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Abstract: Heavy metal pollution in crops leads to phenological changes, which can be monitored by
remote sensing technology. The present study aims to develop a method for accurately evaluating
heavy metal stress in rice based on remote sensing phenology. First, the enhanced spatial and
temporal adaptive reflectance fusion model (ESTARFM) was applied to blend Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat to generate a time series of fusion images at
30 m resolution, and then the vegetation indices (VIs) related to greenness and moisture content of
the rice canopy were calculated to create the time-series of VIs. Second, phenological metrics were
extracted from the time-series data of VIs, and a feature selection scheme was designed to acquire an
optimal phenological metric subset. Finally, an ensemble model with optimal phenological metrics
as classification features was built using random forest (RF) and gradient boosting (GB) classifiers,
and the classification of stress levels was implemented. The results demonstrated that the overall
accuracy of discrimination for different stress levels is greater than 98%. This study suggests that
fusion images can be utilized to detect heavy metal stress in rice, and the proposed method may be
applicable to classify stress levels.

Keywords: heavy metal stress; time-series; remote sensing phenology; MODIS and Landsat; ensemble
model; feature selection

1. Introduction

The present situation of heavy metal pollution in China is severe, which not only poses a
serious threat to agricultural product quality, and thus harms human health, but also leads to social
instability [1]. The national soil survey jointly released by the Ministry of Land and Resources and the
Ministry of Environmental Protection showed that the over-standard rate of heavy metals in cultivated
land was 19.4%. According to statistics, more than 10 Mt of grain are lost every year in China due to
heavy metal pollution [2,3]. Rice is the crop with the largest area in China and cadmium (Cd, and Cd
hyperaccumulation), as one of the most toxic elements to the human body, has become an important
limiting factor on rice quality. Cd has been extensively studied and its hazard to human health is
regularly reviewed by international organizations such as the World Health Organization (WHO).
Cd accumulates primarily in the kidneys, leading to renal tubular dysfunction and the formation
of kidney stones. High intake of Cd can lead to disorder in calcium metabolism, which results in
osteomalacia, osteoporosis, and painful bone fractures. There is sufficient evidence that long-term
exposure to Cd increases the risk of lung cancer, kidney cancer, and prostate cancer [4,5]. In recent
years, China has identified the prevention and control of heavy metal pollution in cultivated land as
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the key task of development planning [6,7]. Therefore, it is of great significance to monitor heavy metal
stress accurately and timely.

Traditional methods for monitoring heavy metal contamination, such as sample collection and
laboratory analysis, can obtain heavy metal concentrations accurately, and lay a good theoretical
foundation for studying the remote sensing mechanism of heavy metal pollution. However, it is difficult
to establish a wide range of contamination monitoring in the short term, and meanwhile, long-term
field trials add complexity and cost. Remote sensing (RS), with the merits of huge observation scope,
cost-effectiveness, real-time effects and non-destruction, has become an efficient method for monitoring
heavy metal pollution in crops [8–11].

As the change in a plant’s physiological elements, such as chlorophyll content, cell structure,
and water or nitrogen content, can be monitored by the reflection spectrum, some research on
heavy metals in rice have been carried out to identify the relationship between sensitive spectral
characteristics and heavy metal concentrations or physiological factors by establishing empirical or
semi-empirical models. However, the spectral data only reflected the stress state of one or several
growth stages, which may lead to randomness. Still some researchers established the assimilation
framework based on RS and the crop growth models to achieve the dynamic monitoring of heavy
metal stress from the aspects of physiological functions. In such studies, the dry weight of crop roots
(WRT) is generally considered as a good indicator to evaluate stress levels, yet deficiency exists in
reduced sensitivity to heavy metal stress as roots age. Many studies have shown that heavy metal
cadmium (Cd) poisoning can induce short leaves, decreased chlorophyll content, serious yellowing,
and delayed maturity. In addition, Cd stress affects the water content of rice by reducing water
absorption [12–15]. Combining spectral, temporal, and spatial information, the phenological features
extracted using remote sensing technology reflect continuous growth and the stress state of rice
throughout the entire growth stage. Time-series and phenological characteristics have been proved
to be useful to monitor heavy metal stress in rice [10,16–18]. Phenological detection is implemented
through analysis of time series of remotely-sensed images [19–22]. One of the most commonly used
datasets in phenology studies is collected by the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors on the Terra and Aqua satellites. However, it is challenging to detect changes at small
scales or in heterogeneous landscapes using moderate resolution data. Landsat data are insufficient
from a temporal perspective due to cloud contamination or revisit cycle limitation. An alternative
solution is to develop a high spatial and temporal resolution multi-source remote sensing data
fusion method [22–25]. Zhu et al. proposed the enhanced spatial and temporal adaptive reflectance
fusion model (ESTARFM) algorithm to make use of the correlation to blend multi-source data and,
meanwhile, to minimize systemic biases and enhance the accuracy of predicting reflectance in changing,
heterogeneous landscapes [26].

Since the 1970s, many researchers have recognized the potential of multi-temporal satellite
observations to provide information about the phenological development of natural vegetation
and crops. VIs are designed to take advantage of spectral reflection/absorption characteristics of
plants to enhance the vegetation signal and allow dependable spatial-temporal inter-comparisons in
terrestrial photosynthetic activity and canopy structural variations [27,28]. Therefore, the time-series
data of vegetation index with distinct seasonal rhythm are suitable for phenological study [29].
In previous phenological-based stress detection studies, indices reflecting greenness information
(e.g., Normalized Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI) or moisture
information (e.g., Normalized Difference Water Index, NDWI) were used independently, which may
ignore some critical information. Therefore, it is important to monitor heavy metal stress by combining
greenness and moisture information. Because the original temporal vegetation index (VI) profiles
include various noise components, such as aerosols and bidirectional reflectance distribution factors,
noise reduction or fitting techniques, such as the Savitzky-Golay (S-G) filter, Fourier analysis,
and asymmetric Gaussian and double logistic fitting are applied to reconstruct the original VI
time series before application [30,31]. Some researchers have compared these smoothing models,
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and revealed that the Whittaker smoother (WS) had a consistently superior performance in most
cases [32–34]. From the smoothed VI time profiles, phenological periods can be estimated by the
derivation method [35,36], but this method is unable to accurately determine the transplanting period,
and the algorithm that combines rice transplanting signals and agronomic rules provides a new
method for the extraction of phenological stages [37–39]. Previous studies established one or several
phenological indicators for heavy metal stress monitoring, making it difficult to effectively exploit
phenological information. Moreover, the discriminative features have been constructed manually. Thus,
we need to probe for the phenological characteristics and apply some automatic feature extraction
methods to stress detection. In most cases, the NDVI or EVI was used empirically for estimation, which
rarely determined the optimal VIs for stress estimation. Therefore, the key is to select the optimal
discriminative features from this large feature set. Küçük et al. [40] applied support vector machine
recursive feature elimination (SVM-RFE) to select the top four features for phenology monitoring.
The result showed the feasibility of machine learning (ML) algorithms in feature selection. At present,
ML algorithms, such as support vector machines (SVM), decision trees (DT) and random forests (RF)
have been utilized in classification [41–45], and the distinction of heavy metal stress can be considered
a classification problem. The goal of classification problems is to find a model that best predicts the
desired data. The ensemble method involves multiple models and fuses them into a final model,
which generally achieves better predictions [44].

Based on the analysis above, a scheme for stress evaluation was explored in this work. In addition
to mining the annual temporal change in VIs using time series analysis methods, we took advantage of
crop greenness, moisture condition, and corresponding stress characteristics during the whole growth
period. In the following sections, we gave a detailed description of our stress level classification
method and present its application in Zhuzhou City, Hunan Province, China using fusion images
generated by MODIS and Landsat time-series datasets.

2. Materials

2.1. Study Area

Our study area, ranging between 26◦–28◦ North and 112.5◦–114◦ East, is located in Zhuzhou City,
Hunan Province, China. The region has a subtropical monsoon humid climate with abundant rainfall,
and adequate light and heat for rice growth, and the predominant soil type is red soil with sufficient
organic matter (2–3%). These climatic and soil conditions promote high yields of rice, making it an
important grain commodity base. However, large areas have been contaminated by heavy metals
due to sewage irrigation from Xiang Jiang River [46,47]. Previous studies have shown that Cd is the
predominant pollutant in paddy soils that are watered from the Xiang Jiang River, which contains
industrial wastewater [46,47]. The contaminated paddy fields have resulted in rice growth that is
stressed by heavy metals. Six study sites were selected in the research area (Figure 1). According to the
content of the heavy metal Cd, the heavy metal stress levels in rice at these six sites were classified as
non-stress, moderate stress and severe stress, respectively (Table 1). The same rice type (Boyou 9083) is
under intensive cultivation patterns in all sites to ensure adequate irrigation and sufficient fertilizers
in paddy fields without pests, weeds, or other environmental issues.
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Table 1. Heavy metal Cd concentration of the six study sites.

Study Sites Geographic Location Cd Concentration
in Soil Background Value National Quality Standard Pollution Level

A-1 113◦12′ E 27◦47′ N 0.84

1.43 0.3–1.0

None
A-2 113◦10′ E 27◦47′ N 0.84 None
C-1 113◦14′ E 27◦37′ N 2.25 Moderate
C-2 113◦10′ E 27◦40′ N 2.31 Moderate
D-1 113◦06′ E 27◦45′ N 3.27 Severe
D-2 113◦04′ E 27◦49′ N 3.54 Severe

Note: The unit of Cd concentration is mg/kg. The quality standard of soil environment is used to evaluate
pollution levels. Cd background value was obtained from the Hunan Institute of Geophysical and Geochemical
Exploration, China.Sensors 2018, 18, x FOR PEER REVIEW  4 of 19 
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Figure 1. Location map of the six study sites in Zhuzhou, Hunan Province, China.

2.2. Data Preparation

The experiment was carried out during the entire rice growing stages in 2013. The data included
remote sensing images and field measurements. We downloaded Landsat 8 OLI (Operational Land
Imager) and Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) Level-2 surface reflectance products
in the study area from early May to late October from the United States Geological Survey (USGS)
EarthExplorer (http://earthexplorer.usgs.gov/), and then performed layer stacking and regional
clipping on Landsat data. In addition, due to the failure of the Landsat-7 airborne scan line corrector
(SLC) in May 2003, gapfill processing was required for the ETM+ images. The MOD09A1 product is
8-day composite surface reflectance data with spatial resolution of 500 m. Zhuzhou City is covered by
two tiles (h28v06 and h27v06) of MOD09A1 data. We obtained the two tiles from National Aeronautics
and Space Administration (NASA) (https://ladsweb.modaps.eosdis.nasa.gov/) and conducted image
mosaic and reprojection to MODIS data using Modis Reprojection Tool (MRT) software. Furthermore,
in order to implement the ESTARFM algorithm, the order of MOD09A1 data layer stacking was
adjusted to match the order of Landsat data. The ESTARFM algorithm is the key to generating
synthetic images, which requires at least two pairs of fine- and coarse-resolution images obtained on
the same date, as well as a set of coarse resolution images for prediction. The algorithm implementation
includes four components: (1) Search similar pixels based on two ETM+ or OLI images at different
times; (2) compute the weights (Wi) of all similar pixels; (3) decide the conversion coefficients (Ci) by
linear regression; and (4) predict the fine-resolution reflectance from MOD09A1 image on the desired
date by Wi and Ci. Moreover, according to the pixel value interpretation of quality assessment (QA)
information distributed by USGS, we masked out the pixels that might be affected by instrument
artifacts or cloud contamination for subsequent research [48,49].

We conducted a field survey in six study sites of the research area. In each study site, the latitude
and longitude coordinates at the center of each sample plot were measured by GPS. In each plot, the rice
samples and soil samples were simultaneously collected and preserved in sample bags and soil boxes,

http://earthexplorer.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/


Sensors 2018, 18, 4425 5 of 19

and then sent to the laboratory for analysis of the physicochemical characteristics. Each sampled plot
contained four subplots, and we sampled 30 g of soil and a whole rice plant in each subplot. The soil
of four subplots in each sample plot was mixed for heavy metal measurement; that is, the average
heavy metal content of soil samples in each plot was taken as its heavy metal content. The heavy metal
content in the soil was analyzed at the Chinese Academy of Agricultural Sciences. 0.5 g of soil samples
were put into polytetrafluoroethylene digestion tube with 5 mL of hydrochloric acid and 10 mL of
nitric acid (excellent grade), and then placed overnight. On the next day, 2 mL of hydrofluoric acid
and 2 mL of perchloric acid were added to digest the samples by heating. Finally, 2–3 mL of liquid was
transferred to a 50 mL plastic volumetric flask for cooling and constant volume, and the metal content
was determined by inductively coupled plasma mass spectrometer ICP-MS (Model: Agilent 7900,
Agilent Technologies, Santa Clara, CA, USA).

3. Methods

A method for accurately monitoring rice under heavy metal stress at the region scale was proposed
(Figure 2). It focuses on the following procedures: (i) calculate vegetation indices and create time
series; (ii) design phenological parameters based on changes in rice phenology under heavy metal
stress using Matlab and Tsfresh package; (iii) select an optimal phenological feature subset from the
original feature set, and establish an ensemble model based on machine learning algorithms to classify
heavy metal stress levels in rice; and, (iv) evaluate the accuracy of classification results.

3.1. Construction of VI Time Series for Phenological Analysis

Images with cloud cover of less than 30% in the research area were used as inputs of the
ESTARFM algorithm, and a series of fusion images was obtained. Depending on the QA bands,
we masked out the pixels that exhibited instrument artifacts or cloud contamination, and removed the
images with more bad-quality rice pixels. Finally, we obtained 22 images, including original Landsat
images and the synthetic images, which were combined to create time series data in chronological
order. For each image, we calculated four vegetation indices—(a) NDVI, (b) EVI, (c) NDWI(1) and
(d) NDWI(2)—using the land surface reflectance values of the blue (ρblue), green (ρgreen), red (ρred),
NIR (ρnir), SWIR1 (ρswir1), and SWIR2 (ρswir2) bands. NDVI and EVI were selected for their performance
in detecting canopy greenness. We also applied NDWI(1) and NDWI(2), which are sensitive to leaf
water and soil moisture [50–52]. The spectral indices were calculated using the following equations:

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

EVI = 2.5 ∗ (ρnir − ρred)/(ρnir + 6 ∗ ρred − 7.5 ∗ ρblue + 1) (2)

NDWI(1) = (ρnir − ρswir1)/(ρnir + ρswir1) (3)

NDWI(2) = (ρnir − ρswir2)/(ρnir + ρswir2) (4)

The Whittaker smoother is based on penalized least squares [53]. It fits a discrete series to discrete
data and puts a penalty on the roughness of the smooth curve [54]. The fitting effect, Q, depends on the
fidelity to original data, the roughness of smoothed data, R, and the smoothing parameter, k. The aim of
penalized least squares is to find the series, z, that minimizes Q. Suppose a noisy series y. The smoother
z is, the more it will deviate from y. The larger the parameter k, the stronger the influence of R on the
goal Q. Some researchers have found that setting the k value to 2 has a higher fitting accuracy [55,56].
Accordingly, we set the k value to 2 in this study. The smoothing program was run in Matlab software.
The algorithm is extremely fast, provides continuous control over smoothness with only one parameter,
and interpolates automatically. The filtering efficiently removed the negatively biased noise present in
the original data, while preserving the overall shape of the curves showing vegetation growth and
development [56]. It has shown a high potential for remotely sensed time series filter and phenological
study [32,56]. Therefore, the WS was chosen in this research.
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Figure 2. Overview of methodology.

3.2. Designing Phenological Metrics from Seasonal Patterns of VIs

We extracted four key phenological phases, that is, rice transplanting, tillering, heading,
and maturity. For each growth cycle, the heading date was first identified based on maximum value.
In the transplanting phase, rice paddy fields are a mixture of water and green rice plants, and NDWI
values are larger than NDVI or EVI values; specifically, here we recognized the transplanting signals
using the criteria NDWI > EVI or NDWI > NDVI [37–39]. We selected the date with the maximum
value of the first derivative to identify the active tillering phase, and the date that corresponded to
zero of the second derivative was considered to be the maturity stage [35,36]. Studies [12–17] have
shown that: (1) when the rice is exposed to heavy metal stress (e.g., from Cd), enzyme required for
chlorophyll formation is inhibited, and chlorophyll content decreased, resulting in chlorosis symptoms
in rice, which performed in the NDVI/EVI time-series is the reduction of maximum and minimum
NDVI/EVI values; (2) the toxicity of heavy metals can influence the ability of organs to accept and
convert photosynthetic products, resulting in reduced growth rate and the length of growth season;
(3) the toxicity of heavy metals can also lead to other phenological changes, such as postponed heading
date, decreased water content, delayed greening and maturation. Therefore, for unstressed rice, the
EVI or NDVI values at heading dates and magnitude of the EVI or NDVI change might be larger than
for stressed rice, and the time range from the end of transplanting to the heading date might be shorter
compared to stressed rice. Moreover, changes of water content in non-stressed rice during the rice
growth period are generally different from those in stressed rice. We built phenological indicators
based on the phenological differences under heavy metal stress.

We calculated the annual average, maximum and minimum values of VIs, and extracted some
phenological parameters with reference to TIMESAT [57]. Furthermore, two growth stages were
determined based on the estimated phenological periods: the early growth stage was defined as the
period from estimated transplanting to heading date, and the late growth stage was defined as the
period from the estimated heading date to the maturity date. Some phenology-based indicators were
designed during the early or the late growth stage. Reed et al. [27] verified that these indicators may
not necessarily directly correspond to conventional, ground-based phenological events, but show
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strong coincidence with expected phenological characteristics. It has been proved that phenology
can be a practical indicator for heavy metal stress in rice plants [16,17]; the significance of these
indicators lies in the possibility to map out phenological changes in vegetation [58]. Basic details of the
phenological signatures are listed in Table 2. To further mine the hidden phenological information
in VI time series, we extracted features automatically by time-series feature extraction method.
Time-series feature extraction is a time-consuming process because researchers have to consider
the multifarious algorithms of signal processing and time-series analysis for identifying and extracting
meaningful features from time series. The Python package Tsfresh accelerates this process by combining
63 time-series characterization methods, and automatically calculates a large number of time series
characteristics (794 time series features by default) [59,60]. The Tsfresh package has a built-in filtering
procedure, which mathematically removes the extracted null-value features [59,60]. In this study,
we automatically obtained thousands of features employing the Tsfresh package.

Table 2. List of phenological signatures manually established in this study.

Feature Category Parameters Number of Parameters

Phenological signatures

Annual average, maximum and minimum values of VIs 18
Base level, seasonal amplitude, seasonal integral, seasonal length and growth ratio 10

VIs(heading)-VIs(maturity) 6
VIs(heading)-VIs(tillering) 6

T(heading)-T(transplantend); 2
(NDWImax-NDWImin)/(VI(heading)-VI(maturity)) 2
(NDWImax-NDWImin)/(VI(heading)-VI(tillering)) 2

Total 46

Note: VIs refers to NDVI, EVI, NDWI(1), NDWI(2), NDVI2+NDWI(2)2 and EVI2+NDWI(1)2. VIs(heading),
VIs(maturity), VIs(tillering) refers to the VIs values in heading, maturity and tillering date respectively. VI(heading),
VI(maturity) and VI(tillering) refers to the EVI or NDVI values in heading, maturity and tillering date respectively.
T(heading) and T(transplantend) refers to the dates in heading and the end of transplant respectively.

3.3. Classification of Heavy Metal Stress Levels in Rice

The hyper-dimensional feature space consisted of thousands of remote sensing features. It was
necessary to apply an optimal feature selection strategy to this space to reduce redundancy and
computation, and the optimal feature subsets inherited the original physical/mathematical meanings
of the features [61]. The normalized feature selection scikit-learn exposes feature selection routines as
objects that implement the transform method [62]. SelectKBest, as a class in the scikit-learn library,
can be used for feature selection. We applied SelectKBest to obtain a preliminary feature subset.
The analysis of variance (ANOVA) F-value is the default function of SelectKbest, which has been
used in statistical discriminant analysis. The F-value is an statistic which estimates the significance
of variables participating discriminant efficiency [63,64]. We implemented feature ranking based on
the F-value, the large F-values were preferred, and then went backwards, until the desired number of
features were obtained. Then, we executed feature selection through recursive features elimination
with cross-validation (RFECV). RFE involves selecting features by recursively considering smaller
and smaller sets of features, that is, acquiring the importance of each feature and pruning the least
important features from the current feature set [40]. This procedure is recursively repeated on the
pruned set until the desired number of features to select is eventually reached. RFECV performs RFE
in a cross-validation loop to find the optimal features. As a result, an optimal feature subset was built
for the classification task.

We conducted classification and regression tree (CART) classification on the Landsat 8 OLI image
on 17 September 2013, extracted the farmland areas, and then selected rice pixels based on a field
survey and Google Earth. Consequently, 1838 rice pixels were obtained for research. Previous work
has shown that using boosting and bagging ensemble classifiers achieved greater accuracy than using
single classifiers, and was more stable and robust to noise in the training data [44,65]. The random
forest (RF) classifier is a good example of the bagging method, and the gradient boosting (GB) classifier
is based on the boosting method. We built an ensemble model for the classification of heavy metal stress
levels using RF and GB classifiers, that is, firstly, we respectively exploited the two classifiers (RF and
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GB) to calculate the probabilities that each rice pixel belongs to each stress level, then averaged the
probabilities obtained by these two classifiers and took these average values as the final probabilities
of the pixel. In addition, in order to set the parameter values with the best classification effect in the
classifiers, we exhaustively considered all parameter combinations and systematically traversed a
variety of parameter combinations, and finally determined the best performance parameter values
through cross-validation.

3.4. Accuracy Assessment

We randomly split the original data (1838 rice pixels) into two categories (training set and test
set) according to the ratio of 7:3. Training data were used to fit classification models, and testing data
were used to evaluate the classification accuracy through the trained model. Cross-validation is a good
performance evaluation method in the case of limited data. Here we used 3-fold cross-validation to
divide the training set into three equal parts, two of which were used as training sets, the remaining one
was used as a verification set. We obtained the prediction results for each validation set, then averaged
the correct rates obtained from these three validation sets as the standard to measure the performance
of the trained model. In the end, the distinction accuracy for heavy metal stress levels was assessed
on the basis of indicators, including the overall accuracy, confusion matrix and the receiver operating
characteristic (ROC) curve. Overall accuracy indicates the proportion of all predictions that are
correct [66]. A confusion matrix gives a visual representation of the quality of the discrimination
results [67]. The ROC is a graphical plot which illustrates the performance of classification model as
the discrimination threshold is varied [68].

4. Results

4.1. Rice Growth Trajectory under Different Heavy Metal Stress

Figure 3a presents the fitting results of the WS model with smoothing parameter k = 2. It can
be seen that the reconstructed curve is smooth and fits the original data well, which conforms to the
growth and development of rice. The statistical measures, such as mean absolute deviation (MAE),
agreement coefficient (AC), root mean square error (RMSE) and correlation coefficient, were utilized
to evaluate the WS model. These four parameters were calculated for each rice pixel between the
original data and fitted data, which are 0.0413, 0.8594, 0.0414 and 0.9516, respectively. The smaller the
RMSE is, the better the fit would be, and the large correlation coefficient value indicates a close fit.
Hence, the WS model performed well in filtering remote sensing time series. As shown in Figure 3b,
during a rice growing cycle, the EVI values during the rice transplanting and tillering period could be
considerably lower compared to NDWI values due to irrigation, and generally increased with tillering,
then reached their peaks in the heading phase. Approximately 50 days after transplanting, most of the
rice paddy fields were fully covered by the rice canopy, and NDWI values were lower than those of
EVI. At the end of the maturation stage, the rice canopy has lower leaf and stem moisture content and
more senescent leaves. Therefore, the EVI values gradually declined as rice was harvested. Similar to
the EVI temporal profile, we observed a slight decrease before maturation, and a remarkable decrease
after maturation, in the NDWI time series curve. Hence, the parameters based on single or combined
variations of EVI/NDVI and NDWI during specific phenological periods could be designed to indicate
the growth status of rice.
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Figure 3. (a) The raw EVI data and the reconstructed EVI time-series curve fitted by WS. (b) The key
phenology-based dates extracted from temporal profiles of EVI and NDWI(1).

The curves in Figure 4a,b were plotted by averaging the VI values of rice pixels at the
corresponding study site, which showed growth characteristics of rice, as well as the difference
information about rice growth under different heavy metal stress levels. The NDVI and NDWI
curves generally follow a rising trend in the early growth stage, and decline in the late growth stage.
The distinct shape of the curves under different heavy metal stress are mainly reflected in the following
aspects. First, the maximum EVI and NDWI values in severe curves are smaller than those in moderate
stress and non-stress curves. Second, for the NDWI curves, the values of non-stress curves are larger
compared to those of moderate stress and severe stress in the early growth stage, and the severe stress
curve drops the most among the three curves in the late growth stage. Third, for the NDVI curves,
the values in severe curves are generally smaller than those in other two curves during the whole
rice growth period. In addition, the phenological parameters extracted from the non-stress curve,
such as base level and seasonal integral, were greater than those from moderate and severe stress
curves. However, it is still impossible to accurately distinguish the three stress levels based on this
obvious difference information. Thus, it is necessary to extract more implicit phenological information
from time-series data.
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Figure 4. Schematic diagram of changes in (a) greenness and (b) moisture under different heavy metal
stress levels.

4.2. Identification of Optimal Number of Feature Subset

A total of 9528 features were automatically extracted from the VI time-series data,
and 3677 features were obtained by removing the null values from the Tsfresh package.
After SelectKBest screening, the features with importance scores greater than 120 were chosen to
create a preliminary feature subset, including 1029 manually and automatically built signatures.
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We applied RF-RFECV and GB-RFECV algorithms to respectively analyze the contribution of the
features to classification accuracy, as shown in Figures 5 and 6. Figures 5a and 6a show the overall
classification accuracies for RF-RFECV and GB-RFECV in which the features are incrementally added to
the classification analysis. When the number of features equals 1, accuracy is the lowest. Along with the
increase of features, the classification accuracy significantly increased until the characteristic number
is greater than 200. We can see from Figure 5a that the accuracy value is around 0.96 as the number
of selected features is between 200 and 1029. The maximum correct identification rate reaches 0.97,
corresponding to the characteristic number of 260. Nevertheless, the classification accuracy obtained by
using all the 1029 features was 0.96. Therefore, instead of using all the features in classification, a higher
accuracy can be achieved with using only 260 features. A similar trend is also presented in Figure 6a,
and we selected 206 optimal features with the GB-RFECV algorithm. Figures 5b and 6b provide
detailed information about the impact of selected features on the classification result. We can see the
optimal feature subset selected by RF-RFECV and GB-RFECV; the features with importance scores
greater than 150 account for 95% and 87%, respectively. Some features, such as NDVI growth ratio
and moisture movement during tillering to heading, scored 139.73 and 145.83, respectively. However,
these features were filtered out by the RFECV algorithm in order to reduce the redundancy between
relevant features, so will not be discussed further. Additionally, the indicator corresponding to the
maximum value, 696.41, which was automatically extracted by Tsfresh, is greater than the contribution
of manually established indicators.
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4.3. Classification Results of Stress Levels

Because n_estimators, min_samples_split and min_samples_leaf are critical input parameters in
the ensemble model, the optimal parameter values must be determined. The ranges of parameters
were set as follows: (n_estimators: 10–200), (min_samples_split: 3–9), (min_samples_leaf: 2–6).
Figure 7 presents the effect of different parameter values on the accuracy of the model; that is, different
parameter values leads to different results, and the model accuracy does not rise as parameter values
increases. We traversed all important parameter combinations, and computed the accuracy through
cross-validation. Finally, the important parameters in RF were determined as follows: (n_estimators:
120), (min_samples_split: 9), (min_samples_leaf: 2); and the important parameters in GB were
determined as follows: (n_estimators: 110), (max_depth: 3). Of the 1286 randomly selected training
samples, there are 372 pixels in non-stress rice, 680 pixels in moderate stress rice, and 234 pixels in
severe stress rice, which were used for building the ensemble model. The 3-fold cross validation was
applied to evaluate the quality of the ensemble model, with an accuracy of 0.988, indicating that we
obtained a good-quality ensemble model that can be used for classification of stress levels. At 30-m
spatial resolution, maps of the ensemble model with optimum parameter combination applied at the
regional scale were generated (Figure 8). Figure 8a–c show the discrimination results for non-stress,
moderate stress, and severe stress, respectively. Among them, the green part is the area that belongs to
positive judgment; the red part is the area that belongs to misjudgment. Comparing the classification
results of different stress levels in Figure 8, it is found that there are different degrees of misclassification
for the three stress levels, however, the ensemble model can achieve good results on the whole.
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4.4. Validation of Discrimination Results

According to the discrimination model established above, an accuracy assessment was conducted
base on test datasets, which included a total of 552 randomly selected rice pixels. The confusion
matrix that compared the predicted results and actual results was generated to evaluate classification
accuracy. Among the 154 non-stress rice pixels, 150 were identified as non-stress rice (97% agreement).
For 293 moderate-stress rice pixels, 290 were identified as moderate-stress rice (99% agreement).
From Figure 9a, the severe stress region had 101 pixels for positive judgment and 4 pixels misjudged,
with a positive rate of 96%. An overall accuracy of 98.01% was obtained when compared with the
actual dataset. Furthermore, we can see from Figure 9 that the discrimination effect of the ensemble
model is better than that of using RF and GB separately. The discrimination accuracy for non-stress
and severe-stress level rice increased by 1–3% and 2–3% respectively, and the overall accuracy for
different stress categories showed an improvement of approximately 1–2%. Figure 10 presents the
ROC and area under curve (AUC) values to evaluate the classification results. The y-axis represents the
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rate at which a pixel is a positive class and is predicted to be a positive class. The x-axis represents the
rate at which a pixel is a negative class and is predicted to be a positive class. The closer the AUC value
is to 1, the better the differentiation effect. The AUC value here reached 0.98 and 0.99, which means we
obtained a high accuracy for classifying different heavy metal stress categories.
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5. Discussion

We obtained a satisfactory performance in classifying heavy metal stress levels in rice, which can
be partly attributed to the effectiveness of spatio-temporal fusion images for detecting rice stress
and the selection of high-quality rice pixels. In addition to high-quality rice pixels, the accuracy in
reconstructing VI time series is dependent on the de-noising effect. The WS model performed well
in de-noising, as well as being in accordance with the growth characteristics of rice, with RMSE and
correlation coefficient of 0.0414 and 0.9516, respectively. The extracted four key phenological periods,
namely transplanting, tillering, heading and maturation, which conformed to rice phenology and
transplanting characteristics, can be used to establish phenological indicators to detect heavy meal
stress in rice. Other features extracted by the Tsfresh package were also applied to this research.
Therefore, the capability and necessity of extracting multi-dimensional features were discussed.
We plotted the decision boundaries of three stress levels based on only two features (NDVI and EVI
amplitude); these two features with high importance scores were used here. From Figure 11, we can see
that the two features were able to discriminate different heavy metal stress to a certain extent. However,
many moderate stress pixels are mixed with unstressed pixels. Figure 5 showed that classification
accuracy was around 0.96 based on all 1029 features for RF or GB classifiers. Compared with using all
features in the classification, high accuracy cannot be maintained using only two features (Table 3).
Hence, we acquired manually and automatically designed features to fully reflect phenological
information in VI time-series, and achieved accurate discrimination for heavy metal stress levels
using high-dimensional phenological features.
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Table 3. Classification accuracy of RF and GB classifiers based on two phenological features.

Assessment Measures Random Forest Gradient Boosting

Overall Accuracy 67.57% 66.12%
Correct-Judgement Rate for Non-Stress Rice 51.94% 48.70%

Correct-Judgement Rate for Moderate-Stress Rice 79.52% 78.16%
Correct-Judgement Rate for Severe-Stress Rice 57.14% 58.10%

Manually designed indicators were based on the critical phenological periods, which would
leave out important phenological information at other stages. The time-series curves of different
stress levels contain visible and invisible difference information; without Tsfresh, all complex and
implicit characteristics would have to be calculated by hand. The extracted features based on Tsfresh
can be used to build models that perform classification tasks on the time series [59]. Therefore,
the automatically extracted characteristics were able to compensate for the limitations of the manually
designed indicators to some extent. Further quantitative analysis was conducted by comparing the
classification results obtained using both the manually and automatically designed features with those
obtained using either the manually or automatically designed features only, and the classification
accuracy reached 0.972, which was greater than the individual accuracies, which were 0.918 and 0.963,
respectively. In summary, the best stress level estimation results were obtained using the manually and
automatically designed features together. Due to the negative impact of some non-essential features
on classification results, we carried out primary selection by the SelectKBest program and further
screening by the REFCV algorithm. As seen in Section 4.2, the optimal feature subset produced the
highest classification accuracy. The feature selection method employed in this study not only developed
faster machine learning models, but also achieved the best discrimination results.

In order to allow the classification model to have stronger generalization and achieve better
results, we combined GB and RF classifiers and performed the classification process by voting. That is,
the probabilities of each rice pixel belonging to different stress categories were predicted by GB and
RF, and then the predicted results of the two classifiers were averaged. We took the above two features
(the amplitudes of NDVI and EVI) as examples to plot the classification probability for the ensemble
model. Figure 12 presents the averaged probabilities that rice pixels belong to different stress categories.
Yellow cells represent the area with the highest probability. All points falling in the yellow area are
considered to have the largest probabilities, with the stress category corresponding to the maximum
probability taken as the final category. Section 4.4 described the classification capacity of these three
classifiers in detail. Furthermore, Figure 9 demonstrated in an intuitive way that the ensemble model
had the best performance in determining boundaries of the stress classes. It has been verified that the
classification ability of ensemble model was greater than that of the RF and GB classifiers.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 19 

 

Table 3. Classification accuracy of RF and GB classifiers based on two phenological features. 

Assessment Measures Random Forest Gradient Boosting 
Overall Accuracy 67.57% 66.12% 

Correct-Judgement Rate for Non-Stress Rice 51.94% 48.70% 
Correct-Judgement Rate for Moderate-Stress Rice 79.52% 78.16% 

Correct-Judgement Rate for Severe-Stress Rice 57.14% 58.10% 

Manually designed indicators were based on the critical phenological periods, which would 
leave out important phenological information at other stages. The time-series curves of different 
stress levels contain visible and invisible difference information; without Tsfresh, all complex and 
implicit characteristics would have to be calculated by hand. The extracted features based on Tsfresh 
can be used to build models that perform classification tasks on the time series [59]. Therefore, the 
automatically extracted characteristics were able to compensate for the limitations of the manually 
designed indicators to some extent. Further quantitative analysis was conducted by comparing the 
classification results obtained using both the manually and automatically designed features with 
those obtained using either the manually or automatically designed features only, and the 
classification accuracy reached 0.972, which was greater than the individual accuracies, which were 
0.918 and 0.963, respectively. In summary, the best stress level estimation results were obtained using 
the manually and automatically designed features together. Due to the negative impact of some non-
essential features on classification results, we carried out primary selection by the SelectKBest 
program and further screening by the REFCV algorithm. As seen in Section 4.2, the optimal feature 
subset produced the highest classification accuracy. The feature selection method employed in this 
study not only developed faster machine learning models, but also achieved the best discrimination 
results. 

In order to allow the classification model to have stronger generalization and achieve better 
results, we combined GB and RF classifiers and performed the classification process by voting. That 
is, the probabilities of each rice pixel belonging to different stress categories were predicted by GB 
and RF, and then the predicted results of the two classifiers were averaged. We took the above two 
features (the amplitudes of NDVI and EVI) as examples to plot the classification probability for the 
ensemble model. Figure 12 presents the averaged probabilities that rice pixels belong to different 
stress categories. Yellow cells represent the area with the highest probability. All points falling in the 
yellow area are considered to have the largest probabilities, with the stress category corresponding 
to the maximum probability taken as the final category. Section 4.4 described the classification 
capacity of these three classifiers in detail. Furthermore, Figure 9 demonstrated in an intuitive way 
that the ensemble model had the best performance in determining boundaries of the stress classes. It 
has been verified that the classification ability of ensemble model was greater than that of the RF and 
GB classifiers. 

 
Figure 12. The probabilities that rice pixels belong to different stress classes for the ensemble model. Figure 12. The probabilities that rice pixels belong to different stress classes for the ensemble model.
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6. Conclusions

This study applied the ESTARFM to fuse Landsat data with MODIS data, and then generated
multi-temporal synthetic images to detect Cd stress on rice growing at regional scale. A scheme was
built by considering the estimation of heavy metal stress levels as a classification problem. Firstly,
3677 features were obtained based on manual establishment and automatic extraction. Secondly,
optimal feature selection was employed, in which 260 signatures of the RF classifier and 206 signatures
of the GB classifier were selected using the proposed feature selection method. Finally, an ensemble
model using RF and GB classifiers was utilized due to its capability for improving accuracy. The result
of the scheme described above showed that: (1) The synthetic images offer promise for the accurate
detection of rice under Cd stress; (2) the feature selection model is effective, with the stress level
estimation accuracy achieved using the optimal features shown to be higher than that using all
features; (3) the distinction accuracy based on a combination of the features extracted manually and
automatically was higher than that based on either manual establishment or automatic extraction; and,
(4) the discrimination accuracy obtained by the ensemble model was higher than that considering the
RF and GB classifiers separately.

In future studies, the response mechanism of rice phenology to the concentration of heavy metals
will be further explored. Additionally, it is necessary to consider the crop varieties, various cultivation
practices, climatic conditions, and growth environments in different areas, and take these characteristics
as important input parameters of the model. The classification model of heavy metal stress should be
optimized by conducting validation at more sites.
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