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Abstract: Neurodegenerative diseases are the second most common cause of death and characterized
by progressive impairments in movement or mental functioning in the central or peripheral nervous
system. The prevention of neurodegenerative disorders has become an emerging public health
challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the
brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation,
and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide
range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways.
Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this
review, we summarize current knowledge on the regulation, molecular mechanisms and biological
functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s
disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis.
We also discuss the clinical application of melatonin in neurodegenerative disorders. This information
will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic
options for the treatment of various neurodegenerative diseases.

Keywords: melatonin; neurodegenerative disease; Alzheimer’s disease; Parkinson’s disease;
Huntington’s disease

1. Introduction

Melatonin (N-acetyl-5-methoxytryptamine) was first discovered six decades ago and is a
multifunctional hormone mainly produced by the pineal gland in response to darkness [1]. As it is a
circadian rhythm-regulated hormone, the secretion of melatonin is tightly regulated. The concentration
of melatonin in the night is up to 10 times higher than that in the daytime. Melatonin secretion starts
to increase at around 9 p.m., reaching its peak level during the overnight hours, and decreases
the next morning [2]. Melatonin production is decreased with aging and in certain diseases,
including neurodegenerative diseases, indicating that the deregulation of melatonin may cause
the development or progress of human diseases. In addition to its role in sleep and circadian rhythms,
melatonin has been shown to exert neuroprotective effects, antioxidant defense, anti-inflammatory
effects, and anti-apoptotic activity in both cellular and animal models [3,4]. Extensive evidence has
shown that melatonin has preventive and clinical effects on various diseases, including cancer and
neurodegenerative diseases, and can even attenuate viruses such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19) [5–8].

Neurodegenerative diseases cause progressive loss of brain functions and eventually result
in severe disability and death with aging populations. Many neurodegenerative diseases share
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overlapping clinical features such as cognitive deficits, motor system defects and sleep disorders,
and common molecular mechanisms including signaling pathways, protein aggregation, and protein
seeding and spreading from one region to another [9]. Melatonin has been shown to ameliorate the
neuropathological features of various neurodegenerative diseases, and melatonin supplementation
contributes to alleviating cognitive and/or motor impairments as well as sleep problems in
patients. In this review, we discuss the molecular mechanisms by which melatonin protects against
neurodegenerative diseases and the clinical application of melatonin in these devastating diseases.

2. Biosynthesis of Melatonin

Melatonin is mainly produced from pinealocytes in the pineal grand and also synthesized in other
organs such as the bone marrow, retina, skin and gastrointestinal tract (GIT). The whole procedure
of melatonin biosynthesis occurs principally in four steps including hydroxylation, decarboxylation,
acetylation and methylation (Figure 1) [2,10]. Firstly, L-tryptophan is turned into 5-hydroxytryptophan
by tryptophan hydroxylase with the stimulus of dark. Secondly, 5-hydroxytryptophan is decarboxylated
into 5-hydroxytryptamine (serotonin) via the presence of 5-hydroxytryptophan decarboxylase. Vitamin
B6 is required during the step of decarboxylation. The next step is the acetylation of the serotonin by
serotonin N-acetyl transferase (the rate-limiting enzyme), which converts it into N-acetylserotonin.
Protein kinase A (PKA) plays a critical role in the rate-limiting step by activating serotonin N-acetyl
transferase [11]. Finally, N-acetylserotonin is methylated to melatonin through hydroxyindole
O-methyl transferase with folate. Melatonin stimulates the suprachiasmatic nucleus (SCN), resulting
in norepinephrine secretion. Norepinephrine acts on the endoplasmic reticulum of pinealocytes
and activates α-1/β adrenoceptors, leading to an increased concentration of calcium (Ca2+) in the
cytosol. Furthermore, the membrane-bound adenylyl cyclase is activated to produce intracellular
cAMP, which eventually binds to PKA and increases PKA activity [12].

Biomolecules 2020, 10, x FOR PEER REVIEW 3 of 26 

apoptosis by modulating Bcl2/Bax and reducing the expression and activity of caspase-3, suggesting 
that melatonin regulates apoptotic function in the protection against cancer and neurodegenerative 
diseases [21–23]. 

4. Action Mechanism of Melatonin 

Melatonin can exert its downstream effects via binding to specific receptors or direct association 
with its substrates. Melatonin acts through membrane receptors, which are mainly located in the 
central nervous system, including melatonin receptor type 1a (MT1), melatonin receptor type 1b 
(MT2) and melatonin receptor type 1c (MT3) [24,25]. The activation of MT1 and MT2, which are 
members of the G-protein coupled receptors, leads to the physiological or pathophysiological effects 
of melatonin in sleep disorders, pain, anxiety, depression and neurodegenerative diseases [26,27]. 
MT3 has been purified and characterized as a quinone reductase 2 enzyme; however, little is known 
about the effects of melatonin mediated by MT3 [28]. Melatonin can enter the nucleus and interact 
with the transcription factor retinoid-related orphan receptor-alpha (RZR/ROR). Its interaction plays 
a crucial role in immune modulation and antioxidant enzyme regulation through RORα [29,30]. 
Moreover, melatonin binds to intracellular proteins such as tubulin, calmodulin (CaM) and 
calreticulin [31–33]. For example, melatonin directly binds to CaM with high affinity and antagonizes 
the binding of Ca2+, which is an intracellular secondary messenger, to CaM [24,34]. These interactions 
are related to the regulation of enzymes such as cAMP phosphodiesterase, CaM-kinase II and nitric 
oxide synthase [35,36]. 

5. Effects and Molecular Mechanisms of Melatonin in Neurodegenerative Diseases 

Cumulative evidence has suggested that melatonin has preventive and therapeutic effects on 
many neurodegenerative disorders [6,37]. Neurodegenerative diseases have been reported to share 
common pathophysiological features, such as disruption of the circadian rhythm, increased oxidative 
stress, neuroinflammation, neuronal loss, autophagic deficiency and mitochondrial dysfunction 
[10,38]. The level of melatonin decreases in elderly individuals, which may contribute to the 
development of neurodegenerative disease [39,40]. Moreover, increasing evidence has shown that 
melatonin has neuroprotective roles in neurodegenerative disorders with few side effects, even at 
high doses (Figure 1) [41,42]. In this part, we summarize the information of each neurodegenerative 
disease including the effects of melatonin, cell/animal model, signaling pathway affected, 
concentrations (physiological and pharmacological) and references (Tables 1–6). 

 
Figure 1. Schematic representation of melatonin therapy by targeting molecular signaling pathways 
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Figure 1. Schematic representation of melatonin therapy by targeting molecular signaling pathways in
neurodegenerative diseases with different pathogenic mechanisms. Melatonin inhibits pathological
hallmarks, oxidative stress, inflammation, neurotransmitter impairment, mitochondrial dysfunction,
apoptosis and autophagy. mPTP, mitochondrial permeability transition pore; Dop, dopamine; Ach,
acetylcholine; NE, norepinephrine; TBARS, thiobarbituric acid reactive substances; CAT, catalase; GSH,
glutathione; TAC, total antioxidant capacity; GPx, glutathione peroxidase; MDA, malondialdehyde; ↑,
induction; ↓, reduction.
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3. Function of Melatonin

Melatonin has a variety of functions, including circadian rhythm regulation, antioxidant activity,
and anti-inflammation and anti-apoptotic effects. Melatonin plays a critical role in the circadian
rhythm in most mammals depending on light/dark cycles [2]. Light inhibits melatonin synthesis
and secretion, while the absence of light stimulates melatonin production and secretion. It has been
reported that melatonin exerts effects on attenuating circadian disruption through the regulation
of clock genes in vivo [2,13]. Melatonin increases the expression levels of cryptochrome 2 (CRY2),
period circadian protein homologue 1 (PER1) and brain muscle ARNT-like 1 (BMAL1), which
are associated with neurodegenerative diseases. Since melatonin-mediated clock gene expression
shows opposite results under certain conditions, the exact mechanisms have not been elucidated
yet [4]. Melatonin acts as a free radical scavenger and has antioxidant functions. It has been
shown that melatonin has a protective effect on cancer, epilepsy and neurodegenerative disorders
by blocking oxidative stress in vivo and in vitro [14–16]. Melatonin has been found to increase the
expression and activity of enzymes, such as glutathione peroxidase (GPx), superoxide dismutase
(SOD) and catalase (CAT), involved in antioxidant function [17]. Moreover, melatonin reacts with
reactive oxygen species (ROS) and reactive nitrogen species (RNS), resulting in it being converted
to an antioxidant, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), through oxidization [18].
Melatonin also has an important role in anti-inflammatory effects. Melatonin has been documented to
attenuate pathogenic inflammation by regulating various pathways, such as decreasing the secretion
of cytokines (interleukin-1 (IL-2), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α))
and increasing the amounts of cytokines (IL-4, IL-10 and IL-27). It has been shown that melatonin
alleviates the secretion of proinflammatory cytokines by inhibiting nuclear factor kappa B (NF-κB) [19].
Moreover, melatonin inhibits the expression of cyclooxygenase-2 (COX-2), which is a proinflammatory
factor, in neurodegenerative diseases [20]. In addition, melatonin suppresses apoptosis by modulating
Bcl2/Bax and reducing the expression and activity of caspase-3, suggesting that melatonin regulates
apoptotic function in the protection against cancer and neurodegenerative diseases [21–23].

4. Action Mechanism of Melatonin

Melatonin can exert its downstream effects via binding to specific receptors or direct association
with its substrates. Melatonin acts through membrane receptors, which are mainly located in the
central nervous system, including melatonin receptor type 1a (MT1), melatonin receptor type 1b (MT2)
and melatonin receptor type 1c (MT3) [24,25]. The activation of MT1 and MT2, which are members of
the G-protein coupled receptors, leads to the physiological or pathophysiological effects of melatonin
in sleep disorders, pain, anxiety, depression and neurodegenerative diseases [26,27]. MT3 has been
purified and characterized as a quinone reductase 2 enzyme; however, little is known about the effects
of melatonin mediated by MT3 [28]. Melatonin can enter the nucleus and interact with the transcription
factor retinoid-related orphan receptor-alpha (RZR/ROR). Its interaction plays a crucial role in immune
modulation and antioxidant enzyme regulation through RORα [29,30]. Moreover, melatonin binds
to intracellular proteins such as tubulin, calmodulin (CaM) and calreticulin [31–33]. For example,
melatonin directly binds to CaM with high affinity and antagonizes the binding of Ca2+, which is an
intracellular secondary messenger, to CaM [24,34]. These interactions are related to the regulation of
enzymes such as cAMP phosphodiesterase, CaM-kinase II and nitric oxide synthase [35,36].

5. Effects and Molecular Mechanisms of Melatonin in Neurodegenerative Diseases

Cumulative evidence has suggested that melatonin has preventive and therapeutic effects on
many neurodegenerative disorders [6,37]. Neurodegenerative diseases have been reported to share
common pathophysiological features, such as disruption of the circadian rhythm, increased oxidative
stress, neuroinflammation, neuronal loss, autophagic deficiency and mitochondrial dysfunction [10,38].
The level of melatonin decreases in elderly individuals, which may contribute to the development
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of neurodegenerative disease [39,40]. Moreover, increasing evidence has shown that melatonin
has neuroprotective roles in neurodegenerative disorders with few side effects, even at high doses
(Figure 1) [41,42]. In this part, we summarize the information of each neurodegenerative disease
including the effects of melatonin, cell/animal model, signaling pathway affected, concentrations
(physiological and pharmacological) and references (Tables 1–6).

5.1. Melatonin and Alzheimer’s Disease

Alzheimer’s disease (AD) is characterized by progressive cognitive impairment and other
neurobehavioral deficits and is widely known as the most common neurodegenerative disease in the
elderly population [43,44]. The pathological features of AD have been identified as extracellular senile
plaques (SPs), which mainly consist of accumulated β-amyloid (Aβ), and intracellular neurofibrillary
tangles (NFTs), which mainly consist of aggregated, abnormally hyperphosphorylated tau [45–47].
Melatonin levels in the serum and cerebrospinal fluid (CSF) are lower in AD patients than those in
age-matched control subjects [48–50]. Moreover, melatonin supplementation was shown to alleviate
the dysregulation of the circadian rhythm and improve cognition in AD patients [51,52].

Aβ peptides are composed of 39–43 amino acid residues and derived from amyloid precursor
protein (APP). APP is cleaved by nonamyloidogenic or amyloidogenic processing. These processes
are mediated by different secretases [53]. Aβ is generated via amyloidogenic processing by β- and
γ-secretase. Melatonin has been reported to inhibit Aβ production and aggregation both in vivo and
in vitro [54–57]. Melatonin reduces the aggregation of Aβ via direct interaction with Aβ (1–40) and Aβ

(1–42) and protects neurons against Aβ toxicity [58]. In addition, combinations of Aβ and apolipoprotein
E4 (apoE4) synergistically aggravate Aβ neurotoxicity, which can be prevented by melatonin through
interactions with apoE4 [59]. In Aβ-induced animal models, melatonin reduces Aβ production and
inhibits apoptosis by decreasing caspase-3 activity and elevating B cell lymphoma-2 (Bcl-2) expression
in the brain [21,60]. Moreover, melatonin not only changes the levels of caspase-3 and Bcl-2 but also
decreases the expression or activity of GSK-3β and increases the protein phosphatase-2A (PP-2A)
level [61]. Furthermore, melatonin may reduce Aβ accumulation via GSK-3β inhibition mediated
by upregulating the PI3K/Akt signaling pathway, which is inactivated by Aβ (1–42) treatment [62].
This finding is consistent with the evidence that the activation of GSK-3β leads to synaptic and memory
impairments, whereas GSK-3β inactivation improves synaptic and memory dysfunctions [63,64].
In addition, it has been reported that PI3K increases the phosphorylation of Akt at the Ser473 site,
which leads to the increased phosphorylation of GSK-3β at Ser9, thereby inactivating GSK-3β [65].
Therefore, these results suggested that melatonin increases PI3K activity, Akt phosphorylation on
Ser473 and GSK-3β phosphorylation on Ser9, thereby reducing Aβ aggregation, rescuing synaptic
dysfunction and attenuating memory deficits in AD (Figure 2).

Tau is a microtubule-associated protein that is involved in stabilizing the microtubule cytoskeletal
network and promoting microtubule assembly [43,66]. The hyperphosphorylation of tau disrupts the
binding of tau to microtubules, thereby disrupting the stability of microtubules [43,66]. More than 30
phosphorylation sites of tau have been identified in AD brains. Hyperphosphorylated tau aggregates
into paired helical filaments (PHFs) with abnormal conformations and eventually forms NFTs in
AD [43,66]. Melatonin has been found to significantly ameliorate tau hyperphosphorylation induced
by wortmannin, calyculin A (CA) and okadaic acid in different neuronal cell lines [67,68]. Melatonin
also efficiently reduces tau hyperphosphorylation induced by Aβ (1–42), kainic acid, wortmannin, CA,
isoproterenol and constant illumination in animal models [62,68–72].
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Figure 2. The regulation of Aβ and tau through different kinases in Alzheimer’s disease (AD), which is
attenuated by melatonin. Melatonin directly binds to and inhibits apoE4, which enhances Aβ toxicity
via combination with Aβ, thereby reducing Aβ pathology in AD. Moreover, melatonin suppresses
the reduction of PI3K activity, pSer473 on Akt and pSer9 on GSK-3β, leading to the reduction of Aβ

aggregation in AD. Melatonin attenuates tau pathology by regulating several kinases such as GSK-3β,
CDK5, PKC, PKA and DAPK1, and the protein phosphatase PP-2A in AD. ↓, reduction.

Multiple protein kinases have been shown to phosphorylate tau and drive tau aggregation in
neurofibrillary tangles in AD, and protein phosphatases are also involved in the regulation of tau
phosphorylation [73]. Melatonin attenuates tau hyperphosphorylation by regulating proline-directed
serine/threonine kinases such as GSK-3β and cyclin-dependent kinase 5 (CDK5); non-proline-directed
serine/threonine kinases, including PKC, PKA and death-associated protein kinase 1 (DAPK1);
and protein phosphatase PP-2A (Figure 2) [61,71,72,74–78]. Melatonin has been shown to effectively
attenuate tau hyperphosphorylation and oxidative stress by inactivating GSK-3β in cell and
animal models of AD [61,72,74]. Melatonin inhibits the activity of CDK5, thereby reducing tau
hyperphosphorylation in a rat model [75]. Furthermore, melatonin decreases CDK5 expression and
the cleavage of p35 to form p25, which leads to the formation of a stable active CDK5/p25 complex [79].
In addition, it has been discovered that melatonin decreases tau hyperphosphorylation, inhibits
oxidative stress and finally attenuates memory deficits via increasing the activity of PP-2A in a rat
model [78]. Recently, melatonin was found to directly bind to DAPK1 and promote DAPK1 protein
degradation through the ubiquitin-mediated proteasome pathway, resulting in increased Pin1 activity
and eventually decreased tau hyperphosphorylation and tau-related pathologies [80]. Pin1 is a
phosphorylation-specific peptidyl prolyl cis/trans isomerase and has protective effects on tau-related
pathology, suggesting that the melatonin–DAPK1–Pin1 axis regulates AD [81–84].
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Table 1. Melatonin and Alzheimer’s disease.

Effects Model Signaling Pathway Concentrations Reference

Inhibiting apoptosis Cell Bax/bcl-2/caspase-3 Pharma [21]
Inhibiting Aβ neurotoxicity Cell Pin1/GSK3β/NF-κB Physio [57]

Inhibiting amyloid fibrils Cell Apoe4 Pharma [59]
Inhibiting apoptosis Animal Bax/caspase-3/Par-4 Pharma [60]

Inhibiting tau hyperphosphorylation Cell GSK-3β Pharma [61]
Inhibiting tau hyperphosphorylation Animal PI3K/Akt/GSK3β Pharma [62]

Inhibiting phosphorylation and
accumulation of neurofilaments Cell PP-2A/PP-1 Pharma [67]

Inhibiting tau hyperphosphorylation Animal PP-2A/PP-1 Pharma [68]

Inhibiting tau hyperphosphorylation Animal
GSK3β/PKA/

PP-2A/PP-1 and ER
Stress

Pharma [69]

Inhibiting tau hyperphosphorylation Cell and Animal ER
Stress/GSK-3β/CDK5 Pharma [70]

Inhibiting tau hyperphosphorylation Animal PKA Pharma [71]
Inhibiting tau hyperphosphorylation

and oxidative stress Cell GSK-3β Pharma [72]

Inhibiting tau hyperphosphorylation
and Aβ neurotoxicity Animal GSK-3β Pharma [74]

Inhibiting phosphorylation of
neurofilaments Animal CDK5 Pharma [75]

Regulating circadian rhythms Cell PKC Physio [76]
Inhibiting tau hyperphosphorylation

and oxidative stress Cell PP-2A/GSK-3β Pharma [77]

Inhibiting tau hyperphosphorylation Animal PP-2A Pharma [78]
Inhibiting apoptosis Cell Calpain/CDK5 Pharma [79]

Inhibiting tau hyperphosphorylation Cell DAPK1/Pin1 Physio [80]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.

5.2. Melatonin and Parkinson’s Disease

Parkinson’s disease (PD) is a chronic and neurodegenerative disease with motor symptoms
such as resting tremor, bradykinesia, rigidity and postural imbalance and nonmotor symptoms
such as constipation, dysosmia, sleep problems and cognitive impairment [85,86]. The pathological
hallmarks of PD have been defined as dopamine (Dop) depletion resulting from the progressive
loss of nigrostriatal dopaminergic neurons in the substantia nigra pars compacta (SNpc) and locus
coeruleus (LC) and as the presence of cytoplasmic inclusions called Lewy bodies, mainly formed
by fibrillar α-synuclein [86]. α-synuclein, a cytoplasmic protein, plays an important role in synaptic
transmission and neuroplasticity [87]. α-synuclein has neuroprotective effects by regulating the
synthesis of Dop, its storage into vesicles, its release in synapses and ultimately its reuptake into
dopaminergic neurons [88]. However, α-synuclein expression was shown to be higher in both the
blood and brain of PD patients than in those of age-matched controls [89,90]. It has been suggested that
α-synuclein aggregation is concentration-dependent, so increased levels of α-synuclein may enhance
the fibril formation of α-synuclein [89].

Melatonin was reported to inhibit oxidative stress and apoptosis by increasing the concentrations
of Dop and preserving dopaminergic neurons in mouse models of PD induced by maneb and
paraquat [91]. Other studies reported that melatonin alleviates oxidative stress, mitochondrial
dysfunction and neurobehavioral deficits by increasing Dop levels in a 1-methyl-4-phenyl-1,2,3,6
tetrahydropyridine (MPTP)-induced mouse model of PD [92]. Several α-synuclein (SNCA) mutations,
including A30P, have been found to contribute to sporadic PD [93]. Brito-Armas et al. showed that
melatonin decreases the loss of dopaminergic neurons resulting from the SNCA mutant A30P [94].

Melatonin has been found to improve neurotoxicity by inhibiting autophagy and α-synuclein
aggregation by enhancing the ubiquitination of α-synuclein in a kainic acid-induced mouse model [95].
It has also been reported that melatonin inhibits apoptosis induced by arsenite by blocking the
aggregation of α-synuclein in rats [96]. Su et al. found that melatonin attenuates MPTP-induced
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autophagy and α-synuclein fibril formation by inhibiting CDK5 in monkeys [97]. Moreover, melatonin
has been shown to attenuate amphetamine-induced neurotoxicity by reducing the expression of
α-synuclein in vitro and in vivo [98]. Melatonin has also been found to reduce mitochondrial damage
in a yeast model induced by expressing α-synuclein [99]. In addition, a reduction in the MT1 and
MT2 levels in the amygdala and substantia nigra of the brain leads to PD [100]. However, Willis et al.
reported that an imbalance of melatonin and Dop triggers PD [101]. Melatonin has been reported
to decrease or inhibit the synthesis and release of Dop, and the loss of Dop is the cause of PD [102].
Moreover, these researchers showed that a melatonin receptor antagonist improves motor dysfunction
in rats [103,104]. Therefore, more studies are needed to clarify these conflicting results.

Table 2. Melatonin and Parkinson’s disease.

Effects Model Signaling Pathway Concentrations Reference

Inhibiting apoptosis and
oxidative stress Animal CYP2E1/GST/p53/Bax/caspase-9 Pharma [91]

Inhibiting autophagy and
α-synuclein aggregation Animal Caspase-3/12 and

LC3-II/LAMP-2/cathepsin B Pharma [95]

Inhibiting apoptosis Animal ER stress/Bcl2/caspase-3 Pharma [96]
Inhibiting autophagy and

α-synuclein Cell CDK5 Pharma [97]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.

5.3. Melatonin and Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease triggered by an
expanded cytosine–adenine–guanine (CAG) triplet in the gene encoding the Huntingtin (HTT) protein,
which initially affects the striatum and cortex [105]. HD patients suffer from progressive motor decline
(chorea, dystonia, dyskinesia and postural imbalance), cognitive impairment, psychiatric disorders
(moodiness, severe anxiety and depression), sleep problems, dysphagia and weight loss [105,106].
HD is identified as intranuclear inclusions consisting of aggregated abnormal HTT in neuronal nuclei,
cytoplasm, dendrites and axon terminals [106]. The aggregation of mutant HTT induces neuronal
apoptosis, which may be caused by mitochondrial defects [107].

Melatonin levels are reduced in the plasma of HD patients compared with in healthy subjects [108].
Melatonin has protective effects against the neuronal cell death induced by kainic acid, which can
lead to HD-like pathology in vitro and in vivo [109–111]. Melatonin inhibits the oxidative stress and
neuronal damage generated from 3-nitropropionic acid (3-NP) exposure, which is used to mimic
the pathology of HD in vitro and in vivo [112–114]. It has been reported that one of the major
pathologies of HD is mitochondrial dysfunction [115]. Interestingly, Wang et al. showed that melatonin
reduces neuronal cell death along with the preservation and activation of MT1 in an HTT mutant cell
model [116]. Furthermore, the study showed that MT1 levels are lower in HD mice than in wild-type
mice [116]. However, a nonselective melatonin receptor antagonist blocks the protective action of
melatonin, which can alleviate mitochondrial dysfunction and prevent neuronal apoptosis [117].
Therefore, melatonin may reduce the neuronal cell death induced by mitochondrial defects in HD via
an MT1-dependent pathway.

Another molecular mechanism for mitochondrial-dependent cell death in HD is the elevation of
the intracellular Ca2+ concentration caused by its influx through the N-methyl-d-aspartate (NMDA)
receptor channel [118,119]. It has been found that the induction of mitochondrial permeability transition
pore (mPTP) results in cell death [120]. Andrabi et al. showed that melatonin diminishes the NMDA
receptor-induced increase in Ca2+ by inhibiting mPTP activity in mouse primary striatal neurons [121].

In addition, melatonin has protective effects on mitochondria-induced neuronal apoptosis by
regulating pro- or antiapoptotic proteins [122]. Mohseni et al. showed that melatonin protects
peripheral blood lymphocytes in rats from gamma irradiation-induced apoptosis by increasing the
levels of Bcl-2 and decreasing Bax expression and the Bax/Bcl-2 ratio [123]. According to Radogna et al.,
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the antiapoptotic effect of melatonin is decreased by inhibiting Bcl-2 or by treating neurons with
luzindole, an MT1/MT2 receptor antagonist. Therefore, melatonin attenuates cell death by inducing
Bcl-2 expression and mitochondrial translocation through its interaction with MT1/MT2 receptors [124].
Furthermore, melatonin exerts its antiapoptotic function by promoting the interaction between Bcl-2
and Bax by binding to the MT1/MT2 receptors and by inducing the relocalization of the Bcl-2/Bax
complex to the mitochondria through interactions with calmodulin [125].

Table 3. Melatonin and Huntington’s disease.

Effects Model Signaling
Pathway Concentrations Reference

Inhibiting apoptosis Animal ER Stress Pharma [109]
Inhibiting cell death Cell and Animal MT1 receptor Pharma [116]

Improving mitochondrial
dysfunction Animal Apelin 13 Pharma [117]

Inhibiting apoptosis Animal Caspase-3 Pharma [121]
Inhibiting apoptosis Animal Bax/bcl-2 Pharma [123]
Inhibiting apoptosis Cell Bax/bcl-2 Pharma [124]
Inhibiting apoptosis Cell Bax/bcl-2 Physio and Pharma [125]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.

5.4. Melatonin and Multiple Sclerosis

Multiple sclerosis (MS) is a progressive chronic inflammatory demyelinating disease of the central
nervous system (CNS) [126,127]. MS is an immune-mediated disorder related to immune mediators,
which mostly affects the white matter and gray matter of the CNS [128]. The clinical symptoms
include numbness, weakness or even spastic paralysis in the limbs, pain, visual dysfunction, cognitive
impairment, psychiatric disorders such as anxiety and depression, and sleep problems [129]. MS is
the most common cause of nontraumatic disability among young adults [127]. The pathophysiology
of MS is complex and associated with environmental factors, genetic factors and immune-mediated
responses resulting in demyelination, axonal loss and neuroinflammation.

Abundant evidence has shown that melatonin levels in the serum, plasma and urine are lower in
MS patients than those in control subjects [130–132]. However, other groups also found that melatonin
levels are not changed in the serum between MS patients and healthy individuals [133]. Recently,
melatonin was shown to exhibit antioxidative and anti-inflammatory effects during the demyelination
and remyelination stages in a mouse model of MS induced by cuprizone [134]. Melatonin attenuates
motor behavior deficits, including total distance moved (TDM) and velocity, during the demyelination
stage in both male and female mice [134]. Moreover, melatonin reduces apoptosis by increasing Bcl-2
expression and decreasing caspase-3 and Bax levels, as well as through antioxidant activity by activating
NF-κB and reducing heme oxygenase-1 expression [135]. Furthermore, melatonin increases the levels
of antioxidative factors such as SOD, CAT, GSH and GPx and decreases malondialdehyde (MDA) levels,
a marker of oxidative stress, during the demyelination stage [136]. In addition, melatonin has been
discovered to exert an anti-inflammatory effect by reducing the levels of proinflammatory cytokines,
including interleukin-1 beta (IL-1β) and TNF-α, during the demyelination stage [137–139]. Farez et al.
revealed that melatonin decreases the levels of IL-17 secreted from TH17 cells via an MT1-dependent
pathway [139]. The neuroprotective effects of melatonin during the demyelination stage were found
in both males and females. However, the effects of melatonin during the remyelination stage were
only observed in male mice but not in female mice [134]. Therefore, gender differences in the effects of
melatonin during the remyelination stage remain to be elucidated in MS.
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Table 4. Melatonin and multiple sclerosis.

Effects Model Signaling Pathway Concentrations Reference

Inhibiting
apoptosis Animal NF-κB/bax/bcl-2 Pharma [135]

Anti-inflammatory Animal MT1/Erk1/2 Pharma [139]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.

5.5. Melatonin and Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive and selective degeneration
of motor neurons (MNs) in the brain stem, hypoglossal motor neurons (HMNs), facial motor neurons
(FMNs) and the spinal cord, resulting in progressive paralysis and eventual death [140]. It has been
reported that melatonin not only effectively delays the progression and mortality of the disease
but also significantly inhibits motor neuron death by inactivating the receptor interacting protein-2
(Rip2)/caspase-1 pathway and caspase-3 and blocking the release of mitochondrial cytochrome
c in a mutant superoxide dismutase 1 (SOD1) (G93A) transgenic mouse model of ALS [141].
The protective effect of melatonin on apoptosis in ALS was shown to be related to the inhibition of
the caspase-1/cytochrome c/caspase-3 pathway. Moreover, it has also been shown that the levels of
melatonin and MT1 but not MT2 are much lower in the spinal cord of ALS mice than those in wild-type
mice [141]. Thus, the antiapoptotic effect of melatonin in ALS may be dependent on the MT1 pathway.

Rogério et al. found that melatonin reduces the loss of motor neurons in a neonatal rat model of
peripheral nerve injury. Moreover, SOD1 expression is higher in the lumbar spinal cord in a model
with the administration of melatonin compared with that without melatonin treatment [142]. Thus,
melatonin may protect motor neurons from degeneration by elevating the expression of SOD1. It has
been identified that neurofilaments accumulate in motor neurons in ALS patients as well as in SOD1
knockout mice [143,144]. Abnormal neurofilament accumulation could be either the cause or the
consequence of neuronal degeneration [145]. Thus, melatonin eliminates neurofilament accumulation
by increasing SOD1 expression, thereby preventing motor neuron loss.

Weishaupt et al. showed that melatonin reduces the cell death in cultured motor neurons induced
by glutamate and inhibits the development and increases the survival of ALS in a mouse model (SOD1
(G93A)-transgenic mice). Interestingly, the researchers observed that the levels of circulating serum
protein carbonyls, a marker for oxidative stress, are higher in ALS patients than those in healthy
individuals. However, the concentrations of circulating serum protein carbonyls returned to normal
levels in patients who were treated with melatonin. It has been suggested that melatonin attenuates
neurodegeneration and the progression of ALS by inhibiting oxidative stress [41]. Estevez et al. found
that mutations in SOD1, which are the major pathophysiological symptom of ALS, may decrease
the antioxidant effect by affecting the binding ability of enzymes for zinc ions [146,147]. Moreover,
zinc-deficient SOD1 induces motor neuronal apoptosis, which involves the endogenous production of
nitric oxide (NO) [146]. Therefore, melatonin may exert antioxidant activity to prevent motor neuronal
death through the suppression of NO formation. However, more studies are needed to further explore
the molecular mechanism of the neuroprotective effects of melatonin on ALS.

Table 5. Melatonin and amyotrophic lateral sclerosis.

Effects Model Signaling Pathway Concentrations Reference

Inhibiting apoptosis Animal Caspase-1/cytochrome c/caspase-3 Pharma [141]
Inhibiting oxidative stress Animal SOD1/SOD2/nNOS Pharma [142]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.
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5.6. Melatonin and Vascular Dementia

Vascular dementia (VD) is the second most common cause of dementia. Chronic cerebral
hypoperfusion, which leads to hippocampal injury and cognitive impairment, is a major cause of
VD [148,149]. VD has emerged as a major medical and health problem worldwide and imposes a
mental and economic burden on individuals, families, communities and countries [150,151]. It has been
reported that VD induced by chronic cerebral hypoperfusion has pathophysiological features, including
oxidative stress, neuroinflammation and central cholinergic dysfunction [152,153]. Jaliah et al. showed
the neuroprotective effects of melatonin on VD in a rat model generated by permanent bilateral common
carotid artery occlusion (BCCAO) [154]. The data showed that melatonin increases the concentrations
of acetylcholine (ACh), norepinephrine (NE) and Dop in the hippocampus [154]. The mechanism for
the melatonin-induced elevation of ACh, NE and Dop levels depends on the uptake and release of the
neurotransmitters NE and Dop by synaptosomes in the hypothalamus [155]. Moreover, melatonin
effectively decreases oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS),
and increases the levels of antioxidative factors, including SOD, CAT, glutathione (GSH) and total
antioxidant capacity (TAC) [154]. The induction of TBARS and reduction of SOD, CAT, GSH and TAC
are due to ROS overload, which induces oxidative damage to DNA, RNA, protein and lipids and
finally leads to neuronal impairment and cell death [156]. However, melatonin has antioxidant effects
on motor neurons, attenuating the production of ROS, mediated by melatonin receptors [152,157,158].
Furthermore, melatonin has anti-inflammatory activity, further limiting the production of excessive
amounts of ROS [158,159]. Melatonin produces antioxidant and anti-inflammatory effects through
the modulation of JNK, NF-κB, hypoxia-inducible factor-1 alpha (HIF-1α), nuclear factor erythroid
2-related factor 2 (Nrf2) and others [158,159]. In addition, Jaliah et al. discovered that melatonin
significantly increases the expression of senescence marker protein-30 (SMP30) and osteopontin
(OPN) [154]. SMP30 suppresses apoptosis through the modulation of Ca2+-pump activity in the cell
membrane [160]. Melatonin has also been found to inhibit autophagy by restoring the expression of
SMP30 [161]. OPN is neuroprotective due to its role in downregulating inducible nitric oxide synthase
(iNOS) and increasing NF-κB and PI3K activity [162,163]. OPN decreases the generation of ROS and
eventually leads to antiapoptotic effects by suppressing cleaved caspase-3 [164]. Other studies also
showed that melatonin increases the expression of OPN and inhibits apoptosis via the upregulation of
Bcl-2 and downregulation of Bax in the hippocampus [62,154,165,166].

Shen et al. found that melatonin improves cognitive dysfunction along with the suppression of
oxidative stress, neuroinflammation, brain-derived neurotrophic factor (BDNF) depletion and central
cholinergic dysfunction in a rat model of VD induced by BCCAO [167]. BDNF plays a critical role in
the regulation of neuroprotection, neuroregeneration and synaptic plasticity as well as cognitive and
affective behaviors [168,169]. Melatonin has been shown to exert neuroprotective effects by elevating
the level of BDNF [170]. Further studies are needed to clarify the mechanism of melatonin in protecting
against central cholinergic dysfunction.

Table 6. Melatonin and vascular dementia.

Effects Model Signaling Pathway Concentrations Reference

Inhibiting oxidative stress Animal SMP30/OPN Pharma [154]
Inhibiting oxidative stress Cell MT1/MT2 Physio [157]
Inhibiting oxidative stress Animal RAGE/NF-κB/JNK Pharma [158]

Inhibiting autophagy Cell MTOR Pharma [161]
Inhibiting apoptosis Animal SIRT1/bax/bcl-2 Pharma [165]

Abbreviations: Pharma, pharmacological concentration; Physio, physiological concentration.
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6. Clinical Application of Melatonin in Neurodegenerative Diseases

Melatonin has been investigated for its effects on the clinical symptoms of neurodegenerative
diseases because of its beneficial effects on multiple experimental cell and animal models. The details
of both case reports and clinical trials of melatonin supplementation in AD patients are summarized
in Table 7. The first case report was conducted in a pair of twins with AD, which showed that
melatonin treatment improved cognitive dysfunction, behavioral problems, sundown syndrome and
sleep quality during melatonin treatment [171]. Sundown syndrome or sundowning, which is a
neuropsychiatric phenomenon appearing in the late afternoon or early evening, is commonly identified
in AD patients [172,173]. Another case report, on a man with typical sundown syndrome, showed
improvements in sleep and behavior with a dose of 2 mg of melatonin treatment at 8 p.m. for one
week and gradual improvement with an extra dose of 2 mg at 3 p.m. for two weeks [174]. Moreover,
melatonin reduces the incidence of rapid eye movement (REM), a kind of sleep behavior [175]. However,
other studies showed that melatonin may not improve the symptoms for all AD patients. Melatonin
was found to ameliorate the circadian rest–activity rhythm, sleepy state during the daytime and mood
in one patient. However, melatonin only ameliorated cognitive exacerbation but did not improve any
other symptoms in the other patient [176].

In addition to case reports, clinical trials have been performed to explore the effects of melatonin
on clinical symptoms in AD patients. A study including 80 patients revealed improvements in sleep
problems and cognitive impairments after melatonin treatment, in which nocturnal sleep was evaluated
subjectively by the Pittsburg Sleep Quality Index (PSQI) and diaries [177]. However, Serfaty et al. and
Alves et al. failed to show beneficial effects of melatonin on sleep quality or cognitive functions after the
administration of melatonin for 2 weeks and 10 days, respectively [178,179]. The negative results may
be due to the short-term melatonin treatment and the method of analyzing sleep parameters. However,
the sleep and cognitive disturbances of the AD patients were not attenuated by melatonin treatment
for 2 months with the same objective method of assessing sleep efficiency in another report [180].
Nevertheless, in this report, a slight improvement in sleep quality was discovered by the subjective
measurement (PSQI) for sleep efficiency [180]. It is suggested that it is necessary to have subjective sleep
measurements, not only the objective methods, because subjective methods are more stable. However,
another randomized and double-blind trial performed in 20 AD patients suggested an improvement in
sleep quality after melatonin treatment, with sleep measured objectively by actigraphy [181].

There are many other clinical investigations, which provide evidence to support the beneficial
effects of melatonin on sleep disorders and cognitive deficits [6,52,182–191]. In addition, the combination
of bright light exposure and melatonin supplementation has been discovered to improve circadian
rest–activity or sleep–wake rhythms, sundowning symptoms and sleep quality in AD patients [192,193].
Although melatonin has been reported to stabilize circadian rhythms, reduce daytime sleepiness,
improve sleep quality and delay the progression of cognitive impairment in most case reports and
clinical trials, some AD patients experience little or no benefits after the administration of melatonin in
some clinical studies. Therefore, further studies are necessary to confirm the efficacy of melatonin for
clinical symptoms in AD patients. Moreover, other adjuvant therapies that can be used together with
melatonin supplementation are of interest.

Variations in the endogenous levels of melatonin have been detected in PD patients receiving
melatonin supplementation [194]. Clinical studies have been conducted to explore the effect of
exogenous melatonin on clinical symptoms in PD patients [6,190,191]. As summarized in Table 7,
two double-blind and placebo-controlled clinical studies showed an improvement in sleep disturbances
in patients with PD following melatonin treatment [195,196]. Dowling et al. performed a clinical
trial in 40 PD patients who received melatonin for 2 weeks. Patients taking 50 mg of melatonin at
bedtime showed significant improvements in sleep quality, and the sleep parameters were measured by
actigraphy, but not in those receiving 5 mg every day [195]. This finding is consistent with the pilot study
in which some patients with PD experienced no significant improvement in sleep quality or quantity
at night after the administration of 5 mg of melatonin for 1 week [197]. Nevertheless, melatonin has
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been found to significantly alleviate sleep disorders, sleep quantity and daytime somnolence according
to a subjectively evaluated method in patients with 5 mg of melatonin [195]. It is suggested that not
only PD patients but also healthy elderly individuals take a high dose of melatonin over a 10-week
period. Medeiros et al. reported that melatonin efficiently attenuated sleep disturbances according to
subjective measurements but not according to polysomnography in PD patients treated with melatonin
at 3 mg/day for 4 weeks [196]. However, melatonin failed to improve motor dysfunctions in this
investigation, which may be due to the small sample size and the low sensitivity of the method for
assessing motor parameters. In addition, a randomized controlled trial with 38 PD patients discovered
that melatonin supplementation of 3 mg for 6 weeks led to the reduction of wake time at night and
daytime sleepiness, according to both an objective method and subjective evaluations, as well as an
improvement in cognitive functions [198]. In a recent study, melatonin was discovered to significantly
enhance sleep quality and reduce anxiety in patients with early or late stages of PD, while no significant
alterations in autonomic disorder, cognitive dysfunction, motor impairment or depression status were
observed after melatonin supplementation [199]. These negative studies suggest that it is important to
design suitable parameters, such as the dose and time of treatment and the methods for evaluating
sleep quality, cognitive function or motor status.

Most of the clinical studies on the use of melatonin to attenuate clinical symptoms in PD found
that melatonin treatment reduced nonmotor disorders, especially the incidence of sleep disturbances
and excessive daytime somnolence, but no improvement in motor deficits was observed. Furthermore,
current evidence is insufficient to support the use of melatonin for the prevention or treatment of
clinical manifestations in PD. Therefore, more clinical studies are necessary to confirm the beneficial
effects of melatonin on human PD.

A limited number of clinical studies were carried out to investigate the efficacy of melatonin in
other neurodegenerative disorders, such as ALS and MS. The first melatonin therapy for ALS was
conducted in three subjects with 30–60 mg of slow-release melatonin orally at night for 13 months.
The patient with the latest stage of ALS was shown to have an attenuated progression of ALS after
melatonin administration, whereas two patients showed reduced deterioration at the last test [200].
Another clinical study was performed in 31 ALS patients receiving 30 mg/day of melatonin at bedtime
for 24 months as an adjuvant therapy. In this study, it was concluded that high-dose melatonin is
suitable for clinical trials to reduce oxidative stress in ALS, rather than having neuroprotective effects
on clinical symptoms in ALS [41]. The current data are insufficient to draw a definitive conclusion on
the efficacy of melatonin in the treatment of ALS. There are also studies to discover whether melatonin
influences the quality of life of patients with MS. Combinations of melatonin, interferon-beta and
glatiramer acetate were found to improve the quality of life of MS patients taking 5 mg/day of melatonin
for 3 months in a controlled clinical trial [201]. Moreover, a few other clinical trials on melatonin
intervention have been carried out to examine the efficacy and safety of melatonin administration in
MS patients. Some of them have completed or terminated, while others are recruiting now or have not
yet started. The role of melatonin in the treatment of MS needs to be explored further in more clinical
studies [202].
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Table 7. Clinical studies including the treatment of AD and PD patients with melatonin.

Design Subjects Treatment Assessment Results Reference

CR 2 AD patients
(age: 79 years)

6 mg at bedtime
for 36 months

Cognitive
evaluation by

FAST;
neuroimaging
evaluation by

NMR

Significant
improvement of

sleep quality,
reduction of

sundowning, and
lack of progression

of cognitive and
behavioral
disorders

[171]

CR 1 AD patient
(age: 81 years)

2 mg at 8 p.m. for
1 week, 2 mg at 3
p.m. and 8 p.m.

for 2 weeks

Cognitive
evaluation by

MMSE;
neuropsychiatric

evaluation by
NPI

Significant
improvement of
sleep quality and

behavioral
symptoms after the

first week, and
gradual

improvement over
the subsequent two

weeks

[174]

CR 1 AD patient
(age: 68 years)

5–10 mg at
bedtime for 20

months

Sleep evaluation
by PSG

Significant effects
on suppression of

REM sleep
behavior disorder

[175]

CR
2 AD patients

(age: 72 and 75
years)

6 mg (2 h before
bedtime) for 35

days

Sleep evaluation
by actigraphy;

cognitive
evaluation by

ADAS and
MMSE

Significant
improvement of

the circadian
rest–activity

rhythm and mood
and reduction of

daytime sleepiness
in one of them

[176]

R, DB, PC
73 AD patients
(mean age: 75.3

years)

2 mg
(slow-release, 1–2
h before bedtime)

for 24 weeks

Sleep evaluation
by PSQI;
cognitive

evaluation by
ADAS, MMSE

and IADL

Significant
improvement of

sleep efficiency and
cognitive

performance

[177]

R, DB, PC 41 AD patients
(age: 61–95 years)

1.5 mg
(slow-release)

and 8.5 mg
(fast-release) at 10
p.m. for 10 days

Sleep evaluation
by actigraphy

No significant
effects on sleep,

circadian rhythms
or agitated
behaviors

[178]

R, DB, PC

25 patients with
dementia (21 AD

patients, age:
over 65 years)

6 mg
(slow-release) at

bedtime for 2
weeks

Sleep evaluation
by actigraphy;

cognitive
evaluation by

MMSE

No significant
effects on sleep or
cognitive function

[179]

R, DB, PC
20 AD patients
(mean age: 79.2

years)

3 mg at 8.5 p.m.
for 4 weeks

Sleep evaluation
by actigraphy;

cognitive
evaluation by
ADAS, MMSE

and CDRS

Significant
improvement of
the sleep–wake

rhythm, cognitive
dysfunction and

behavioral
problems

[181]
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Table 7. Cont.

Design Subjects Treatment Assessment Results Reference

R, PC
157 AD patients
(mean age: 77.4

years)

2.5 mg
(slow-release) or

10 mg
(fast-release),1 h
before bedtime

for 2 months

Sleep evaluation
by actigraphy

and diary;
cognitive

evaluation by
ADAS, MMSE

and IADL;
neuropsychiatric

evaluation by
NPI and SDI

No significant
effects on sleep
disturbances by

actigraphy; slightly
improvement of
sleep quality by

diary; no effects on
cognitive function

[180]

R, PC
24 AD patients
(mean age: 78.6

years)

3 mg at bedtime
for 2 weeks

Sleep evaluation
by actigraphy;

neuropsychiatric
evaluation by

NPI

Significant
improvement of
circadian rhythm

disturbances,
agitation and

behavioral
symptoms

[186]

R, PC
50 AD patients
(mean age: 86

years)

5 mg melatonin
and 1 h morning
light (≥2500 lux)

for 10 weeks

Sleep evaluation
by actigraphy

Significant
improvement of
the rest–activity

rhythm

[192]

OL
14 AD patients
(mean age: 72

years)

9 mg at bedtime
for 22–35 months

Sleep evaluation
by diary;
cognitive

evaluation by
FAST, ADAS,
MMSE and
Mattis’ and

Blessed’s scales

Significant
improvement of
sleep quality; no

cognitive or
behavioral

deterioration and
loss of sundown

syndrome

[171]

OL
10 AD patients
(mean age: 74

years)

3 mg at bedtime
for 3 weeks

Sleep evaluation
by diary

Significant
improvement of

sleep disturbances
and sundowning

[182]

OL
11 AD patients
(mean age: 85

years)

3 mg at bedtime
for 3 weeks

Sleep evaluation
by diary

Significant
attenuation of

daytime sleepiness
and agitation

[183]

OL, PC 14 AD patients 6 mg at 9 p.m. for
4 weeks

Sleep evaluation
by actigraphy

and diary

Significant
improvement of

insomnia
[184]

OL
45 AD patients
(mean age: 73

years)

6–9 mg at
bedtime for 4

months

Sleep evaluation
by diary;
cognitive

evaluation by
FAST

Significant
improvement of

sleep quality,
sundowning, and

cognitive and
behavioral

impairment

[185]

OL
7 AD patients

(mean age: 75.6
years)

3 mg at around 9
p.m. for 3 weeks

Sleep evaluation
by actigraphy;

cognitive
evaluation by

MMSE and GDS

Significant
improvement of
circadian rhythm
dysfunction and

sundown
syndrome

[51]
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Table 7. Cont.

Design Subjects Treatment Assessment Results Reference

R, DB, PC 40 PD patients
(age: 40–80 years)

5–50 mg at
bedtime for 2

weeks

Sleep evaluation
by actigraphy
and diary, ESS,
SSS and GSDS

Significant
increased

nighttime sleep
with 50 mg by

objective;
significant

improvement of
sleep quality with 5

mg only by
subjective but not

objective

[195]

R, DB, PC
18 PD patients

(mean age: 61.8
years)

3 mg at bedtime
for 4 weeks

Sleep evaluation
by PSG, PSQI

and ESS; motor
evaluation by

UPDRS

Significant
improvement of
sleep quality; no
improvement of

motor dysfunction

[196]

R
38 PD patients

(mean age: 67.3
years)

3 mg (30 min
before bedtime)

for 6 weeks

Sleep evaluation
by PSG, PDSS

and ESS;
cognitive

evaluation by
MMSE,

five-word test,
digit span and
the Hamilton

scale

Significant
improvement of

sleep quality,
daytime sleepiness

and cognitive
dysfunction

[198]

R
30 PD patients
(mean age: 64.1

years)

3 mg at bedtime
for 2 months

Sleep evaluation
by PDSS and ESS;
neuropsychiatric

evaluation by
Beck’s scale and

Spielberger’s
scale

Significant
improvement of
sleep quality and
anxiety status; no

significant changes
in motor, cognitive

or autonomic
dysfunction or

depression status

[199]

Abbreviations: CR: Case report; R: Randomized; DB: Double-blind; PC: Placebo-controlled; OL: Open-label; FAST:
Functional Assessment Tool for Alzheimer Disease; NMR: Nuclear Magnetic Resonance; MMSE: Mini–Mental State
Examination; NPI: Neuropsychiatric Inventory; PSG: Polysomnography; ADAS: Alzheimer’s Disease Assessment
Scale; PSQI: Pittsburgh Sleep Quality Index; IADL: Instrumental Activities of Daily Living; CDRS: Clinical Dementia
Rating Scale; SDI: Sleep Disorders Inventory; GDS: Global Deterioration Scale; ESS: Epworth Sleepiness Scale; SSS:
Stanford Sleepiness Scale; GSDS: General Sleep Disturbance Scale; UPDRS: Unified Parkinson’s Disease Rating
Scale; PDSS: Parkinson’s Disease Sleep Scale.

7. Conclusions

Melatonin plays a critical role in the improvement of circadian rhythms, oxidative stress,
inflammatory activity, neuronal loss, mitochondrial impairment and clinical symptoms through
melatonin receptor-dependent or melatonin receptor-independent pathways in a variety of
neurodegenerative diseases, such as AD, PD, HD, ALS, VD and MS. Nevertheless, more experimental
cell and animal models are required for a better understanding of the molecular mechanisms to
attenuate the sleep, motor and nonmotor dysfunctions of the patients. Moreover, clinical studies have
shown that melatonin is a useful and competent therapeutic tool in neurodegenerative disorders.
However, most studies have focused on the sleep-promoting effects as well as the suppression of
sundown syndrome and cognitive deficits. Moreover, clinical trials in PD, HD, ALS, VD and MS are still
limited. The quality of clinical studies varies because of the different formulations, doses and durations
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of melatonin treatment, as well as the different methods in the study designs and behavioral evaluations.
Thus, well-designed, large multicenter clinical trials are urgently needed to further investigate the
potential and usefulness of melatonin for the clinical symptoms of neurodegenerative patients.

Although melatonin displays almost no side effects, even with high-dose and long-term
administration, in patients in most clinical studies, some adverse reactions of melatonin—including
drowsiness, fever, headache, vomiting, thrombosis, drowsiness, hyperkinesia or restless leg
syndrome—may occur [10,203]. Therefore, the use of melatonin should be considered seriously
with respect to the dosage and duration. Presently, some synthetic melatonergic drugs, such as
ramelteon, agomelatine, tasimelteon and TK-301, are being used in the clinic to reduce sleep
latency [25,191]. Regarding the short half-life (less than 30 min), which may be one of the reasons
for the inconsistent results reported in clinical trials, the development of melatonin with a prolonged
release is needed [191,204]. Melatonin controlled-release tablets (Circadin, Neurim, Tel-Aviv, Israel)
may overcome this issue [25,191]. Several other compounds are being investigated to obtain selective
and effective activities of melatonin in clinical dysfunctions, thereby providing a promising future for
the therapy of neurodegenerative diseases by the use of melatonin [205,206].
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