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Adipose stem cells (ASCs) are a crucial element in bone tissue engineering (BTE). They are easy to harvest and isolate, and they are
available in significative quantities, thus offering a feasible and valid alternative to other sources of mesenchymal stem cells (MSCs),
like bone marrow. Together with an advantageous proliferative and differentiative profile, they also offer a high paracrine activity
through the secretion of several bioactive molecules (such as growth factors and miRNAs) via a sustained exosomal release which
can exert efficient conditioning on the surrounding microenvironment. BTE relies on three key elements: (1) scaffold, (2)
osteoprogenitor cells, and (3) bioactive factors. These elements have been thoroughly investigated over the years. The use of
ASCs has offered significative new advancements in the efficacy of each of these elements. Notably, the phenotypic study of
ASCs allowed discovering cell subpopulations, which have enhanced osteogenic and vasculogenic capacity. ASCs favored a
better vascularization and integration of the scaffolds, while improvements in scaffolds’ materials and design tried to exploit the
osteogenic features of ASCs, thus reducing the need for external bioactive factors. At the same time, ASCs proved to be an
incredible source of bioactive, proosteogenic factors that are released through their abundant exosome secretion. ASC exosomes
can exert significant paracrine effects in the surroundings, even in the absence of the primary cells. These paracrine signals
recruit progenitor cells from the host tissues and enhance regeneration. In this review, we will focus on the recent discoveries
which have involved the use of ASCs in BTE. In particular, we are going to analyze the different ASCs’ subpopulations, the
interaction between ASCs and scaffolds, and the bioactive factors which are secreted by ASCs or can induce their osteogenic
commitment. All these advancements are ultimately intended for a faster translational and clinical application of BTE.

1. Introduction

Bone is a complex tissue and participates into several physi-
ological processes, including body movements, mineral
(calcium and phosphate) homeostasis and storage, endocrine
functions, and, in the bone marrow, hematopoiesis [1, 2].
Bone fractures are among the most frequent organ injuries,
and high energy traumas can ultimately result in complex
fracture or losses of bone tissue. Additionally, oncological
skeletal surgery, malformations, prosthesis revision, or osteo-
myelitis can determine segmental loss of osseous structures.
Usually, bone tissues present an excellent self-repair and
regeneration capacity through the recruitment of osteopro-

genitor cells from the surroundings, which entails scarless
healing as the outcome [3]. Unfortunately, sometimes the
damage exceeds bone self-healing capacity ultimately leading
to delayed healing, scar formation, and nonunion or persis-
tent bone defects, in the worst scenario [4]. Usually, a scarce
or compromised vascularization and a reduced number of
progenitor cells underlie these conditions, possibly worsened
by patients’ comorbidities, lifestyle, or genetic factors [5].

Hitherto, the gold standard to treat these conditions is an
autologous bone graft, which is highly biocompatible and
has a low risk for rejection. Nonetheless, many drawbacks
could hinder good results for autograft, including their
limited accessibility, a limited amount of material available,
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and morbidity at the donor site [6, 7]. To overcome these
limitations, bone tissue engineering (BTE) is aimed at recre-
ating bone substitutes that are readily available, highly
biocompatible, and with a significant regenerative potential
[8]. Isolation and characterization of progenitor cells for
therapeutic use have significantly improved the possibilities
of BTE [9]. Among staminal elements, mesenchymal stem
cells (MSCs), first isolated from bone marrow, offered
convenient features since they are obtained from adult
patients and have the ability to undergo osteogenic differen-
tiation [10]. More recently, adipose tissue emerged as an
optimal source of MSCs [11]. Adipose stem cells (ASCs)
exhibit several advantages, even in comparison to bone mar-
row MSCs. They are easy to harvest and to isolate; they have
a high proliferative capacity and differentiative capacity, both
toward angiogenic and osteogenic lineages [12].

Although the first successful experiences of BTE using
ASCs date back to more than ten years ago [13, 14], a
better understanding of different ASC subpopulations, their
physiology, differentiative mechanisms, and paracrine
actions has allowed a continuous development of new
applications for ASC use in designing tissue engineering
products (TEPs) [15]. Usually, TEPs combine three factors:
(1) scaffold, (2) osteoprogenitor cells, and (3) bioactive
factors. The maximization of the osteogenic potential of
ASCs led to the development of novel scaffolds. Concur-
rently, subpopulations of ASCs with an enhanced capacity
to induce bone formation have been isolated. The paracrine
role of ASCs has also been studied further. On this behalf,
ASCs, as an essential source of bioactive factors, can have
a high impact also on tissues of the recipient site. In partic-
ular, ASC-derived exosomes and microRNAs (miRNAs)
have shown significant osteoinductive capacities, thus being
another mechanism for ASC-promoted bone formation. In
this review, we are going to discuss recent discoveries
involving ASC use in tissue engineering, focusing on their
role and interactions with the other components of TEPs.

2. Adipose Stem Cells (ASCs) and
Their Subpopulations

Among MSCs, ASCs present some advantages for tissue
engineering applications. Adipose tissue is easy to harvest
and contains a higher number of staminal precursors, up
to 2,500-fold higher than in bone tissue [16]. However,
ASCs share several features with other MSCs, which are
defined by a position statement of the International Society
for Cellular Therapy (ISCT). Three minimal criteria define
cultured MSCs: (i) plastic adherence in standard culture
conditions; (ii) positivity for the expression of CD105,
CD73, and CD90 and negativity for CD45, CD34, CD14
or CD11b, CD79α or CD19, and HLA-DR surface
molecules; and (iii) potential to undergo trilineage differen-
tiation (adipogenic, chondrogenic, and osteogenic) [17].
Nonetheless, it has emerged over time that, among ASCs,
different subpopulations could be identified. ASCs are part
of the perivascular niche, but the lack of expression of
CD31 distinguishes them from endothelial cells that are
positive for it [18].

CD146, an adhesion molecule also known as Mel-CAM
(melanoma cell adhesion molecule), has been used for the
identification and purification of perivascular progenitor
cells [19]. Among the perivascular ASCs, two different sub-
populations could be identified using the combined analysis
of different surface markers, like CD146, CD34, and CD31:
(i) cells which are CD146+ CD34- CD31- also defined as
pericytes and (ii) CD146- CD34+ CD31- also defined as
adventitial cells [20–23]. Adventitial cells are located in an
outer layer of the supra-adventitial fat, whereas pericytes
are closely associated with the microvasculature [23]. They
hold strict relationships with endothelial cells, and their
interplay has a significant role in the regulation of angiogen-
esis. [24]. Some hypotheses consider pericytes as a more
staminal form that undergo a differentiation process from
inside outwards [25]. Both cell types share with MSC features
like growth, morphology, surface markers, and clonal multi-
lineage differentiation potential [26–29]. According to Rad
et al., the buccal fat pad, compared to abdominal and hip
fat, showed the highest amount of CD146-positive cells,
higher proliferation rate, and expression of osteogenic and
angiogenic markers [30].

Many authors investigated the osteogenic capacity of
sorted CD146+ CD34- CD31- pericytes from adipose tissue
and evaluated their possible use for bone tissue engineering.
James et al. demonstrated for the first time the higher osteo-
genic capacity of sorted pericytes from human lipoaspirate,
compared to matched unsorted ASCs, both in vitro and
in vivo [31]. Pericytes had a better osseous differentiation
compared to unsorted cells, under osteogenic conditions
in vitro. CD146+ cells formed more bone than unsorted cells
in vivo as well, even without predifferentiation. Pericytes
confirmed a high osteogenic capacity when seeded on a can-
cellous bone scaffold and tested on a calvarial critical-sized
defect [32]. In a rat spine fusion model, human pericytes
were able to induce both intramembranous and endochon-
dral bone formation. A complete fusion of lumbar segments
was obtained in all the rats treated with pericytes and ossifi-
cation, bone deposition and bone strength increased in a
dose-dependent fashion [33]. Efficacy of human pericytes
for bone formation was also evident in an atrophic bone non-
union animal model. An increased fracture callus size and
increased mineralization after three weeks finally resulted in
increased bone union [34]. Interestingly, in all these xeno-
grafts models, aside from the osteogenic differentiation of
human pericytes, a paracrine effect was evident, which deter-
mined a repopulation of the defect by host cells. Over time,
only a little chimerism could be detected, with a limited pres-
ence of human cells. Whether the trophic/secretory effect is
more critical for new bone formation than the cellular osteo-
genic differentiation is not clear yet [35].

Wang et al. [36] have demonstrated that cocultivation of
CD146+ pericytes and patient-matched CD34+ adventitial
cells resulted in a better osteogenic and vasculogenic differen-
tiation. When evaluated on a critical-sized calvarial defect
model in NOD/SCID mice, the combination of CD146+
pericytes with CD34+ adventitial cells determined a more
efficient reossification than either cell type alone. It could
be inferred that CD146+ pericytes and CD34+ adventitial
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cells display overlapping and complementary roles, even
though with different functions in bone defect repair. Conse-
quently, CD146+ pericytes and CD34+ adventitial cells may
demonstrate a synergistic effect on bone healing when
applied together as a combined therapy.

Therefore, according to literature data, a more precise
selection and expansion of cellular subpopulations, under
Good Manufacturing Practice (GMP) conditions, could
ultimately lead to more efficient engineering protocols.

3. Scaffolds and Adipose Stem Cells

Scaffolds are three-dimensional constructs that are designed
and intended to recreate the extracellular matrix (ECM), thus
promoting the regeneration of a functional bone. Scaffolds
should guide the healing process, promote the differentiation
of progenitor cells, and mimic the extracellular environment
while providing mechanical support [37].

Various scaffolds have been investigated for bone tissue
engineering (BTE) and synthesized using both inorganic
and organic materials [38]. Generally, an ideal scaffold
should have precise features in order to have an optimal
integration and provide the correct stability [39]. An ideal
scaffold should be biocompatible, thus eliciting a minimal
inflammatory and immunological response, and it should
be biodegradable, which means that it should be substituted
entirely, over time, by autologous tissue. The ability to mimic
the ECM, to facilitate hydroxyapatite (HA) formation and
mineral deposition, and ultimately to provide a physical
structure suitable for bone growth inside and across it is
defined as osteoconduction. Even though stainless steel too
has been proven to be osteoconductive, biodegradable
scaffolds offer the best osteoconductive properties [40].
Nonetheless, a controlled scaffold degradation is desirable
in order to allow the new tissues to grow into it while the
scaffold guarantees adequate mechanical support and stiff-
ness until the process of integration ends. This necessity is
particularly true in load-bearing areas [41].

Under this aspect, it is fundamental to balance carefully
two properties in a scaffold: its porosity and its stiffness.
The first allows an optimal vascular inosculation and cellular
ingrowth, mimicking the native trabecular bone, while the
second is necessary for adequate structural support, which
is less in a highly porous material [39].

Porosity is a critical parameter for the interactions
between cells and the scaffold. A too narrow diameter of
the pores can limit the penetration throughout the scaffold
of newly formed vascular structures and cell migration, while
too wide pores impair the surface area available for cell adhe-
sion [42, 43]. Both these cellular processes are critical for cell
differentiation, proliferation, and migration, ultimately
determining an optimal integration of the scaffold and its
suitability for BTE [44]. Therefore, optimization of pore size
is fundamental during scaffold construction [45].

As mentioned above, osteoconductive scaffolds exert their
properties passively and act as relatively inert support that
guides bone ECM formation, cell migration, and proliferation
toward the regeneration of the defect. Osteoconductive mate-
rials are efficacious mainly with partly differentiated cells like

osteoblast and preosteoblast but do not induce osteogenic dif-
ferentiation of osseous progenitor cells and mesenchymal
stem cells (including ASC) [8]. On the other hand, osteoinduc-
tive biomaterials can recruit progenitor cells and stimulate
their osteoblastic commitment and differentiation, which
allows de novo bone formation [46, 47]. Autografts and tissue
engineering products (TEPs), where scaffolds are enriched
with stem cells or osteogenic factors, e.g., BMPs [48, 49],
usually fall among osteoinductive materials. However, some
biomaterials, like some calcium phosphate cements, have
intrinsic osteoinductive features even without the addition
of osteogenic factors [50, 51]. Osteoinduction, a crucial char-
acteristic of scaffolds, has been widely exploited together with
ASC and osteogenic factors in order to obtain optimal TEPs.
Alongside with excellent osteoinductive properties, a full
osteointegration of the scaffold into the host bone relies also
on adequate vascular support. Neoangiogenesis into the graft
should allow connections to the host microvasculature. A
stable vascularization of the graft and a vascular supply to
the central part of the graft can hold its bioactive function
and avoid necrosis, which is a significant risk to be consid-
ered especially in large bone grafts [52, 53]. The capacity of
a biomaterial to host vascular ingrowth is named angiocon-
duction, whereas the ability of a biomaterial to actively stimu-
late and promote the formation of new vessels goes under the
name of angioinduction [39]. Osteoinduction and osteocon-
duction, angioinduction and angioconduction together with
biocompatibility, biodegradability, and physical andmechan-
ical properties of the scaffold are crucial in order to obtain
ideal TEPs for bone reconstruction.

ASCs have been employed for bone reconstruction
together with several scaffold types derived both from
inorganic and organic sources. Several materials have been
investigated for scaffold production, ranging from
decellularized tissue matrices to inorganic ceramics (e.g.,
hydroxyapatite (HA), coralline-derived hydroxyapatite
(cHA), tricalcium phosphate (TCP), calcium sulphates, glass
ceramics, calcium phosphate-based cements, and bioglass),
synthetic biodegradable polymers such as polylactic acid
(PLA) and polyglycolic acid (PGA), or combinations of two
or more of them [54].

ASCs have been tested on several biomimetic scaffolds
in order to obtain an optimal osteogenic differentiation
and ultimately an ideal TEP for bone reconstruction. The
capacity of a scaffold to directly induce osteogenic differ-
entiation of ASCs, without bioactive factors, could help
in simplifying the approach to bone reconstruction in
the future. Table 1 provides a synthetic overview of recent
literature about the combination of scaffolds and ASCs for
bone tissue engineering.

3.1. Decellularized Matrices. Scaffolds derived from acellular
matrices have several advantages. They have a structure sim-
ilar to that of the original bone extracellular matrix; they can
recapitulate the complex microenvironment of naïve bone,
and they have shown significative osteoinductive capacities
[74]. These materials require a donor tissue and present the
possible risk of transmission of infectious diseases as the
main drawback [75].
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ASCs have been used together with acellular matrices
from different sources. Allografts and xenografts have been
derived mainly from bone tissue [55, 58, 60, 76, 77] but
also from small intestine submucosa [57] or from adipose
tissue [59].

Ko et al. tested a nanostructured tendon-derived scaffold
on a mouse model of calvarial critical-sized bone defects
together with human ASCs (hASCs). hASCs seeded on this
nanostructured tendon-derived scaffold had an enhanced
focal adhesion and an increased osteogenic differentiation
after 21 days. The same construct was layered on the mouse
calvarial defects, ultimately obtaining well-vascularized bone
tissue and a defect closure in 8 weeks [56].

Liu et al. [58] combined hADSC with a deproteinized
bone matrix, derived from New Zealand rabbits. The het-
erogeneous deproteinized bone (HDB) has no severe
immunogenicity, and it holds a natural porosity adequate
for cell adhesion proliferation and differentiation [78].
Composites with HDB were obtained both with naïve
hASCs and with hADSC which have already undergone
a partial osteogenic differentiation. The constructs were
tested on a murine 4mm-long radial bone defect. Both
types of HDB-ASC composites showed a strong osteogenic
ability when compared to control groups, at four and eight
weeks. The best performance was obtained by the HDB-
ASC constructs combined with osteogenic ASCs which
filled the bone defect area and were practically indistin-
guishable from the host bone tissue.

Porcine small intestine submucosa (SIS) was also investi-
gated as another option for bone tissue engineering in a
mouse calvarial defect model [57]. The SIS scaffold was
initially seeded with osteoblasts from the MC3T3-E1 cellular
line in order to obtain ECM deposition. After four weeks, the
ECM-SIS scaffold was decellularized. hASCs seeded on the
ECM-SIS scaffold underwent osteogenic differentiation even
in the absence of the osteogenic differentiation medium.
They were significantly more efficient in bone tissue forma-
tion when compared to those seeded in the SIS-only scaffold.
The murine model confirmed these in vitro data. In mice,
constructs made of ECM-SIS plus hADSCs had the best
performance in comparison to scaffolds alone and also to
ADSCs seeded on SIS-only scaffolds.

Among human allogenic materials, Wagner et al. [60]
tested a construct made of decellularized human cancellous
bone seeded with hASCs, both in vitro and in a murine femur
model with a critical-sized defect. The scaffold was able to
increase the osteogenic differentiation of hASCs when
compared to controls. In the murine model, after four weeks,
seeded scaffolds showed a significative higher formation of
vital bone in comparison to unseeded controls Moreover,
the scaffold showed optimal osteoconductive properties and
favored both the differentiation of hASCs into CD31+ endo-
thelial cells and an increased neoangiogenesis.

In a study by Vériter et al. [55], an ASC-based product
was created combining ASCs and human demineralized
bone matrix (DBM) which has powerful osteoinductive
properties.

ASCs at passage four were incubated with an osteogenic
differentiation medium for 15 to 18 days and then added to

DBM. These grafts were implanted on 11 patients with bone
nonunion from different etiologies, including postoncologi-
cal reconstructions and congenital defects. No serious
adverse events or oncological recurrences were reported
during the follow-up of 54 months. The grafts were fully
integrated, determining the healing of the bone nonunions.

Adipose tissue was also reported as a potential candidate
for a scaffold intended for bone reconstruction. Guerrero
et al. [59] cultivated human adipose tissue from liposuction
for three weeks in a proliferation medium on agarose-coated
plates in order to obtain a construct called Adiscaf. Adiscaf
was confronted with a collagen scaffold (Ultrafoam) seeded
with a monolayer of ASCs from the same patient. Both Adis-
caf and the collagen construct were held for four weeks in a
chondrogenic differentiation medium. Adiscaf differentiated
into cartilage tissue with the synthesis of glycosaminoglycans
and type II collagen. When implanted into a subcutaneous
pouch on nude mice, the cartilage tissue formed into the
Adiscaf was able, after eight weeks, to produce a higher
amount of mineralized tissue compared to Ultrafoam-based
constructs. The ectopic bone formed through endochondral
ossification, and Adiscaf was superior to Ultrafoam both
in vitro and in vivo, thus being a possible candidate for the
generation of osteogenic grafts for bone repair.

3.2. Ceramics. Several synthetic materials, derived both from
inorganic and organic origins, have been tested together with
ASCs as scaffolds for bone tissue engineering.

Calcium phosphate ceramics (e.g., hydroxyapatite
(HA), coralline-derived hydroxyapatite (cHA), tricalcium
phosphate (TCP), calcium sulfates, glass ceramics, calcium
phosphate-based cements, and bioglass) have been intro-
duced about 40 years ago as bone substitutes [54, 79]. They
have excellent osteoinductive properties [80, 81], and they
have been used alone to treat distal radial fracture [82, 83],
but they have the relative disadvantage of a high brittleness,
TCP in particular [84]. Therefore, it could be problematic
to use ceramics, especially when a construct for load-
bearing areas is needed [85]. The combination of calcium
ceramics together (e.g., HA and TCP) or mineral substitution
with strontium or magnesium can improve their mechanical
properties, their biodegradability, and their osteoinductive
capacity [86]. The association of β-TCP and HA has better
mechanical properties than β-TCP alone, while it also
enables a faster and higher bone ingrowth rate than using
HA alone [87].

It was demonstrated that the extracellular calcium con-
centration could influence the differentiation of ASCs
toward an osteogenic phenotype also without any other
soluble osteogenic factor [88]. Elevated calcium induced
osteogenesis and inhibited chondrogenesis in hASC even
in the presence of the chondrogenic differentiation
medium. This phenomenon could be an explanation for
the osteoinductive and osteoconductive capacities of calcium
phosphate ceramics like tricalcium phosphate (TCP) [66].
Interestingly, based on these observations, Mellor et al. devel-
oped a stacked polylactic acid (PLA) nanofibrous scaffolds
containing either 0% or 20% tricalcium phosphate (TCP)
nanoparticles. In chondrogenic differentiation mediums,
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different extracellular calcium concentrations, in different
layers of the scaffold, determined ASCs’ commitment either
toward osteogenesis or into chondrogenesis, thus exploiting
the different calcium concentrations for site-specific
differentiation.

In an in vitro model, an HA/TCP scaffold was able to
enhance the osteogenic differentiation of hASCs, more than
doubling the cellular alkaline phosphatase activity when
added to the osteogenic differentiation medium [61].

β-TCP with ASCs was tested in several clinical settings,
particularly in maxillofacial surgery and neurosurgery, with
excellent results in terms of ossification [62, 89–91].

In a phase I study by Farré-Guasch et al. [62], ten patients
undergoing maxillary sinus floor elevation (MSFE) for dental
implant placement were divided into two groups. Each group
received in a single-step procedure autologous stromal vascu-
lar fraction (SVF), containing ASCs, mixed either with β-
TCP or with biphasic calcium phosphate (BCP), consisting
of 60% hydroxyapatite (HA) and 40% β-tricalcium phos-
phate (β-TCP). A control group was treated with ceramics
only. Both the study groups, compared to the control group,
had an increased vascularization of the implanted area,
which ultimately determined an enhanced bone formation.

cHA was tested by a Chinese group for the construction
of a vascularized tissue-engineered bone together with a
double-cell sheet complex [63]. A double-cell sheet (DCS)
was created inducing ASCs toward vascular and osteogenic
commitment at the same time. The DCS was engineered with
cHA, using different patterns. The pattern organized with
endothelial cell sheets covered with osteogenic cell sheets
had the best results. Moreover, the DCS-cHA complexes
had, in general, better bone maturation and vascularization
of the graft compared to DCS or cHA alone, when implanted
in nude mice and tested for ectopic ossification.

As mentioned above, incorporating minerals, like the
strontium (Sr), into ceramics like HA, could enhance the
osteoinductive properties of the inorganic cements. Sr ions
have the ability to regulate osteoclast activity [92] and to
improve the osteointegration when incorporated into bioac-
tive scaffolds [93] or together with HA [94]. ASCs engineered
in a strontium hydroxyapatite (SrHA) scaffold were used as a
tissue-engineered construct (cSrHA) on a sheep model of
osteoporosis [64]. ASCs demonstrated to act synergically with
Sr ions, thus enhancing the osteogenic capacity of the SrHA
scaffold when compared to acellular scaffold controls. ASCs
adhered and proliferated on the SrHA scaffold, retaining an
optimal osteogenic capacity in vitro. In the in vivo model,
the osteointegration of the construct was superior to controls.

3.3. Synthetic Polymers and Hybrid Scaffolds. Synthetic
polymers have been extensively investigated because of many
advantages that they could offer for scaffold design, including
biocompatibility, controllable biodegradability, and their
physio/chemical properties. Polylactic acid (PLA), polyglyco-
lic acid (PGA), polycaprolactone (PCL), and the copolymer
poly(lactic acid-co-glycolic acid) (PLGA) are among the
most frequently tested for bone tissue engineering [95]. ASCs
have been combined with synthetic polymers with excellent
support to osteogenic differentiation in several preclinical

models [1, 96–98]. Synthetic polymers offer advantageous
chemical, biological, and flexible mechanical properties.
They are highly pure, readily reproducible, and easy to be
tailored to fulfill specific needs. Nonetheless, synthetic poly-
mers have several drawbacks when used alone. They have a
fast degradation rate and a reduced compressive modulus,
and they lack osteoinductive capacity, even though PCL has
shown the ability to increase the osteogenic differentiation
of various human tissue-derived mesenchymal stem cells
(including ASCs) through the activation of the Wnt/β-
catenin and Smad3 signaling pathways [99]. Moreover, some
synthetic polymers, such as PLGA and poly-L-lactic acid
(PLLA), degrade into nonbiocompatible products, often
acids, which can lead to cell dysfunction or death, via pertur-
bation of the scaffold microenvironment. An increased
acidity of the tissue microenvironment, determined by high
concentrations of these degradation products, could also
result in adverse responses, such as inflammation or fibrous
encapsulation [100, 101]. For the sake of overcoming their
drawbacks, synthetic polymers have been often used over
the years in combination with other materials like ceramics
(e.g., HA or TCP), collagen, or natural polymers into hybrid
scaffolds [75]. Hybridization with other materials allows
synthetic polymers to increase their resistance to compres-
sion and their osteoinductive capacity and to prolong their
degradation time. At the same time, the high versatility pro-
vided by synthetic polymers allows using these materials for
scaffold creation through several bioengineering techniques
like 3Dbioprinting or electrospinning [37, 102]. Furthermore,
synthetic polymers (e.g., PLGA) can be used for encapsulation
and progressive release of bioactive molecules, exploiting the
biodegradability profile of the materials [103–105].

Lee et al. [67] tested a 3D-printed PCL/TCP scaffold
seeded with ASCs on a canine model of a maxillary bone
defect. This scaffold enhanced the osteogenic capacity of
ASCs as it was demonstrated by RT-PCR and Western blot
analysis for COL1, OCN, and RUNX2. Moreover, 3D CT
scans demonstrated a process of ossification of the defect
after 12 weeks, confirmed by the histological analysis.

ASCs were able to undergo direct osteogenic differentia-
tion induced by different polymer-mineral constructs in a
murine model. In a study by Duan et al. [68], the different
scaffolds, made of synthetic polymers mixed with different
ceramics, were able to promote osteogenic differentiation of
ASCs in the absence of differentiating factors. Scaffold seeded
with ASCs displayed more ECM and osteoid tissue compared
to those scaffolds without cells.

The addition of starch to PCL (SPCL) was used to
create a wet-spun SPCL scaffold which proved to be
biodegradable and biocompatible and able to harbor
undifferentiated hASCs and support their proliferation
and osteogenic differentiation [65]. Starch increased the
resistance to tensile forces of PCL, thus improving its
mechanical properties. A construct made of undifferenti-
ated hASCs and the SPCL scaffold was tested on a murine
calvarial defect model. ASCs improved the osteogenic
function of SPCL and promoted significantly better bone
deposition. SPCL was able to induce osteogenic differenti-
ation in ASCs even without the addition of osteogenic
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factors, and the newly formed tissue was well integrated
into the surrounding tissues.

3.4. Natural Polymers. Natural polymers are derived from
various sources, mainly animals and plants [106]. They were
among the first scaffolds to be studied in combination with
hASCs to design TEPs because of their properties close to
those of the ECM [107–111]. Natural polymers combined
with hASCs for the use in bone tissue engineering applica-
tions are often animal derivatives. However, polysaccharides
too like chitosan [112–114] or cornstarch [65, 115] have been
investigated for this purpose. In between the animal-derived
polymers, ASCs have demonstrated to positively interact
mainly with fibrin [116], collagen [117, 118], gelatin [111,
119, 120], and silk [69, 121, 122], through the recognition
of specific domains present in polymers’ structures. These
polymers have a good biodegradability profile, and they can
be degraded, modified, or adsorbed by the action of naturally
occurring enzymes [123]. Since they are versatile, they are
often used in combination with other scaffolding materials
(e.g., ceramics or synthetic polymers), resulting in new
constructs that incorporate their biodegradability and their
biological properties, which mimic those of the ECM but
have superior mechanical characteristics [124]. These com-
posite constructs are easy to use and to adapt to multiple
tissue engineering techniques like phase separation, electro-
spinning, or 3D printing [125–129].

When seeded on composite scaffolds synthesized with
natural polymers, ASCs proved optimal adhesion, prolifera-
tion, and osteogenic differentiation, in many cases without
the use of differentiating agents, both in vivo and in vitro.

The combined use of collagen and HA proved optimal
osteoinductive and osteoconductive properties both in vitro
and in vivo [70, 71, 130, 131].

Mazzoni et al. [71] proved that the collagen/HA is an
ideal microenvironment for hASC adhesion and prolifera-
tion, and it determines an upregulation of osteogenic
genes and an improvement of cellular viability and matrix
mineralization, similar to that obtained under osteogenic
culture conditions.

It has been demonstrated that collagen and HA scaffolds
activate distinct osteogenesis signaling pathways in ASCs
[130]. Collagen seemed to stimulate ECM deposition and
osteoblastic differentiation through the stimulation of the
extracellular signal-regulated protein kinase (ERK) pathway,
whereas HA stimulated the osteogenic differentiation of ASCs
via the Wnt/β-catenin pathways which determined an
increase in the osteoprotegerin (OPG)/receptor activator of
nuclear factor-kappa β ligand (RANKL) ratio. The upregula-
tion of these two pathways could explain the synergistic effects
of collagen and HA on the osteogenic differentiation of ASCs.

Calabrese et al. [70] tested the biocompatibility and the
osteogenic capacity of hASCs on collagen-HA scaffolds
in vitro. Undifferentiated ASCs were able to undergo full
differentiation into mature osteoblasts even without the addi-
tion of an osteogenic medium, thus demonstrating a per se
osteoinductive capacity of the scaffold, which could be
exploited in order to have more straightforward translational
applications in the future.

Collagen has also been used together with synthetic
polymers like PGA. ASCs were seeded in combination with
a construct made of collagen sponge and PGA on a rabbit
critical-sized calvarial bone defect [72]. In this animal model,
the scaffold itself was able to promote the healing of the
defect and no difference was noted in between the scaffold-
only group and the scaffold+ASC group.

Silk fibroin is a valuable alternative to other natural
polymers for TEPs in combination with ASCs. It presents
several advantages: in its spongeous form, it has a high
mechanical and tensile strength and it has a high porosity
with the possibility of different pore sizes, which eases cell
attachment, proliferation, and the development of a sup-
portive vascular network. It was demonstrated that a pore
dimension of 400–600μm determines the best bone tissue
formation outcomes, as evidenced by the enhanced produc-
tion of bone protein (osteopontin, collagen type I, and bone
sialoprotein) and calcium deposition, and the increased total
bone volume, in a porous HFIP-derived silk fibroin scaffold
seeded with hASCs. In an osteogenic differentiation medium,
the osteogenic performance in term of alkaline phosphatase
activity (AP) at week 2 and new calcium deposition at week
7 was comparable to those of cells cultured on a decellular-
ized trabecular bone [69].

A Korean group used electrospun silk fibroin nanofiber
scaffolds, which were functionalized with two-stage HA
particles. HA particles were immobilized via polydopamine-
mediated adhesive chemistry. ASCs’ interactions with this
construct were tested both in vitro (under standard and oste-
ogenic culture conditions) and in vivo, on a murine critical-
sized calvarial bone defect model [56]. Furthermore, they also
tested hASCs transfected with the TAZ gene. TAZ is a tran-
scriptional modulator that triggers the osteogenic differentia-
tion of ASCs. Constructs seeded with TAZ-transfected ASCs
had the best osteogenic performance both in vitro and
in vivo. However, those seeded with wild-type hASCs also
proved to be superior to the unseeded scaffold. This study
highlighted the possible future utility of silk fibroin nanofi-
brous scaffolds, enriched with inorganic components and
used in combination with ASCs for bone tissue engineering.

4. Bioactive Factors

Bioactive factors are an integrating part of bone tissue engi-
neering strategies, and they usually have osteoinductive and
angiogenic properties [102].

Several factors like growth factors (like those in the
platelet-rich plasma) or the bone morphogenetic proteins
(BMPs) or drugs like simvastatin or RNA products like miR-
NAs have demonstrated the ability to induce osteogenic
differentiation and angiogenesis into ASCs and in the host
tissues [132–137].

Parallelly, the paracrine action of ASCs has become more
and more evident over the years and it is responsible for their
therapeutic effects, together with their differentiation capac-
ity [138]. These paracrine effects are mostly attributable to
soluble factors and exosomes which control regeneration
processes and the repair of damaged sites by modulating
migration, proliferation, and differentiation [139]. Soluble
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factors and exosomes, with their “cargos,” are promising
options for bone tissue engineering, both improving ASCs’
osteogenic differentiation and enhancing bone formation
through a paracrine osteoinductive activity.

Several studies have recently demonstrated that ASCs-
derived exosomes could have biological effects close to those
of the proper cellular component, in bone regeneration, as
well as in neoangiogenesis and wound healing [140–142].

4.1. Growth Factors (GFs). Usually, the ECM stores many of
these bioactive factors, including many growth factors
(GFs), such as FGF, TGFβ, BMPs, VEGF, and IGF I and II.
In specific pathophysiological conditions, these GFs are
released from the ECM and become available for cells
[143]. When administered exogenously for therapeutic
purposes, these factors have short half-lives in their natural
form. Without any protection, they are readily biodegradable
and their elimination through the bloodstream rapidly
lowers their local concentrations. Lower concentrations
reduce their efficacy into the target organs, while systemic
diffusion increases the risk of adverse effects [38].

Therefore, more adequate delivery strategies should be
investigated and employed in order to have stable and effica-
cious steady-state levels and a prolonged release over time,
which mimics what actually happens under physiological
conditions. Embedding bioactive factors and exosomes into
scaffolds, microsphere encapsulation, and enhanced expres-
sion through gene transfection into mesenchymal cells are
among the most investigated options [39, 128, 140, 144–148].

As mentioned above, efficacious strategies in bone tissue
engineering rely both on an optimal ossification of the con-
structs and on its adequate vascularization, which allows
integration and avoids total or partial necrosis of the graft.
For these purposes, GFs have been extensively studied, and
among them PDGF-BB, the TGF-β family (that includes
BMP proteins), FGFs, insulin-like growth factors, and VEGF.
In particular, VEGF and BMP2 were considered as the prin-
cipal actors in the bone repairing process, respectively, on the
vascular and osteogenic side [149]. It has been demonstrated
that VEGF and BMP2 act synergistically in favor of bone for-
mation and their coadministration is more efficacious than
BMP-2 alone [150]. Three BMPs have already been approved
in clinics: BMP-2 (Infuse bone graft) since 2003, BMP-7 (OP-
1 putty) (from 2003 to 2014 when it was withdrawn), and
rhPGDF-BB (Augment® bone graft), since 2015 [9]. BMP-2
has already been used in many clinical situations together
with ASCs. In several case series, a construct made of hASCs,
with BMP2, onto a β-TCP scaffold, proved efficacious for the
reconstruction of large maxillary or mandibular defects and
those of craniomaxillofacial hard tissues in general [91, 151,
152]. Parallelly, resorbable scaffolds seeded with hASCs com-
bined with BMP2 were used to reconstruct large craniofacial
bony defects in 20 patients [90].

Many GFs useful in bone regeneration, such as b-FGF
or FGF-2, IGF-1, PDGF-BB, and VEGF, are contained in
significative quantities into the platelet-rich plasma (PRP)
[153]. PRP can be used to induce the osteogenic differen-
tiation of ASCs, both in vitro and in vivo [132, 154].
Several authors incorporated PRP into different types of

scaffold in order to have a controlled and prolonged
release of GFs and to favor ASC-mediated bone formation
[155–158]. These systems allowed an increased osteogenic
capacity of ASCs and an enhanced bone deposition, both
in vitro and in animal models.

However, ASCs are not only the target of GFs, but they
are also able to produce and secrete them in both an auto-
crine and paracrine way. They release microvesicles (MVs)
containing angiogenic factors like FGF2, PDGF, VEGF,
MMP2, and MMP9 and osteogenic molecules, such as
BMP2 [159, 160]. Furthermore, ASCs can be engineered to
express and release osteogenic factors like BMP-2. Using this
method, Lin et al. were able to significantly increase calvarial
healing through the BMP2-expressing ASCs/gelatin
constructs and highlighted the importance of combinations
of growth factors and scaffold in healing pathways and their
efficacy together [161].

4.2. Exosomes and miRNAs. Exosomes are extracellular
vesicles with a spheroidal/discoid shape which have a
diameter in between 30 and 150 nm. They play a pivotal
role in intercellular communication since they show the
ability to transport specific molecules like proteins, lipids,
DNAs, and RNAs from cell to cell [162, 163]. The precise
mechanisms through which exosomes determine the oste-
ogenic differentiation of ASCs is still under debate. It has
been discovered that exosomes could regulate the functions
of target cells through epigenetic changes, thus determining
the promotion of bone tissue repair and also their fate
through the induction of proliferation or apoptosis. In these
processes, mainly proteins and RNAs are involved with
significant roles [164–166].

Exosomes derived from MSCs in general, and in particu-
lar those from ASCs, have been investigated in the last years
as a possible strategy for osteogenic differentiation, to employ
as an alternative to osteogenic differentiation mediums, GFs,
and genetic modification [140, 167, 168].

Li et al. [140] tested the efficacy of exosomes derived from
osteogenically committed ASCs in promoting the osteogenic
differentiation of bone marrow MSCs (bmMSCs) and bone
tissue formation. In order to mimic a physiological release,
the exosomes were bound to a PLGA/PDA matrix, which
allowed a slow and controlled release regulated by its biode-
gradability properties. In about 48 hours, bmMSCs almost
completely internalized the exosomes that stimulated cell
proliferation, migration, and osteogenic differentiation,
in vitro. Moreover, the cell-free constructs made of
PLGA/PDA+exosomes, implanted on a murine critical-
sized calvarial bone defect, actively promoted stem cell
migration, homing, and new bone formation, in a better
way than the PLGA/PDA control scaffold.

In a study by Lu et al. [169], the efficacy of ASCs’
exosomes was also confirmed on human primary osteoblastic
cells (HOBs), stimulating proliferation, differentiation, and
bone-forming capacity. They also demonstrated that precon-
ditioning the ASCs with tumor necrosis factor-alpha (TNF-
α), for three days, further increased the capacity of ASCs’
exosomes to induce osteogenic differentiation. They
supposed that the priming with TNF-α mimics the acute
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inflammatory phase following a bone injury. They demon-
strated that exosomes, from TNF-α-preconditioned ASCs,
stimulated the osteogenic gene expression through the Wnt
signaling pathway, which is a fundamental pathway in osteo-
genic differentiation [170, 171].

Yang et al. [172] characterized the exosomes from both
osteogenically differentiated and undifferentiated ASCs. In
the absence of osteogenic factors, exosomes from osteogeni-
cally differentiated cells were able to promote osteogenic
differentiation in undifferentiated ASCs, whereas exosomes
from undifferentiated ASCs were not. Moreover, ASC-
derived exosomes were internalized by target ASCs faster
than by other cell types, like bone marrow MSCs (6 h vs.
48 h). According to the authors, this element could be in
favor of the combined use in bone tissue engineering of ASCs
with ASC-derived exosomes, which limits the loss of exo-
some, due to a more prolonged uptake, and ultimately leads
to a more efficient promotion of bone regeneration. To
explain the differences between differentiated and undiffer-
entiated ASCs, they have furthermore analyzed the miRNAs’
expression profiles of both cell types. Two hundred thirty-
four genes were differently regulated comparing osteogenic
ASCs’ exosomes to those of undifferentiated ASCs (201
upregulated and 33 downregulated). Most of these miRNAs
were related to signaling pathways involved in the osteoge-
netic process, like the MAPK, the Wnt, and the TGF-β sig-
naling pathway. For example, the level of miR-130a-3p was
significantly higher in the exosomes from osteogenic ASCs.
This miRNA targets and blocks SIRT7, an antagonist on
the Wnt pathway, which results ultimately upregulated
[173, 174]. The mir-130a-3p/SIRT7/Wnt axis could be a
molecular mechanism behind exosomes’ efficacy in the
regulation of ASC osteogenic differentiation.

As aforementioned, miRNAs play an essential role in the
regulation of several biological processes, including osteo-
genesis, both positively and negatively.

Apart from those contained in ASCs’ exosomes, miRNAs
can be added into tissue-engineered constructs via different
methods in order to improve the osteogenic efficacy of ASCs.
miRNAs can be included in the structure of the scaffold
which regulates their release, or they can be transfected
through viral vectors into ASCs. Viral transfection carries
with it, of course, some safety issues, which should be further
evaluated, concerning the future translation into clinical
practice [146]. An increased expression of miRNAs like
miR-148b, miR-26a, miR-135, or miR-130a-3p could
enhance the osteogenic processes and increment bone
formation [175–179].

Rat ASCs transfected with a lentivirus expressing miR-
26a and seeded on an HA scaffold showed an upregulation
of proosteogenic genes and an increased bone-forming
capacity. This construct, transplanted in a rat tibial defect
model, was able to fully close the gap in 12 weeks [180].
mir-148b proved excellent osteogenic capacity and showed
a synergistic action together with BMP-2. It was tested on
hASCs in multiple in vitro and in vivo models [177–179].
Two studies by Li et al. and Liao et al. transfected undifferen-
tiated hASCS with baculoviruses coexpressing miR148 and
BMP-2. mir-148b and BMP-2 were prolongedly overex-

pressed, and osteogenic differentiation of ASCs was increased
in both studies. Similarly, transfected hASCs seeded onto a
PLGA scaffold were able to close a murine calvarial bone
defect in 12 weeks.

Qureshi et al. [178] combined a truncated miR-148b
mimic with photoactivated silver nanoparticles. Undifferen-
tiated hASCs were transfected with the photoactivated
miRNA148b-silver nanoparticle conjugates and seeded onto
PCL scaffolds. This miRNA delivery system allows to
potentially control the differentiation in vivo since miRNA
conjugates remain inert until photoexposed at the appro-
priate dosage and wavelength. At 12 weeks, constructs
made of transfected hASCs+PCL scaffold showed a statisti-
cally significant better closure of a mouse calvarial bone
defect when compared to the control groups.

Conversely, other miRNAs such as miR146a, miR-17,
miR-23a, and miR-31 downregulate the BMP2-induced
osteogenesis, suppressing BMP-2 and several downstream
factors like SMAD1/4, Runx2, and Osx. TGFβ1 upregulates
the expression of these miRNAs. Therefore, antagonists of
these miRNA could ultimately determine an improved bone
tissue deposition [133, 175, 181]. A lentivirus expressing an
antisense miR31 was transfected into rat ASCs that were
tested by Deng et al. [181] on a rat critical-sized defect
together with a β-TCP scaffold. The knockout of miR-31
increased the bone volume and the bone mineral density
and decreased the scaffold residue in vivo, thus dramatically
improving the repair of critical-sized defects at eight weeks.

Similarly, rat ASCs modified in order to express an anti-
miR146 were tested both in vitro and in vivo. The inhibition
of miR-146 greatly enhanced ADSC-mediated bone regener-
ation and bone deposition in the animal model [175].

A synthetic overview of the use of bioactive factors for
ASC differentiation is provided in Table 2.

5. Conclusions

ASCs confirmed a central role in BTE, providing many new
solutions and a high versatility of application, as was evident
both in vivo and in vitro. The use of ASCs for regenerative
purposes has shown several advantages in comparison to
other MSCs, but their interactions with the microenviron-
ment and how these interactions affect their differentiation
are still unclear. Different subpopulations of ASCs, such as
pericytes and adventitial cells, have demonstrated a better
performance in terms of angiogenic and osteogenic differen-
tiation compared to unsorted ASCs. Moreover, an accurate
definition of the intrinsic differentiative properties of ASCs’
subpopulations could help to find the most appropriate cell
for each reconstructive purpose.

New scaffolds, designed to mimic the ECM, thus creating
a biological niche to harbor ASCs, are aimed to be fully
biocompatible and biodegradable. They should provide
adequate mechanical support and promote optimal integra-
tion into the host tissues. In this sense, scaffolds could have
a strict interaction with ASCs, through the induction of their
commitment toward osteogenic lineage and the controlled
release of bioactive factors that enhance bone formation
and vascular integration of the graft. This proactive role of
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scaffolds could limit in the future the necessity for prediffer-
entiation of ASCs, which could be committed toward the
desired lineage directly in situ. At the same time, bioactive
factors, released by the scaffolds, could increase the recruit-
ment and differentiation of progenitor cells from the
surroundings. In this sense, ASCs, either naïve or genetically
modified, display important paracrine features. ASCs do not
contribute to the defect closure via their osteogenic differen-
tiation only. The exosomes and the miRNAs, secreted by
osteodifferentiated ASCs, demonstrated to be able to induce
the same processes in other cells. Therefore, ASCs are, at
the same time, a target and a source of bioactive factors.
Fine-tuning of all these components is needed to design
constructs that are close to physiological tissues, highly inte-
grable, widely available, and ready to use. The selection of
proper elements could help in the future in simplifying the
design and the use of TEPs, by reducing the necessity of
strong and nonphysiological differentiative stimuli. Tailoring
TEPs on specific needs would lead toward easier translational
and clinical applications of bioengineering constructs, paving
the way for optimal bone reconstructions.
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