarding raw materials (CP, MM, PL, and AO) and lipid nanoparticles
(SLN and NLC) are presented in Figure 5, and they corroborate with the literature [32,49,52].
All nanocarriers presented melting points below the temperatures of the raw materials
(around 57 ◦C) and above 37 ◦C. The range of endothermic events, and the respective en-
thalpy observed for the lipid nanoparticles and their components are presented in Figure 5
and Table 2. However, it can be observed that AO is one of the main factors responsible
for the structural modifications in the nanostructured lipid carriers as corroborated by
encapsulation efficiency (EE%), XRD, and EPR analyses.
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Table 2. DSC analysis of lipid nanoparticles produced with cetyl palmitate and myristyl myristate and their compounds
(PL, CP, and MM).

Samples
1st Curve 2nd Curve

TOnset
(◦C)

TEndset
(◦C)

Enthalpy ∆H
(mJ/mg)

TOnset
(◦C)

TEndset
(◦C)

∆H
(mJ/mg)

PL 50.17 58.85 −162.31 - - -
CP 50.08 57.30 −184.76 - - -

SLNcp 50.88 57.58 −144.45 - - -
NLCcp2 49.56 55.73 −127.93 - - -
NLCcp4 49.76 55.43 −116.55 - - -

MM 34.59 43.08 −172.35 - - -
SLNmm 35.14 41.37 −108.42 47.39 54.96 −87.30

NLCmm2 33.09 40.86 −105.73 47.61 55.01 −84.31
NLCmm4 33.59 39.66 −80.78 46.24 53.49 −71.06

Changes in the thermal profile with the displacement of peaks and the shift of melting
point for all NLCs with reduction on the melting enthalpy were observed, being the highest
reduction observed for samples with 4% of AO, if compared with structural lipids (CP or
MM respectively) or unloaded SLN (Figure 5a,b). This suggests a homogenous distribution
of AO in the lipid matrix [49]. As a result, there is an increase in the defects of the lattice [53].
Besides, these shifts of the peaks to lower temperatures are related to the increase in the
amounts of AO. Moreover, the absence of new thermal events suggests a change in the
structural organization of the NLCs due to the amorphization or molecular dispersion of
the oil into the lipid matrix [54] without the formation of a new chemical entity.

The decrease in the melting point of the second peak of the NLCmm can also be
explained by the fact that the MM melts before and contributes to the solubilization of part
of the system, which does not occur with CP. NLCs have several advantages over SLNs, one
of which is the disorderly crystalline arrangement caused by liquid lipid, which allows for
the more efficient retention of the active compound, prolonging its release time/rate [55].

Techniques such as DSC, XRD, and EPR can help to elucidate the arrangements of
crystalline structures, and the degree of order of the lipids present in SLN and NLC. The
composition and production parameters of nanoparticles must be evaluated regarding
the formation of different crystalline forms that in general provide significant physical
and chemical changes regarding the shape, solubility, melting point, and crystallization
of these formed structures. Modifications in the fractions of polymorphs present in the
composition of nanoparticles can lead to a reduction, displacement, or change in the
melting temperature of the system [33].

Table 2 illustrates endothermic parameters calculated from DSC curves obtained to
lipid nanoparticles and their structural lipids. Melting point peak shifts were observed
that can relate to information about the modifications of the lipid polymorphic state (from
crystalline β to metastable form β’) during the cooling of the melted lipid. Also, enthalpy
reduction was observed in lipid nanoparticles compared to pristine lipids, due to the
formation of a new structure indicating their decreased crystallinity [49,56].

3.4. Structural Characterization of Nanoparticles
3.4.1. X-ray Powder Diffraction (XRD)

The presence of polymorph crystals in SLN/NLC’s structures provides significant
physical and chemical changes in form, solubility, and melting point, affecting properties
related to spreadability, encapsulation capacity, product degradation, and consequently,
the release profile of the obtained structures [57,58].

The production of SLN/NLC involves the recrystallization of particles by cooling
the samples. Depending on the speed of cooling of the nanoparticles, the appearance of
polymorphic forms α, β’, and β occurs. In general, long chain lipids undergo crystallization
with two or three different phases detected (α to β’ or α, β’ to β) [59].
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The polymorphic form α is considered the most unstable form. It occurs due to
rapid cooling, providing polymorphic hexagonal crystals. The β forms (parallel triclinic
polymorphs) appear in slower cooling processes with the lipid rearrangement being more
ordered and stable, causing a low degree of drug encapsulation. The β’ form (perpen-
dicular orthorhombic structure) is considered an intermediate form between α and β

polymorphic forms [57].
The lamellae arrangement structures of nanoparticles have been discovered by XRD

analysis [35,49,60]. The XRD patterns indicate that for SLN and NLC, the intensity of the
peaks was reduced (Figure 6), which means changes in the crystallinity of lipids could
have occurred. Amorphization can be observed in Figure 5b,c, mainly due to the structure
of nanoparticles and the presence of AO. The slight decrease in the melting enthalpy
registered by DSC analysis of AO loaded NLCs are in agreement with the decrease in
peak intensity observed by XRD analysis, demonstrating a less ordered structure and
lattice defects.

CP and MM display a crystalline structure, as α and β (Figure 6a and Supplemen-
tary Materials Figure S3), [50,52,61]. The peak at 19◦ is characteristic of the surfactant
(pristine PL); besides, it also appears in all nanoparticles’ diffractograms and demonstrates
the same lamellae arrangement when it is a component of SLN or NLC (Figure 6b,c).

SLNcp and NLCcp exhibited sharp peaks at 2θ scattered angles of 21◦, confirming the
lipid crystalline nature (Figure 6b). The NLCs promoted slight changes in the peaks, mainly
at 23◦ and 24◦, suggesting the modification of the crystal structure due to a less stable matrix
with the presence of α and β’forms. Moreover, SLNmm and NLCmm exhibited sharp
peaks at 2θ scattered angles of 7◦, 19◦, 21◦, and 23◦, also confirming the lipid crystalline
nature (Figure 6c).

The small difference between XRD results obtained for MM and CP lipids (Figure 5)
can be explained by their hydrocarbon chain length with C14 and C16 (carbon atoms),
respectively [53]. The reduction in the intensity of main diffraction peaks was observed
and is related to the reduction of the degree of crystallinity of the lipid in its nanopartic-
ulate state, obtaining a more amorphous system. The dispersion of AO in the mixture
with the solid lipid became the samples which were more amorphous, indicating a less
ordered structure and pronounced lattice defects. This fact is in agreement with thermal
analysis results; it is known that minimal change in crystallinity, enthalpy and melting
temperature of triglycerides are responsive to display α, β’ and β polymorphic forms, and
the slight variation corresponds to the change from the amorphous α-form to the most
stable β-form [56].

3.4.2. Electron Paramagnetic Resonance (EPR)

Electronic paramagnetic resonance (EPR) is a very powerful biophysical technique for
characterizing carrier systems that provides structural and dynamic information of them. In
addition, the EPR of spin labels incorporated into lipid vesicles or amphiphilic aggregates
has been broadly used to analyze the viscosity and polarity of the microenvironment where
they are monitored [33,38,62]. The nitroxide radical (e.g., doxyl-stearic acid, SASL) is the
most used spin-label due to its stability over a wide range of temperatures and pH. The
unpaired electron of the spin label interacts with the external magnetic field and the nuclear
magnetic moment of nitrogen (I = 1). This last interaction is called hyperfine interaction
and allows for the splitting of energy levels [36,38] responsible for the three characteristic
peaks of the nitroxide spectrum, as found in Figure 7. Furthermore, spectral anisotropy is
dependent on the orientation of the molecular axis of the nitroxide radical concerning the
magnetic field. Thus, it reflects the mobility of this spin marker when incorporated into
oriented systems.
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Figure 6. Diffractograms of raw material (a) used to produce cetyl palmitate (b) and myristyl
myristate (c) nanoparticles. Note: α: d = 0.41–0.42 nm, β: d = 0.46 nm, β’: 0.42 < d < 0.43 nm or
0.37 < d < 0.40 nm (main reflections and lattice spacings of the CP, MM and SLN/NLC calculated by
Bragg equation data are presented in Supplementary Materials, Table S2).
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EPR results obtained with 5-SASL and 16-SASL spin labels after being inserted in
bilayers, allowed for the monitoring of different regions of lipid samples. The spectra of
both in SLN (cp and mm) and NLCcp4 and NLCmm4 are displayed in Figure 7a,b, while
Figure 8a,b depicts the changes in ∆H0 as a function of temperature (from 15 to 50 ◦C).
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According to the results presented in Figure 8, all nanoparticles demonstrated a
marked fluidity, with a center field linewidth that decreases continuously as one goes
deeper into the lipid bilayer. This profile indicates that the alkyl chains are strongly
ordered close to the membrane surface (the less fluid region) and strongly disordered in
the membrane center (the more fluid region), and this is characteristic of all fluid-phase
bilayers. Similar results were achieved by Barbosa and collaborators [32,33]. Comparing
CP and MM nanoparticles, those based on CP display an increase in center field linewidth,
for two labels. No abrupt transition was observed with temperature.

In the presence of AO, the NLCcp4 was more fluid than SLNcp (Figure 8a,b), as a
strong indication of the association of AO with CP for the formation of nanostructured
lipid carriers. This effect was even more evident at lower temperatures (35 ◦C, below phase
transition, Figure 8b). Above 35 ◦C, the center field linewidth of the NLC and SLN were
remarkably similar. For MM nanoparticles, these results were not evident, since MM has a
melting point lower than CP (Figure 5a), so the labels did not ‘feel’ the difference between
the nanoparticles with and without oil. Results concerning the stability of nanoparticles in
terms of storage time were discretionary for the choice of samples to continue the work,
consequently only samples produced with CP were evaluated for encapsulation percentage,
rheological assays, cell viability, and antileishmanial activity.

3.5. Encapsulation Efficiency (EE%)

NLCs are characteristically known for their disorganized crystalline structure due to
the presence of liquid lipid, allowing the active substance to become trapped in the formed
spaces [63]. The quantification of AO was carried out by UV-Vis spectrophotometry at
a wavelength of 452 nm (the calibration curve is in Supplementary Materials, Figure S1).
Table 3 displays the encapsulation efficiency of the nanoparticles. Despite NLCcp4 demon-
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strating a lower encapsulation efficiency (EE%), the oil mass encapsulated was 27% more
than NLCcp2; this suggests there is an encapsulation limit to the NLCs.

Table 3. Encapsulation efficiency of NLCs based on Cetyl Palmitate.

Sample EE% AO Encapsulated (g)

NLCcp2 78.92 ± 2.89 0.40
NLCcp4 50.54 ± 3.41 0.51

Mean ± sd, n = 6.

3.6. Antileishmanial Activity (In Vitro)

Macrophages infected with L. major were treated with Glucantime and Amphotericin B,
drugs used in the treatment of leishmaniasis, as well as AO and NLCs (Figure 9). Macrophages
were infected with L. major and treated with antileishmanial drugs, AO, and nanoparticles
with and without AO. After macrophage lysis, the viability of L. major was obtained consid-
ering the infected macrophages, but not treated as being positive control (i.e., 100% viable).
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Free AO was not effective against L. major, since almost all cells remained alive after
treatment. Previous works demonstrated that the antileishmanial activity (IC50) is reached
with at least 8.5 µg/mL, almost double that of the tested concentration [64,65]. Furthermore,
those experiments were performed with promastigote forms: free cells. Here we tested
a lower concentration, based on previous work [66], and we used amastigote forms: an
intracellular cell. Therefore, in addition to using a lower concentration, the L. major parasite
was not directly exposed to treatments. No statistical differences were observed between
the concentrations tested (p > 0.05). Although the SLN did not have any active compound,
it caused an approximate 40% reduction in the parasite cells, presenting a statistically
similar result to Glucantime® (200 µg/mL), and superior to that of free AO.

In Figure 9, it can be also observed that there is a reduction of about 35–40% of the
parasite cells with the unloaded SLNcp. The antileishmanial activity is not attributed to the
lipids but rather to the high surfactant content in the nanoparticles, as discussed below, in
the cytotoxicity assay. It was necessary to add 11.7%, w/w of poloxamer for the entrapment
of AO in the lipid matrix of the nanocarriers. Moreover, Yan et al. (2010) [67] discussed
the role of poloxamer in drug internalization and as an inhibitor of both P-glycoprotein
(P-gp) and cytochrome P450 (CYP3A4), reducing the efflux of drugs from cells. AO-loaded
NLCs demonstrated an efficacy of 70–90%, demonstrating that AO has antileishmanial
activity and that its incorporation into nanocarriers capable of being internalized by cells is
essential for its action against the Leishmania intracellular parasite.
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Thus, AO alone does not present activity against Leishmania but was very active
in NLCcp formulations (more than two times if compared with the unloaded SLNcp),
reinforcing the need for the union of annatto oil and the other of the components of NLCcp
to guarantee an effective antileishmanial activity.

NLCcp2 and NLCcp4 at 5.0 µg/mL presented statistical similarity (p > 0.05), where
both were able to reduce parasitic cells by ∼=90%. This data is comparable to the Ampho-
tericin B results. Also, it can be observed that AO encapsulation into NLCcp (2 and 4) is a
primary factor in increasing the effectiveness of AO against the parasite.

The absorption process of nanostructures depends on factors such as particle size
and surface charge. Jain et al., (2014) presented promising results, where lipid nanopar-
ticles covered with chitosan (~200 nm diameter) were phagocytized and internalized in
macrophages previously infected with Leishmania [68].

According to Lopes et al. (2016), the effective antileishmanial activity of lipid nanocarriers
goes through an effective internalization process of these nanostructures by macrophages [69].
Therefore, Pires and collaborators (2020) evaluated macrophages’ recognition of their solid
lipid nanoparticles by analyzing an uptake assay with fluorescent SLN using thioglycolate-
elicited macrophages from male mice [70]. The authors pointed out the lipidic nature,
negative charge, and diameter of particles (~100 nm) as the main characteristics that propel
the best internalization of the proposed system, and therefore promote a more effective
antileishmanial activity.

Amphotericin B is one of the main drugs used in the treatment of cutaneous leish-
maniasis but its main downsides are its high toxicity and cost [71]. In contrast, AO is
an inexpensive drug; it can be produced by its extraction from annatto seeds. NLCcp2
and NLCcp4 (5.0 µg/mL) demonstrated superior performance compared to Glucantime®

(200 and 400 µg/mL) (p < 0.05), the first choice antileishmanial drug for the treatment of
cutaneous leishmaniasis by the intramuscular (IM) and intravenous (IV) routes, or most
recently intralesional administration [72]. However, severe side effects have been reported
like nephrotoxicity, hepatotoxicity, acute pancreatitis, cardiac alterations, and reports of
varicella-zoster reactivation attributed to glutathione use [73].

3.7. Cytotoxicity In Vitro

The skin is a tissue that has one of the greatest diversities of all cell types. Each cell
differs according to its metabolism and the way it reacts to stress, generating different
responses [74,75]. For this reason, CP lipid nanoparticles (with and without AO) were tested
on two of the main cell types found in the skin such as fibroblasts (3T3) and keratinocytes
(HaCaT) [76]. Given the serious adverse effects of the mentioned drugs in IM or IV
administration with consequent systemic effect, dermal or topical CL treatment may be a
promising alternative with local impact.

Regarding the topical application of lipid nanoparticles, Müller and collaborators
(2011) described the particles’ occlusive effect on the stratum corneum. The researchers
justified that the occlusion occurs due to the development of a lipid film formed by the
nanoparticles’ deposition after application on the skin. Adherence is due to hydrophobic
interactions occurring between the lipid components of the skin and the formulation,
promoting the increase in both the degree of hydration, reinforcement, and repair of the
skin, as well as greater penetration of drugs in the deeper layers of the cutaneous tissue [77].
Associated with the ability of NLCs to adhere to the skin, other studies have demonstrated
the use of lipid nanocarriers for improving the bioavailability of different drugs against
Leishmania [78–81].

The results from Figure 10A,B displayed no cytotoxic effect caused by AO on fibroblast and
keratinocyte cells. For the nanocarriers, only SLNcp’s samples at a concentration ≥ 100 µg/mL
promoted a statistically significant reduction of more than 30% of the number of viable
cells, being considered cytotoxic to HaCaT and 3T3 cells. On the other hand, NLCcp2
and NLCcp4 samples only at a concentration ≥ 150 µg/mL were cytotoxic to fibroblasts
(Figure 10A). Also, Figure 10B displays that NLCs with the highest concentration of AO
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(NLCcp4) had expressive cytotoxicity in samples with a concentration of ≥150 µg/mL
for keratinocytes, unlike samples of NLCcp2 that only displayed a cytotoxic effect at
concentration of ≥250 µg/mL.
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Figure 10. Cytotoxicity of nanoparticles and AO against fibroblasts (A) and keratinocytes (B).
Statistics: (A) ANOVA, with a Tukey-Kramer post-test was used in the comparison of the groups
of formulations related to each concentration; for that, it was considered: (a) NLCcp4 vs. NLCcp2
(150 µg/mL), (b) NLCcp4 vs. SLN (150 µg/mL), (c) NLCcp4 vs. NLCcp2 (250 µg/mL), (d) NLCcp4
vs. SLN (250 µg/mL), (e) NLCcp2 vs. SLN (250 µg/mL), (f) NLCcp4 vs. SLN (300 µg/mL), and (g)
NLCcp2 vs. SLN (300 µg/mL). For the student t test, NLCcp2 vs. NLCcp4 presented no statistical
difference between them. Significance was considered p < 0.05 for the test. Mean ± sd, n = 6. (B).
ANOVA with a Tukey-Kramer post-test was used in the comparison of the groups of formulations
related to each concentration; for that, it was considered: (a) NLCcp4 vs. NLCcp2 (200 µg/mL) and
(b) NLCcp4 vs. SLN (200 µg/mL). For the student t test, only NLCcp2 vs. NLCcp4 (200 µg/mL)
presented any statistical difference, represented by (*). Significance was considered p < 0.05 for the
test. Mean ± sd, n = 6.
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Besides the type and amount of surfactant, elements such as lipid composition and
particle size may also influence any toxicity caused by nanocarriers [82,83]. Barbosa et al.
(2013) presented results of the high viability to 3T3 and HaCaT cells by MTT assay when
they were submitted to treatment with solid lipid nanoparticles prepared with the MM
and CP lipids [32]. However, the formulations contained a poloxamer (PL) concentration
ten times lower than the samples demonstrated here. Similar results obtained by Ridolfi
2011 [84] corroborate these findings. Furthermore, it is noteworthy that the sizes, zeta
potential, and polydispersity of nanoparticles were very similar in both articles [41]. Cur-
rently, more than 200 commercially available cosmetic products contain cetyl esters. In
addition, CP is also considered safe for pharmaceutical and food use by the FDA [85]. In
addition, Doktorovova et al. (2014) presented a systematic review that demonstrated low
cytotoxicity of lipid nanoparticles prepared with CP in different SLNs or NLCs [82].

In the case of PL, it is considered safe and biocompatible [86], so assessing its cyto-
toxicity alone is not common, even knowing that polymeric surfactants can have their
toxicity [87,88]. Recently, it was demonstrated by Utami (2018) [89], an increase in the
toxicity of Poloxamer 188 as a function of the increased dose applied to neuroblastoma cell
lines. Additionally, studies conducted by Chieng et al. (2009) [90] and Wu et al. (2009) [91]
revealed that amphiphilic poloxamers could interact with the lipid bilayer in cell mem-
branes, with or without interrupting its integrity. However, it is not known whether this
interaction (poloxamer/lipid bilayer from cells) is beneficial or not, as poloxamers can act
as both a membrane sealant and permeabilizer [91]. As membrane sealants, poloxamers
have been found to restore the membrane integrity of cells such as fibroblasts [92] and
muscle cells [93]. Nevertheless, as a membrane permeabilizer, poloxamer can fluidize the
membrane and increase absorption.

Studies have also found that more hydrophobic polymers (with longer PPO blocks)
caused more disruption in the lipid bilayer due to more significant interaction with the
bilayer lipids present in the cells [90,94]. In addition, results presented by Utami (2018) [89]
demonstrated the use of poloxamer-based surfactants at much higher concentrations than
CMC provides increased cytotoxicity due to the rapid solubilization of the lipid bilayer
caused by the surfactant [90]. Thus, the reduction in cell viability presented for SLNcp
samples against fibroblasts (Figure 10A) and keratinocytes (Figure 10B) may be due to the
high surfactant (PL) concentration in the formulations.

However, when annatto oil, which has no toxic action, is encapsulated, the cytotoxicity
occurs only at higher concentrations, suggesting that the compounds present in AO could
have a protective effect on skin cells. In fact, bixin, the main component of AO, is found to
present antioxidant and antigenotoxic activities [95,96].

Table 4 presents the results of the half-maximal inhibitory concentration (IC50) of each
nanoparticle, determined by measuring the cytotoxicity (dose-dependent) displayed in
Figure 10 by the percentage of cell viability. The SLNcp samples demonstrated higher
values of IC50 with no significant difference between the values calculated for both cell
types, requiring 243.78 and 345.50 mg/mL to reduce half the concentration of 3T3 and
HaCaT cells, respectively. However, nanostructured carriers were more cytotoxic with an
IC50 lower than SLN samples. In addition, it was observed that only samples with AO at
2% have statistical differences (p < 0.05) between the cell lines evaluated, being more toxic
to fibroblasts. With regard to the IC50, comparing the different types of nanoparticles in
contact with the same cell type, significant differences were observed between all samples
(SLN vs. the two concentrations of AO in the NLCs and between NLC2 vs. NLC4) when the
assay was performed with HaCaT. However, for 3T3 cells, the IC50 values were statistically
different only between SLNcp and NLCcp4.

In addition, it is important to emphasize that the concentration that demonstrated
efficacy against L. major, presented in Figure 9, was considerably lower than the concentra-
tions that caused toxicity to the fibroblasts and keratinocyte (at least 24 times lower) cells
also found in connective and skin tissue, respectively, which demonstrates a large margin
of safety for the formulations.
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Table 4. IC50 of lipid nanoparticles in 3T3 and HaCaT culture cells.

Cells
IC50 (mg/mL)

SLNcp NLCcp2 NLCcp4

BALB/c 3T3 243.78 ± 23.11 a* 181.93 ± 8.67 e* 153.64 ± 7.63

HaCaT 345.50 ± 59.51 b*,c* 257.11 ± 42.11 d* 123.37 ± 24.98
Statistics: ANOVA with a Tukey-Kramer post-test was used in the comparison of groups of formulations related
to each cell line; for that, it was considered: BALB/c 3T3: a SLNcp vs. NLCcp4; HaCaT: b SLNcp vs. NLCcp2;
c SLNcp vs. NLCcp4; d NLCcp2 vs. NLCcp4. Test t Student was used for IC50 of nanoparticles between the two
types of cell line: e NLCcp2: IC50 BALB/c 3T3 vs. IC50 HaCaT. Significance (*) was considered p < 0.05 for the test.
Mean ± sd, n = 6.

4. Conclusions

In conclusion, only the lipid nanoparticles prepared with CP and containing AO pre-
sented a stable and effective system, acting against one of the causative agents of cutaneous
leishmaniasis in concentrations that do not display toxicity fibroblast and keratinocyte cells.
Free AO was not effective against amastigote forms of L. major, present in macrophages. In
this way, the AO encapsulation process in lipid-based carriers facilitated the internalization
of the drug to eliminate parasites into the cell. Therefore, this system opens good prospects
in developing a new drug based on lipid systems containing components extracted from
the Annatto to assist in treating cutaneous Leishmaniasis. It can be a promising alternative
in the treatment of leishmaniasis, allowing accessibility and convenience.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111912/s1, Figure S1: Calibration curve of AO in ethanol. The absorbance was
recorded and the calibration curve plotted against concentrations of AO, which followed Beer’s law
and gave a straight line with R2= 0.9994 and equation y = 7.2416x − 0.0221; Figure S2: Transmission
electron microscopy of samples, SLNmm (a), NLCmm2 (b), and NLCmm4 (c), shows the morphology
and size of the nanoparticle lipid based. The images (46,460x magnification) give polydispersity
and detail some nanoparticles; Figure S3: Diffractograms of myristyl myristate. Red arrow shows
a small peak in 7◦; Table S1: Particle size, polydispersity index, and zeta potential of CP and
MM nanoparticles in different storage times; Table S2: Main reflections and lattice spacings of the
CP, MM and SLN/NLC calculated by Bragg equation. α is considered the most unstable form,
d values between 0.415 and 0.42 nm, β stable forms, d = 0.46 nm and β’ with 0.42 < d < 0.43 nm or
0.37 < d < 0.40 nm.
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