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Abstract

This paper discusses modeling and automatic feedback control of (postural and rest) tremor for adaptive-control-
methodology-based estimation of deep brain stimulation (DBS) parameters. The simplest linear oscillator-based tremor
model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear
generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of
parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law,
based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation
amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for
estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development
of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed
control scheme are verified through numerical simulations.
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Introduction

Deep brain stimulation (DBS) is an effective therapy for

systematic treatment of symptoms of movement disorders such

as essential tremor, dystonia, and Parkinson’s disease (PD) [1–5].

In PD patients, electrodes are surgically implanted in the basal

galia, usually in the subthalamic nucleus, for electric-pulse-

generated stimulation of a population of neurons [6–8]. The

high-frequency electronic pulse-train applied to the brain is

characterized by certain stimulation parameters such as ampli-

tude, frequency, pulse-width, and slope. Given the complexity of

neurological processes, the underlying DBS mechanism remains

unclear and subject to debate [9–10].

Mathematical modeling of PD and the physiological structures

and functions of the relevant areas of the brain have been

addressed in the literature [11–12] to explore medication

strategies. Such studies, however, provide a complex model of

PD that nonetheless, due to missing model information and

unknown biological processes, cannot be utilized for tremor

control. Recently, a number of studies have analyzed the relation

between DBS parameters and tremor characteristics [13–16]. The

effects of stimulation frequency on intention and postural tremor,

for essential tremor patients, were studied in [15]. In another

recent work [16], the effect of stimulation amplitude on tremor

was investigated to explore the feasibility of an electronic tremor-

symptom-assessment system. Studies like these can be used to

develop a simple mathematical model of tremor, which further can

be applied to the design of a control law for stimulation parameter

estimation and motor symptom control.

Controlled DBS can be understood as a form of functional DBS

that can be used to modify the movement-to-movement stimula-

tion signal to ensure a reasonable quality. On-off feedback-

controlled high-frequency stimulation in the sub-thalamic nucleus

was recently investigated [17], in which the concentration of

glutamate at the neurotransmitter level in the rat brain was

controlled to suppress Parkinson’s tremor. On this foundation,

researchers have explored more advanced, artificial-neural-oscil-

lator- and local-field-potential-based feedback control algorithms

essential to the development of a controlled stimulation framework

[18–19]. These studies reveal the importance of proper stimulation

parameters for feedback control to ensure maximum tremor

suppression, development of an adaptive functional DBS, provi-

sion of an easy and automatic stimulation parameter selection

procedure, and enhancement of pulse-generator battery life.

Although advanced techniques [18–19] of controlled DBS can

facilitate understanding of stimulation therapy mechanisms,

biological restrictions limit their implementation. The neural-

oscillator-based technique [18], utilizing muscle stimulation, is

restricted to tremor control of a single joint, and cannot guarantee

suppression of tremor in other joints of the body. In practice, DBS

is preferred over muscle stimulation as a therapy for control of

brain-disorder-associated tremor. The other feedback-stimulation

technique [19] requires a larger-size electrode for measurement of

local field potentials. However, as the objective of DBS is tremor

suppression, measurement of tremor signal is much more relevant

and meaningful as a tremor control strategy than measurement of

local field potentials. Moreover, local field potentials can be noisy,

due both to the large number of complex processes in the brain
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and the interaction of the time-varying stimulus signal. Also, owing

to the fact that every individual has a different spectrum of local

field potentials, the tracking reference generation for these

potentials, required for the closed-loop stimulation methodology

in [19], is another challenging issue. Even if a reference spectrum

is developed for a neurological patient, the required local field

potential spectrum can change due to the time-varying nature of

brain processes.

This paper discusses a feedback control of postural and rest

tremor by DBS parameter estimation that achieves the advantages

of controlled electrical stimulation with a methodology enabling

the development of an automatic clinical device. A simple linear

mathematical oscillator-based model of tremor under DBS is

derived by application of the results of a kinematic study [16]. The

linear model is modified as a more general time-varying nonlinear

model of tremor. The feasibility of a robust adaptive feedback-

controlled stimulation scheme, based on the measurement of

tremor signals rather than the local field potentials, and on

electronic stimulation of the brain rather than of muscle, is

proposed. The proposed feedback control strategy, by utilizing the

standard Lyapunov theory, guarantees exact estimation of the

stimulation amplitude. Based on the adaptive feedback estimation

of stimulation amplitude, a framework for an automatic DBS

device is provided by formulating an algorithm for estimation of

DBS parameters. The results of the proposed methodology for

control of tremor are provided under different conditions.

This paper is organized as follows. Section 2 describes the

linear/nonlinear tremor model, the proposed control methodol-

ogy, the algorithm for DBS estimation, and the results of the

proposed techniques. Section 3 addresses the methods employed,

including tremor model validation, the Lyapunov method, and the

proof of the main results. Section 4 draws conclusions.

Results and Discussion

2.1. Oscillator-based Linear Tremor Model
A DBS signal can be characterized by parameters such as

stimulation amplitude A, frequency v, and pulse-width m, which

are provided to a stimulus generator to produce a stimulus signal.

This stimulus signal is applied to a specific portion of the brain

through an electrode in order to overcome the motor symptoms of

a cognitive disorder. The tremor due to a brain disorder can be

measured, in terms of acceleration, velocity or position, through a

sensor attached to the finger of a patient. The noise in the tremor

signal is removed by means of a band-pass filter. The entire

process of tremor measurement and DBS is illustrated by the block

diagram in Fig. 1.

Derivation of a mathematical model representing brain

dynamics, neural circuitry and muscles, either for a healthy

person or a brain-disorder patient, is very difficult, due to

involvement of complex processes and some unknown biological

mechanisms. Even if a dynamic model is derived to capture the

properties of a tremor-based brain disorder (as in [12]), it cannot

be utilized to control tremor by means of DBS, owing to model

complexity and the significant amount of higher-order information

on the brain that remains unknown. Such models, furthermore,

are highly time-varying and vary also from case to case and person

to person. For these reasons [12], it is almost impossible to design a

feasible feedback control strategy for estimation of DBS param-

eters.

It is worth noting that the dynamics of the entire process shown

in Fig. 1 can be represented by a simple time-varying oscillator,

specifically by considering DBS parameters as inputs and the

filtered tremor signal as the output. Many electronic oscillators

have been used to represent a single neuron or cell [20–23].

Recently, a higher-order linear dynamic state-space model was

developed to express the brain activity in response to neuronal

activations [24]. In this light, utilization of an oscillator for

representation of the overall brain and muscle dynamics of a

tremor-oriented disease is remarkable for the simplicity of tremor

control and the availability of the physics tools necessary for

investigation of dynamic tremor behavior. It is notable that the

filtered tremor signal is similar to a sinusoidal signal that can be

characterized by its amplitude and frequency; therefore, tremor

dynamics can be represented by means of a simple state-space

model. For simplicity, the tremor dynamics can be described for a

single input, which can be either of the stimulus parameters, for

example, the amplitude. Consider the simplest second-order linear

oscillator model of tremor dynamics in the state-space form, given

by

_xx1~{v2
T x2z u(t){Anð Þ,

_xx2~x1,

y~Cx1,

ð1Þ

where x1 and x2 are the states of the oscillator, y represents the

tremor, C and vT are time-varying parameters representing the

strength of amplitude and the angular frequency of the tremor,

respectively, and u(t) is the control signal for amplitude of the

stimulus signal (generated by a feedback controller). The other

Figure 1. Process of deep brain stimulation (DBS) and tremor measurement. Values of DBS parameters are provided to the stimulus
generator. The stimulus generator produces electrical impulses, which are applied to the brain through an electrode. The tremor signal generated at
the hand and fingers is measured using a position, velocity or acceleration sensor (see [16]). This tremor signal can be filtered to isolate noise.
doi:10.1371/journal.pone.0062888.g001
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parameters of stimulus, such as angular frequency v and pulse-

width m, are constant. It is assumed for model (1) that there exists a

nominal value of stimulation amplitude, say An, for which the

tremor associated with a brain disorder vanishes (if the stimulation

amplitude is selected as An,) for given values of v and m. This

assumption is reasonable, as the tremor of a patient with a brain

disease like Parkinson’s is controlled by DBS for a certain selection

of stimulation parameters [11–16]. Note that the tremor model (1)

can be used to generate tremor signal closer to a sinusoidal

function; therefore, it is applicable to filtered postural and rest

tremor. To represent the dynamics of intention or action tremor,

this model can be modified by incorporating additional states to

represent variation from a sinusoidal function due to direction of

movement.

The tremor model described by (1) is based on the fuzzy

modeling approach utilizing the input-output information, that is,

the idea of stimulation parameters and tremor characteristics. The

main feature of the fuzzy modeling approach is that it does not

require understanding of the whole process, such as functioning of

the brain and mechanism of the DBS. The tremor output of any

frequency and amplitude can be generated by selecting appropri-

ate values of the parameters C and vT , respectively. These

parameters may depend on variations in neuronal signaling and

behavioral changes in the brain, and we can study their values for

different dynamical aspects of the brain by relating various works

(such as [9–11] and [15–16]) on variation of tremor amplitude and

frequency with respect to the brain mechanisms. For instance, to

check the validity of the proposed linear model (1), the

experimental results of [16] under different amplitudes of DBS

corresponding to different neuronal behaviors are reproduced in

Section 3 (see Subsection 3.1). Though, further studies can be

undertaken for computation of the exact values and changes in the

parameters under different dynamical aspects of the brain

subjected to different stimulus conditions. For now, it can be

stated that one of the main advantage of the linear oscillator-based

tremor model is its utilization in designing a feedback controller

for stabilization of tremor oscillations, for the purposes of which,

computation of the exact values of model parameters C and vT is

unnecessary. By incorporating the known bounds on parameters C

and vT , a feedback control methodology can be developed.

2.2. Oscillator-based Nonlinear Tremor Model
The oscillator-based linear tremor model can be extended by

incorporating an additional term f (x1) for the nonlinear aspect of

the tremor-related state x1. The tremor model (1) cannot be

stabilized by an open-loop control (for u(t)~An) due to the lack of

a stabilizing term. Therefore, a stabilizing term can be incorpo-

rated into tremor model (1) to obtain a more general tremor

model. Hence, a nonlinear oscillator-based second-order tremor

model can be written as

_xx1~af (t,x1){v2
T x2z u(t){Anð Þ,

_xx2~x1{bx2,

y~Cx1,

ð2Þ

where the parameters a and b represent the effects of nonlinear

and stabilization terms, respectively.

A proper selection of nonlinearity f (t,x1) is needed for

representation of tremor behavior. For instance, f (t,x1) can be

selected as f (t,x1)~
Pn
i~1

aix
i
1 for any positive integer n. Such

selection of nonlinearity is more general than that in the traditional

FitzHugh-Nagumo model where n~3 is utilized to represent the

dynamics of biological oscillatory systems [20]. Another appro-

priate choice is the general Lipschitz nonlinearity [25–28], given

its utility for representing many dynamic aspects of bio-systems

and its tractable control law formulation for tremor. Such

Lipschitz nonlinearities are often used to model engineering

systems specifically called Lipschitz descriptor systems [29]. As

motivated by engineering techniques, it is reasonable to select

f (t,x1) as a Lipschitz function in the first step. Additionally, such

nonlinearity selection f (t,x1)~
Pn
i~1

aix
i
1 also satisfies the Lipschitz

condition in a local region. Therefore, we assume throughout the

paper that the unknown nonlinearity f (t,x1) satisfies the Lipschitz

Figure 2. Proposed methodology for feedback control of tremor. The filtered tremor signal (see [16]) can be used to calculate the control
signal using an adaptive control methodology. The amplitude of the control signal is bounded using a saturation block. The saturated control signal
is passed through a rate-limiter to filter high-frequency variations in stimulus amplitude. The resultant signal can be used as the stimulation
amplitude to generate a stimulus signal.
doi:10.1371/journal.pone.0062888.g002
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bound below:

f T (t,x1)f (t,x1)ƒLxT
1 x1, ð3Þ

where the scalar L is a positive constant. Details on the Lipschitz

condition are provided in Section 3.

2.3. Adaptive Feedback Control
The purpose of the present study is to design a suitable feedback

control law for stimulus amplitude u(t) to stabilize tremor by

utilizing the feedback of tremor signal y. The nonlinear tremor

model (2)–(3) provides time-varying dynamics between control

signal u(t) and filtered tremor signal y; therefore, it can be used to

develop a control law for u(t) to suppress the motor symptoms. As

a result, a new controlled DBS methodology can be developed by

incorporating the knowledge of parametric bounds. To achieve

robustness against variations in the model parameters, we make

the following assumption.

Assumption 1. The parameters of the nonlinear tremor

model (2)–(3) are bounded, that is, DaDƒamax, 0vbminƒbƒbmax,

0vCminƒCƒCmax, D _CCDƒCd, max, and vT , minvvTƒvT , max,

where amax, bmax, and bmin are bounds on the model parameters,

Cmin and Cmax are associated with the minimum and maximum

strengths of tremor amplitude, respectively, vT , min and vT , max

represent the minimum and maximum angular frequency of

tremor, respectively, and Cd, max represents the maximum change

in the strength of the tremor amplitude.

The following theorem develops a robust adaptive control

scheme for estimating the DBS amplitude.

Theorem 1. Consider the nonlinear tremor model (2)–(3)

satisfying Assumption 1. Suppose there exist scalarsp1, p2, e1 and

e2, such that

diag(p1,p2,e1,e2)w0, M~
M1 0:5p2

� M2

� �
v0 ð4Þ

are satisfied, where

M1~

p1 amaxCmax e1z(L=e1)ð ÞzKC2
minz0:5Cd, maxzCmaxv2

T , maxe2

� �
,

ð5Þ

Figure 3. Closed-loop response of tremor by application of the proposed adaptive control methodology under Case I. The controller
is applied at t~10 sec . By application of the proposed controller, tremor y does not converge to zero, because a proper value of nominal stimulation
amplitude An does not exist for this case. (a) Plot of tremor signal y, (b) plot of url,sat , which does not converge to An due to saturation.
doi:10.1371/journal.pone.0062888.g003
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M2~ p1Cmaxv2
T , max(1=e2){p2bmin

� �
: ð6Þ

Then, the following control and adaptation laws

u(t)~KyzÂAn,
_̂
AÂAAn~{ap1y, aw0 ð7Þ

ensure that

(i) y converges to zero, and

(ii) ÂAn(and u(t)) converges toAn, if the steady state (that

is, convergence of y to zero) is achieved in a finite

time.

Proof. The proof of Theorem 1 is provided in Section 3.

In practice, it has been observed that a system under an

adaptive control law, such as in Theorem 1, can achieve its steady

state in a finite time (see, for example [23]). In that case, the

proposed adaptation law guarantees exact estimation of the

nominal stimulation amplitude required for the stabilization of

tremor.

Because of the safety requirement in biological systems, the

control signal u(t) must be used as the stimulus amplitude after

some necessary signal processing. For instance, if the amplitude of

stimulation is within the 0,5V range, the saturation nonlinearity

usat(t)~

upVu(t)wup,

u(t)Vulƒu(t)ƒup,

ulVu(t)vul

8><
>: ð8Þ

can be introduced to limit the control signal. Typically, ul and up

are selected as 0 and 5V, respectively. The saturated control signal

usat can contain high-frequency variations, which are not desirable

in DBS. These variations can be isolated by means of a rate-limiter

[30], given by

_xxrl~ArlxrlzBrlusat,

url,sat~Crlxrl ,
ð9Þ

Figure 4. Closed-loop response of tremor using the proposed adaptive feedback-control methodology in Case II. The controller is
applied at t~10 sec . By application of the proposed controller, tremor y converges to zero, because a proper value of nominal stimulation amplitude
An exists in this case. Hence, the proposed methodology by Algorithm 1 can be used for estimation of DBS parameters. (a) Plot of tremor signal y, (b)
plot of url,sat, which converges to An .
doi:10.1371/journal.pone.0062888.g004
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where xrl[Rnrl and url,sat[R represent the state and output of the

rate-limiter, respectively. The output url,sat can be used as the

stimulation amplitude under the condition of proper electrical

isolation circuitry.

A block diagram of the overall closed-loop system is shown in

Fig. 2. The blocks for noise filtration, control and adaptation,

saturation, and the rate-limiter can be implemented using a single

electronic processor. The proposed methodology for automatic

estimation of DBS amplitude contains three units: a stimulation

unit including a stimulus generator and electrode, a measurement

unit with a tremor sensor, and an electronic processor comprising

control, adaptation, and signal processing algorithms. It is

noteworthy that the new feature of feedback-controlled DBS

methodology will not significantly affect the size of the traditional

stimulation devices, because it requires only an additional

electronic processor chip for control, adaptation, and signal

processing algorithms. The adaptive feedback control algorithm,

given by (7)–(9), can be implemented in real-time for estimation of

stimulation amplitude. Further, a clinical device framework can be

developed to assist medical doctors in providing for automatic and

more accurate estimation of DBS parameters (to be detailed in the

following sub-section).

2.4. Algorithm for Stimulation Device
The main drawback of the adaptive methodology discussed in

the previous sub-section is that it can be used for estimation of

stimulation amplitude only if the other stimulation parameters are

properly selected. For instance, if the parameters v and m are

selected improperly, estimation of A can be incorrect. To

overcome this limitation, multiple estimations of stimulation

amplitude can be performed for multiple values of stimulation

frequency, say vj for j~1,2,:::,n, and stimulation pulse-width, mk

for k~1,2,:::,p. Each estimation can be performed for time tj,k~0

to tj,k~�ttj,k, and the time-series of url,sat computed using (7)–(9) can

be assigned to url,sat(tj,k). The corresponding n|p estimations of

stimulation amplitude, denoted by Aj,k, can be computed by

taking the average of url,sat(tj,k) over an interval from tj,k~~ttj,k to

tj,k~�ttj,k, where ~ttj,k is the expected settling time in which

url,sat(tj,k) converges to a constant value. Out of a set of stimulation

parameters given by (Aj,k,vj ,mk) for j~1,2,:::,n and k~1,2,:::,p,

the appropriate stimulation parameters (A,v,m) for which the

tremor becomes minimum can be selected.
Algorithm 1. The step-wise procedure for the selection of

stimulation parameters based on the proposed adaptive feedback

control strategy is provided as follows:

Figure 5. Comparison of estimation error and tremor power in Cases I and II. In Case I, the difference between An and its estimation is
higher. Correspondingly, the tremor power is also higher. In Case II, the estimation of nominal stimulation amplitude An is correct; therefore, the
tremor power is nearly zero.
doi:10.1371/journal.pone.0062888.g005
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(1) Initialize the stimulation frequencies vj for j~1,2,:::,n and

the stimulation pulse-widths mk for k~1,2,:::,p.

(2) For j~1,2,:::,n

For k~1,2,:::,p.

(i) Apply control law (7)-(9), from time tj,k~0 to

tj,k~�ttj,k, as shown in Fig. 2, by assigning v~vj

a n d m~mk, a n d c o m p u t e t h e s i g n a l

url,sat(tj,k)~url,sat.

(ii) Take the mean of url,sat(tj,k) from tj,k~~ttj,k to

tj,k~�ttj,k and assign it to Aj,k. That is,

Aj,k~
1

�ttj,k{~ttj,k

ð�ttj,k

~ttj,k

url,sat(tj,k)dtj,k ð10Þ

(iii) Measure the tremor signal y from time tj,k~0 to

tj,k~�ttj,k Calculate the root mean square of tremor (the

tremor power), Yj,k, from tj,k~~ttj,k to tj,k~�ttj,k, given by

Yj,k~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

�ttj,k{~ttj,k

ð�ttj,k

~ttj,k

y2(tj,k)dtj,k

vuuuut : ð11Þ

End

End

(3) Find Y �j,k~ min (Yj,k) and the optimal set of stimulation

parameters using

(A,v,m)~(Aj,k,vj ,mk)DY�
j,k
: ð12Þ

(4) Apply DBS for the calculated stimulation parameters (A,v,m)
as in Fig. 1.

The main advantage of Algorithm 1 is that each Aj,k is selected

from an infinite number of possibilities between ul and up, which

can lead to a more reasonable selection of stimulation parameters.

The optimal set of stimulation parameters, that is (A,v,m), can be

obtained by applying (12), which can be supplied to the DBS

Figure 6. Effect of ~tt2,1 on estimation error An{A2,1 under constant �tt1,2{~tt2,1. The estimation error is decreasing with increasing ~tt2,1 . However,
more time for estimation is required for higher values of ~tt2,1 . Hence, selection of ~ttj,k has critical effects on estimation time and estimation error.
doi:10.1371/journal.pone.0062888.g006
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generator for stimulation purposes. Selection of parameters �ttj,k

and ~ttj,k has an important role to play in algorithm performance,

and this will be addressed in the next sub-section.

2.5. Results for the Proposed Feedback Control
The stimulation amplitude estimation controller is designed for

L~1, amax~1:45, b~0:9, e1~e2~1, Cmax~25, Cmin~4,

Cd, max~0:1, and vT , max~500p. By solving the matrix inequalities

of Theorem 1, the controller and the adaptation law parameters are

obtained as K~{1000, p1~10:87p2~8:44|105, and a~9:2.

The saturation and rate-limiter parameters are fixed to up~5,

ul~0, Arl~{1=0:14, Brl~1=0:14 and Crl~1. To evaluate the

performance of the proposed methodology, we consider the two

cases addressed below.

Case I. First, we assume that for a selection of stimulation

parameters (v1,m1), a proper value of nominal stimulation

Figure 7. Filtered tremor acceleration under different values of stimulation amplitude. By considering time-varying parameters of the
linear oscillator-based tremor model, we can reproduce the experimental results. In the present case, the results in [16] on the tremor of a patient
under DBS with constant stimulation frequency and pulse-width are reproduced for different values of stimulation amplitude. The selected
parameters of the model are as follows: (a)v2

T~1400,C~15, (b) v2
T~1400,C~22, (c) v2

T~1550,C~1:2, (d) v2
T ~1500,C~1:1, (e)

v2
T~1550,C~1:3, (f) v2

T~1450,C~4, (g) v2
T ~1500,C~3:5.

doi:10.1371/journal.pone.0062888.g007
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amplitude An does not exist. For this reason, we can select An~8:35

(that is, An=[½ ul up �) such that u(t) cannot converge to An due to

saturation. The remaining tremor model parameters are selected as

C~9, vT~465p, f (t,x1)~ tanh x1, and a~1:45 for time tƒ10,

and a~1 for time tw10. Fig. 3 shows the result of the proposed

methodology for tremor and the applied control signal. The

controller is applied at time t~10 (that is, t1,1~0 when t~10). By

application of the proposed methodology, the tremor does not

vanish, because the assumption of existence of a proper value of An

is not valid for this case, and the signal url,sat does not converge to

An. By applying (10)–(11), A1,1~2:53V and Y1,1~0:751 are

calculated for ~ttj,k~18s to �ttj,k~25s. Tremor power Y1,1 is not close

to zero; therefore, A1,1~2:53 V is not a suitable choice for DBS.

Due to the violation of the assumption on An for selection of

stimulation parameters (v1,m1), the proposed control methodol-

ogy failed to estimate the desired stimulation amplitude. However,

the solution to this problem is provided in Algorithm 1.

Accordingly, we can apply another set of stimulation parameters,

as in the following Case II.

Case II. Now we assume that the stimulation frequency has

been changed from v1 to v2, without changing the stimulation

pulse-width, and that there exists a proper value of nominal

stimulation amplitude, say An~3:2, for (v2,m1). The model

parameters are selected as C~20, vT~(465z2 sin 5t)p,

f (t,x1)~ tanh x1, and a~1z0:05 sin t. Fig. 4 shows the time-

series for tremor and the control signal under saturation and the

rate-limiter. As the controller is applied at t~10 (with

t2,1~t{10), the tremor amplitude converges to zero and the

signal url,sat converges to An. The mean value and the tremor

power are calculated as A2,1~3:1996V and Y2,1~9:07|10{14,

respectively, for ~ttj,k~18s to �ttj,k~25s. Clearly, A2,1 is closer to An

and Y2,1 is nearly zero; therefore, A2,1 is a good estimate of

stimulation amplitude. Hence, the proposed control scheme can

be useful for adaptive estimation of stimulation amplitude.

By applying Algorithm 1, we can select (A,v,m)~(A2,1,v2,m1)
as simulation parameters. A comparison of tremor power and

stimulation amplitude for Cases I and II is provided in Fig. 5. Such

a diagram can be helpful when a number of selections for

stimulation frequency and pulse-width are used to find appropriate

stimulation parameters.

Selection of ~ttj,k in Algorithm 1 is a critical issue. We now

analyze the effect of ~tt2,1 on A2,1 for Case II under the fixed value

of �tt2,1{~tt2,1~7s. Fig. 6 shows the bar diagrams for An{A2,1

under different selections of ~tt2,1. It is evident that the difference

An{A2,1 is decreasing with increasing ~tt2,1. Hence, the selection of
~ttj,k can play an important role in stimulation amplitude

estimation. Better estimation can be obtained for a large value

of ~ttj,k, though the estimation time will be increased.

Methods

Ethic Statement: N/A.

3.1. Linear Model Validation
The effect of DBS amplitude on tremor under constant stimulus

frequency and pulse-width was studied in [16]. In Fig. 7, the

Fig. 2(a) results in [16] are reproduced, for the same values of

stimulation amplitude, by using the proposed oscillator-based

linear tremor model (1). The nominal amplitude is taken to be

An~3:2V. It is evident from Fig. 7 that the experimental results

are reproduced for different values of parameters C and vT , which

validates the proposed oscillator selection for modeling of

neurological disorder tremor.

3.2. Lipschitz Condition
A function f (t,x) is said to be Lipschitz if it satisfies condition

[25–28], given by

f (t,x){f (t,�xx)k kƒLa (x{�xx)k k, ð13Þ

Where x,�xx[Rn, La is a positive Lipschitz constant, and :k kdenotes

the Euclidian norm. Note also that L~L2
a. This condition can be

used to derive a control law for Lipschitz nonlinear systems.

Moreover, the Lipschitz nonlinearity also satisfies

Lf

Lx
(t,x)

����
����ƒ Lak k, ð14Þ

which inequality can be useful in determining La by means of a

numerical algorithm. It is also important to note that if f (0,0)~0,

condition (14) becomes

f (t,x)k kƒ Laxk k, ð15Þ

which further simplifies the control law derivation. For a piecewise

continuous function f (t,x) satisfying the Lipschitz condition, a

unique solution to the differential equation _xx~f (t,x) is guaran-

teed [25]. A function f (t,x) is said to be locally Lipschitz if it

satisfies conditions (13)–(14) locally for a bounded region

x,�xx[½xminxmax� : xmin,xmax[Rnf g, where xmin and xmax are the

minimum and maximum limits on x, respectively. For further

details, readers are encouraged to study the literature (e.g., [25])

on systems with locally and globally Lipschitz nonlinearities.

3.3. Lyapunov Stability
The Lyapunov method is used to study the stability and control of

dynamic systems. Consider a dynamic system given by _xx~f (t,x),
where x[Rn represents the state of the system. Suppose there exists a

Lyapunov function V (x)§0 for all values of x[Rn with equality only

for x~0(that is, positive definite). If the derivative of the function

V (x) along the system _xx~f (t,x) is less than or equal to zero

(negative definite), that is, V (x)D _xx~f (t,x)ƒ0 with equality only for

x~0 the state x will asymptotically converge to zero according to the

Lyapunov theory (see, for example, [25]). The Lyapunov method

can be applied to dynamic systems without any physical-energy

requirement, and therefore is a valuable stability assessment tool.

3.4. Proof of Theorem 1
Incorporating control law (7) into (2), the following closed-loop

system is obtained:

_xx1~af (t,x1){v2
T x2zKCx1z ÂAo{Ao

� �
,

_xx2~x1{bx2,

y~Cx1:

ð16Þ

Consider a Lyapunov function

V~0:5 p1Cx2
1zp2x2

2z 1=að Þ ÂAo{Ao

� �2
� 	

ð17Þ

The time-derivative of Lyapunov function (17) along (16) is

given by
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_VV~p1Cx1 af (t,x1){v2
T x2zKCx1z ÂAo{Ao

� �� �

z0:5p1
_CCx2

1zp2x2 x1{bx2ð Þz 1=að Þ ÂAo{Ao

� �
_̂
AÂAAo:

ð18Þ

Incorporating the adaptation law (7) into (18), we obtain

_VV~p1aCx1f (t,x1){p1Cv2
T x1x2

zp1KC2x2
1z0:5p1

_CCx2
1zp2x1x2{p2bminx2

2:
ð19Þ

For positive scalars e1 and e2, the inequalities

x1f (x1)ƒe1x2
1z(1=e1)f 2(t,x1)ƒ e1z(L=e1)ð Þx2

1, ð20Þ

{x1x2ƒe2x2
1z(1=e2)x2

2 ð21Þ

are satisfied. Incorporating these into (19), we obtain

_VVƒp1aC e1z(L=e1)ð Þx2
1zp1Cv2

T e2x2
1z(1=e2)x2

2


 �
zp1KC2x2

1z0:5p1
_CCx2

1zp2x1x2{p2bx2
2:

ð22Þ

Using Assumption 1, it is implicit to obtain

_VVƒ p1amaxCmax e1z(L=e1)ð Þzp1KC2
min




z0:5p1Cd, maxzp1Cmaxv2
T , maxe2

�
x2

1

z p1Cmaxv2
T , max(1=e2){p2bmin

� �
x2

2zp2x1x2,

ð23Þ

which can be rewritten _VVƒxT Mx, where x~ x1 x2½ �T and M is

given by (4)–(6). For stability _VVv0 therefore, the matrix

inequalities of Theorem 1 ensure that the tremor y converges to

zero as t??, which completes the proof of statement (i) in

Theorem 1. Now suppose that y converges to zero in a finite time

t~t�. In the steady-state, _xx1(t�)~ _xx2(t�)~0, x1(t�)~x2(t�)~0,

and f (t�,x1(t�))~0. By means of the steady-state analysis for the

closed-loop system (8), similarly to the work in [23], we obtain

0~ÂAo(t�){Ao. Hence, the adaptive parameter ÂAo as well as the

control signal u(t) converges to Ao, if the steady state is achieved in

a finite time. This completes the proof of Theorem 1.

Conclusions

In this paper, modeling and control of tremor under DBS was

examined to explore the potentialities of an automatic feedback-

controlled functional DBS scheme. An oscillator-based tremor

model was developed in accordance with the linear systems theory

by utilizing input-output knowledge. This linear model was

extended to a more general tremor model by incorporating the

nonlinearity and stabilization terms. By means of the standard

Lyapunov theory, a robust adaptive feedback control methodology

for estimation of the desired stimulation amplitude for tremor

control was derived. Under the assumption of finite-time

convergence of tremor, the proposed control methodology can

be used to estimate the nominal value of stimulation amplitude

required to control tremor. Based on multiple estimations of the

nominal values for different stimulation frequency/pulse-width

sets, an algorithm was established by using the proposed control

methodology to derive the developmental framework of an

automatic clinical device for functional DBS. The results of the

proposed methodology were verified through numerical simula-

tions of two cases.
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