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ABSTRACT: Using computational models to predict potential
lncRNA-disease associations (LDAs) has emerged as an effective
supplement to bioexperiments for exploring the pathogenesis of
diseases. However, current computational models still face
limitations in their ability to learn the complex features of
bionetworks. In this study, HGCNLDA, a model which combines
graph convolutional network (GCN)-based aggregation, heteroge-
neous information fusion, and a bilinear-decoder to infer LDAs was
proposed. Recognizing the need to extract essential features during
data processing, our HGCNLDA explored four key steps for
uncovering interaction patterns within the bionetwork: (1) a novel
type of tripartite heterogeneous network, known as the lncRNA-disease-miRNA network (LDMN), was constructed using computed
similarities and known associations. (2) Homogeneous and heterogeneous features of nodes were extracted from domains within the
LDMN by a GCN-based encoder. (3) Feature fusions, including bipolymerization operations and attention mechanism, were
employed to capture a more accurate and comprehensive representation of nodes. (4) Bilinear-decoder was used to rebuild the edge
type (or rating type) for a specific node pair, resulting in the predicted association score. Through a 5-fold cross-validation on two
data sets, namely, data set1 and data set2, our HGCNLDA consistently demonstrated superior performance compared to five related
models. It almost achieved the highest AUROC and AUPR values on both data sets, especially on data set2 where the results
obtained were more challenging and objective. Case studies involving three real cancer scenarios further validated the practicality of
HGCNLDA in identifying potential LDAs in real-world contexts. The source code and data for this study are available at https://
github.com/zywait/HGCNLDA.

1. INTRODUCTION
Long noncoding RNAs (lncRNAs), which have been arbitrarily
defined as transcripts containing more than 200 nucleotides
(200 nt), play crucial roles as regulators of gene expression and
are involved in diverse biological processes. LncRNAs exhibit
several characteristics with protein-coding genes, including
promoters, multiple exons, alternative splicing, characteristic
chromatin signatures, regulation by morphogens and conven-
tional transcription factors, and altered expression in various
diseases, including cancer.1 The potential of lncRNAs as
diagnostic and prognostic biomarkers, as well as therapeutic
targets, has garnered significant attention. LncRNAs have great
potential to be diagnostic and prognostic biomarkers and
therapeutic targets.2,3 Identifying lncRNA-disease associations
(LDAs) is significant for disease prevention, diagnosis, treat-
ment, and prognosis, especially for cancer. While in vivo or in
vitro experiments can provide insights into specific LDAs and
the pathogenic mechanisms of lncRNAs, conducting traditional
low-throughput biological experiments can be a time-consum-
ing, expensive, and inefficient process, especially when dealing
with tens of thousands of lncRNAs with unknown functions. In
recent years, high-throughput technologies such as microarrays

and next-generation sequencing have emerged, allowing for the
identification of a large number of dysregulated lncRNAs
associated with diseases. However, the results from high-
throughput technologies often contain significant noise, and
most of the dysregulated lncRNAs identified may not be directly
related to the causal lncRNAs responsible for the associated
diseases.4 With large-scale available biological databases being
set up, such as LncRNADisease,5 Lnc2Cancer,6 HMDD,7

computer-aided inference of disease-associated lncRNAs as the
system-level inference, has become a valuable complementary
complement to wet-lab experiments. Graph-based deep learning
methods have been applied to various aspects of computational
biology.8−14 These computational approaches help address the
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challenges posed by the vast amount of data and provide insights
into disease-associated lncRNAs.
Computer-aided inference models proposed in recent years

can be classified into three categories: (1) network propagation-
based methods, leverage-known biological information to
construct heterogeneous networks on which applying random
walk or some propagation algorithms to infer LDA. In 2019,
Wang et al.15 proposed a multiple biodata set-based model
LncDisAP, which utilized random walk with restart (RWR) on
related networks to infer LDAs. In the same year, Li et al.16

proposed an improved model called LRWHLDA based on local
random walking, which overcome the limitation of RWR-based
models by known LDAs to walk. In 2019, Zhang et al.17

proposed a new propagation method LncRDNetFlow, which
used priority-based ranking to integrate and propagate
information in heterogeneous networks for inferring LDAs. In
2018, Ding et al.18 proposed the model TPGLDA to infer LDAs,
which employed resource allocation to integrated heteroge-
neous features on the lncRNA-disease-gene heterogeneous
network. (2) Matrix completion-based methods use matrix
factorization to optimize an object function, completing the
missing elements in amatrix composed of biodata. In 2018, Fu et
al.19 proposed MFLDA, a matrix factorization-based model that
decomposed the matrix of heterogeneous biodata into a low-
rank matrix. MFLDA then optimized the low-rank matrix
through iteration to reconstruct the matrix of LDAs. In 2020,
Zeng et al.20 proposed SDLDA, a framework that combined
SVD with deep learning to extract linear and nonlinear features
of lncRNA and diseases. In 2018 and 2019, Lu et al. proposed
SIMCLDA21 based on inductive matrix completion and
GMCLCA22 based on geometric matrix completion to infer
LDAs, making effective use of the inner structure embedded in
thematrix of LDAs. In 2021, Zeng et al.23 proposedDMFLDA, a
deep matrix factorization-based model to predict LDAs,
capturing complex nonlinear relationships between lncRNAs
and diseases with a cascade of nonlinear hidden layers. (3) Deep
learning-based methods use neural networks to extract deep and
complex features from bioinformation networks, leading to
improved performance.24 In 2019, Xuan et al.25 proposed
GCNLDA, which utilized graph convolutional network (GCN)
and convolutional neural network (CNN) to learn the local
representational structure of lncRNA-disease-miRNA heteroge-
neous network for inferring LDAs. In 2021, Shi et al.26 proposed
VGAELDA, an end-to-end model that combined VGAE for
graph representation learning and alternate training via
variational inference, enhancing the capability to capture
efficient low-dimensional representations from high-dimen-
sional features for predicting unknown LDAs. In 2022, Wang
and Zhong27 proposed gGATLDA, which extracted closed
subgraphs from the LDA matrix and integrated similarities to
construct feature vectors for training graph neural networks
(GNNs) to infer LDAs. In the same year, Xuan et al.28 proposed
MGLDA, which learned the local and global topology and
pairwise attributes to encode and integrate the semantics of
multiple meta-paths in a heterogeneous graph, aiding in LDA
inference. In 2022, Fan et al.29 proposed GCRFLDA, a novel
prediction method that constructed an encoder with a
conditional random field and attention mechanism to learn
efficient embeddings of nodes, alongside a decoder layer to score
LDAs. Also, in 2022, Zhou et al.30 proposed LDAformer, a novel
LDA prediction model based on topological feature extraction
and a transformer encoder. LDAformer designed a topological
feature extraction process to capture multihop topological

pathway features latent in the heterogeneous network and used a
transformer encoder based on global self-attention to infer LDAs
by capturing interdependencies between heterogeneous path-
ways.
However, the models in the above three categories still exhibit

the following limitations in learning complex features from
heterogeneous bionetwork:

• Underutilization of rich interaction information: the
complex mechanisms and functions within bionetworks
are not fully leveraged because the aforementioned
models treat information from nodes of different types
equally, without taking into account the heterogeneity of
the network.

• Focus on linear interaction information: the linear
interaction information derived from direct or indirect
neighbors has been focused on, rather than the semantic
information embedded in the heterogeneous network.

• Inherent sparsity challenges: the intrinsic sparsity of
heterogeneous bionetworks can introduce bias and
instability into the model outcomes.

To address these limitations, we made two key steps. First, we
constructed a heterogeneous network known as LDMN
(lncRNA-disease-miRNA). Second, we proposed a novel
computational model, HGCNLDA, which efficiently integrates
heterogeneous features using GCN for the identification of
LDAs. In summary, our model offers the following contribu-
tions:

• Constructed a heterogeneous LDMN network by
introducing miRNA nodes into the known lncRNA-
disease bipartite network, thereby enriching the amount
of information embedding in the bionetwork.

• Developed two types of encoders within GCN (intra-
GCN and inter-GCN) to extract features, while
considering sematic relationships and interactions
between heterogeneous nodes.

• Integrated information coming from diverse domains
composed of homogeneous or heterogeneous nodes,
using a bipolymerizer and attention mechanism.

• Enhanced the model’s generalization capability and
stability by conducting the residual connection and
layer normalization (Layer Norm).

• Strengthened the model’s robustness by optimizations
that avoided the adverse impact of extremely unbalanced
positive and negative samples in sparse data sets.

2. RESULTS
2.1. Experiment Data Set. The performance of our

HGCNLDA was evaluated on two benchmark data sets with
collection and preprocession described in the literature19 and
literature,30 respectively:

• Data set1, there are 2697 known LDAs coming from
LncRNADisease5 and Lnc2Cancer,6 13562 miRNA-
disease associations sourced from HMDD v2.0,7 as well
as 1002 lncRNA-miRNA interactive relationships from
starBase v2.0.31 Data set1 covers 240 lncRNAs, 412
diseases, and 495 miRNAs.

• Data set2, there are 3833 known LDAs coming from
Lnc2Cancer v3.032 and LncRNADisease v2.0,33 8540
miRNA-disease associations sourced fromHMDD v3.0,34

as well as 2108 lncRNA-miRNA interactive relationships
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from starBase v2.0. Data set2 covers 665 lncRNAs, 316
diseases, and 295 miRNAs.

The sparsity is defined as the ratio of the number of known
LDAs to the number of all possible associations. Data set1, with
a sparsity ratio of 1:37, has been widely utilized for performance
evaluation since its construction in 2018. On the other hand,
Data set2, a newly constructed data set in 2022, exhibits a
sparsity ratio of 1:55. While Data set1 is a well-established data
set with extensive usage, its construction process relies on
certain logical presuppositions as outlined in the original
literature.30 In contrast, Data set2 was constructed respecting
the original literature’s evidence records in Lnc2Cancer and
LncRNADisease, without introducing any logical presupposi-
tions in the process. Moreover, Data set2 is even sparser than
Data set1, despite both having a significant imbalance between
positive and negative samples. As a result, the performance
evaluation on Data set2 is considerably more challenging and
objective compared to Data set1.
2.2. Evaluation Metric and Method. When the associa-

tion score of an lncRNA-disease node pair surpasses a given
threshold, it is classified as a positive sample. Otherwise, it is
designated as a negative sample. The corresponding true
positive rate (TPR) and false positive rate (FPR) at a specific
threshold were computed. For various threshold values, multiple
sets of TPR and FPRwere obtained, and subsequently, a receiver
operating characteristic (ROC) curve was generated according
to these TPRs and FPRs. Two common metrics, namely, the
area under the ROC curve (AUROC) and the area under the
precision-recall (PR) curve (AUPR), were employed to assess
the predictive performance of the models included in the
comparison. To mitigate the impact of randomness in
experimental results, a 5-fold cross-validation approach was
repeated 10 times for evaluation. The average values derived
from these repetitions were then calculated to serve as the final
evaluation results.
2.3. Experimental Environment and Parameters. The

pyTorch framework was selected as the experimental environ-
ment. Drawing from previous experience, hyperparameters were
set at fixed values to attain optimal model performance. To
prevent the model from overfitting, Dropout35 was applied
during GCN training to randomly discard network edges with a
fixed probability before performing the convolution operation.
The precise values of each hyperparameter are detailed in Tables
1 and 2.

2.4. Parameter Selection. In the tables above, the optimum
values of the nearest neighbors (K) and GCN hidden layers (h)
were determined by using a grid search method within the
specified ranges of {5, 10, 15, 20} and {32, 64, 128, 256},
respectively. The selection process for these optimal values was
visually represented by the heatmaps in Figure 1. From the
results presented in the heatmaps, it was observed that AUROC
and AUPR achieved higher values with smaller values of K,
indicating that the inclusion of more neighbors in constructing
the adjacent matrix introduced more noise. Regarding the GCN
hidden layers (h), the model achieved higher AUROC and
AUPR values on Data set1 with the addition of h. However, in
Data set2, this trend was opposite. This contrasting performance
on Data set1 and Data set2, with varying values of h, indicated
that the model had difficulty in learning the low-dimensional
representation of nodes on Data set1 with a smaller h, while it
tended to overfit on Data set2 with a larger h. Therefore, based
on the analysis above, the optimal values of K and h were set to
be 3 and 256 on Data set1, 3, and 64 on Data set2, respectively.
2.5. Evaluation Result and Analyzation. The related

state-of-the-art models, including SIMCLDA21 in 2018,
DMFLDA23 in 2020, SDLDA20 in 2020, GCRFLDA29 in
2022, and LDAformer30 in 2022, were compared with our
HGCNLDA in the same experimental environment and data
sets. The obtained AUROC and AUPR values are detailed in
Table 3, Figures 2, and 3.
From the results in Table 3, Figures 2, and 3, our HGCNLDA

outperforms the other models on both evaluation metrics on
Data set1, especially in terms of AUPR, except for a slightly
0.55% lower AUROC value compared to LDAformer. On Data
set2, which is notably more challenging and objective compared
to Data set1, our HGCNLDA achieved the highest AUROC and
AUPR values among all models. Specifically, our HGCNLDA’s
AUROC value is 0.73% higher than that of LDAformer ranking
second in this metric, and its AUPR value is 25.7% higher than
that of SDLDA ranking second in this metric. This significant
increase in the AUPR value on Data set2 demonstrated the
effectiveness of our HGCNLDA in predicting LDAs on highly
imbalanced data sets.
2.6. Ablation Experiment. 2.6.1. Crucial-Component

Combination. Our HGCNLDA is composed of five crucial
components: ① intra-GCN encoder for aggregating features
from the homogeneous domain; ② inter-GCN encoder for
aggregating features from the heterogeneous domain; ③
summation polymerizer for fusing extracted features; ④
concatenation polymerizer for fusing extracted features; and ⑤
global attention layer for obtaining low-dimensional representa-
tions. The ablation experiments, which were designed to assess
the impact of working in various combinations, including or
excluding different crucial components, are detailed in Table 4.
The corresponding experimental results are presented in Table
5.
In Table 5, the highest AUROC and AUPR values achieved by

HGCNLDA explicitly demonstrate the impact of incorporating
the crucial components into the model. On Data set1, our
HGCNLDA demonstrates that the improvements in AUROC
values by 1.7, 1, 1.7, 1.6, and 2.3%, and AUPR values exhibit
enhancements of 20.8, 12.9, 18.5, 18.3, and 22.7% compared to
model variants A-only, R-only, AR-S, AR-C, and AR-SC,
respectively. Although our HGCNLDA’s performance has not
significantly improved in terms of the AUROCmetric, there has
been a substantial increase in the AUPR metric. These
experimental results illustrate that, on one hand, only

Table 1. Some Detailed Hyperparameter Setup in
Experiment

hyperparameter value

nearest K neighbors 3
GCN layers n 2
learning rate 0.001
weight attenuation coefficient 0.00001
dropout probability 0.4

Table 2. Different Values of Some Hyperparameters in
Different Data Sets

hyperparameter value in Data set1 value in Data set2

epoch 300 150
GCN hidden layers h 256 64
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considering homogeneous information interactions without
distinguishing heterogeneous information interactions could
lead to a significant decrease in the model’s ability to classify
positive samples. On the other hand, the fusion methods used

for extracted features play a crucial role in enhancing and
stabilizing the model’s predictive performance. On Data set2,
the AUROC and AUPR values obtained by our HGCNLDA did
not exhibit significant improvements compared to those of the

Figure 1. AUROC and AUPR with different K and h values on Data set1 and Data set2. (a) AUROC on Data set1; (b) AUPR on Data set1; (c)
AUROC on Data set2; and (d) AUPR on Data set2. In each panel, the best performance indicator is highlighted with a red box, and the ultimately
selected parameter combination is marked with a white five-pointed star.

Table 3. Evaluation Results Are for Comparison

model Data set1 Data set2

AUROC AUPR AUROC AUPR

SIMCLDA 0.8385 ± 0.0329 0.1755 ± 0.0925 0.6446 ± 0.1588 0.0525 ± 0.0472
DMFLDA 0.8485 ± 0.1699 0.3422 ± 0.1720 0.8575 ± 0.1668 0.2205 ± 0.1093
SDLDA 0.8518 ± 0.1728 0.5113 ± 0.2441 0.8447 ± 0.1741 0.3759 ± 0.1813
GCRFLDA 0.9596 ± 0.0026 0.4130 ± 0.0292 0.9476 ± 0.0225 0.2308 ± 0.1056
LDAformer 0.9935 ± 0.0019 0.7325 ± 0.0186 0.9423 ± 0.0038 0.2354 ± 0.0130
HGCNLDA (ours) 0.9880 ± 0.0008 0.8501 ± 0.0193 0.9492 ± 0.0044 0.5056 ± 0.0170
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Figure 2. Performance of models engaged in comparison on Data set1.

Figure 3. Performance of models engaged in comparison on Data set2.

Table 4. Various Combinations of Crucial Parts Involved

model variant variant implication GCN-based aggregator bipolymerizer attention layer

intra-GCN encoder inter-GCN encoder summation concatenation

A-only only crucial part ① included Inc. Excl. Excl. Excl. Excl.
R-only only crucial part ② included Excl. Inc. Excl. Excl. Excl.
AR-S crucial parts ①②③ included Inc. Inc. Inc. Excl. Excl.
AR-C crucial parts ①②④ included Inc. Inc. Excl. Inc. Excl.
AR-SC crucial parts ①②③④ included Inc. Inc. Inc. Inc. Excl.
HGCNLDA all five crucial parts are included Inc. Inc. Inc. Inc. Inc.
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Figure 4. Performance of the model variants on Data set1.

Figure 5. Performance of the model variants on Data set2.

Table 5. Performances of Each Crucial−Part Combination on Two Data Sets

model variant Data set1 Data set2

AUROC AUPR AUROC AUPR

A-only 0.9711 ± 0.0063 0.6730 ± 0.0435 0.9356 ± 0.0051 0.4109 ± 0.0258
R-only 0.9782 ± 0.0067 0.7408 ± 0.0601 0.9484 ± 0.0037 0.5044 ± 0.0183
AR-S 0.9710 ± 0.0092 0.6931 ± 0.0453 0.9476 ± 0.0043 0.5009 ± 0.0162
AR-C 0.9726 ± 0.0075 0.6943 ± 0.0428 0.9475 ± 0.0047 0.5038 ± 0.0219
AR-SC 0.9652 ± 0.0101 0.6573 ± 0.0475 0.9478 ± 0.0036 0.5020 ± 0.0156
HGCNLDA 0.9880 ± 0.0008 0.8501 ± 0.0193 0.9492 ± 0.0044 0.5056 ± 0.0170
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model variants, including A-only, R-only, AR-S, AR-C, and AR-
SC. This indicates that performance improvement on Data set2
presents a greater challenge, as discriminating between positive
and negative samples on Data set2 is notably more complex than
on Data set1.

2.6.2. Optimization Combination. To determine the
optimization scheme, ablation experiments were designed to
assess the impact of various combination of decoders and loss
functions: ① the inner-product decoder and weighted cross
entropy were included to create the model variant ID-WCE; ②
the inner-product decoder and cross entropy were included to
create the model variant ID-CE; ③ the bilinear-decoder and
weighted cross entropy were included to create the model
variant BD-WCE; and ④ the bilinear-decoder and cross entropy
were included in our HGCNLDA. The corresponding
experimental results were presented in Figures 4 and 5.
From the experimental results depicted in the figures above,

the model variants using the bilinear-decoder achieved superior
performance with higher AUROC and AUPR values compared
with those using the inner-product decoder. As for the choice of
loss functions, on Data set1, the model variants employing
weighted cross entropy (ID-WCE and BD-WCE) exhibited
better performance with higher AUROC and AUPR values than
those using cross entropy (ID-CE and HGCNLDA). However,
this trend was reversed for weighted cross entropy on Data set2.
It indicated that cross entropy, when applied in ourHGCNLDA,
performed better on data sets that are sparser andmore seriously
imbalanced between positive and negative samples, such as Data
set2.
2.7. Case Study. Global cancer statistics36 reported that

breast cancer is the most prevalent type of cancer in women
worldwide and ranks second in terms of death tolls. Lung cancer
is the second most common cancer in both males and females
when combined. Colorectal cancer (CRC) (colon + rectum) is
the third leading cause of cancer-related mortality worldwide.
These three representative cancer types were selected as the real

cases to further investigate HGCNLDA’s ability in predicting
lncRNAs related to these significant specific diseases�breast
cancer, lung cancer, and colorectal cancer. To assess this, known
associations related to breast cancer were masked in Data set2,
and the remaining known associations served as the training
samples to train HGCNLDA. A similar process was repeated for
lung cancer and colorectal cancer. The associations between
lncRNAs and the three aforementioned cancers, predicted by
HGCNLDA, were then sorted by scores in descending order.
The top 10 associations for each of these cancers were selected
based on their scores. Detailed verification results were
presented in Tables 6−8, along with the corresponding evidence
found in the PubMed database (https://pubmed.ncbi.nlm.nih.
gov/).
In Table 6, only one out of ten lncRNAs predicted has not

been found to have any evidence described in the literature of
PubMed database. Although there is no direct description of the
association between “DLEU2” and breast cancer in the literature
so far, the literature37−39 have demonstrated that DLEU2 binds
to miR-30a-5p through the same binding site, facilitating the
expression of ETS2. ETS2 is overexpressed in breast carcinoma.
Moreover, the miR-30a-5p axis regulates breast cancer cell
proliferation and migration. Therefore, this indirectly supports
the existence of an association between DLEU2 and breast
cancer. In Tables 7 and 8, all lncRNAs predicted by our
HGCNLDA have been found to have the evidence of
associations with lung cancer and colorectal cancer.

3. DISCUSSION
Numerous computational models for predicting LDAs have
been developed. However, many of them share some common
limitations, including underutilization of rich interaction
information, a focus on linear interaction information rather
than semantic information, and bias and instability due to the
inherent sparsity of biological data. To address these limitations,
a novel computational model, HGCNLDA, has been proposed

Table 6. Top 10 Breast Cancer-Related LncRNAs in Potential

case ranking LncRNA PMID case ranking LncRNA PMID

breast cancer 1 BDNF-AS 32521278 breast cancer 6 TDRG1 33822672
2 FOXD2-AS1 34043149 7 TUSC7 34305410
3 DLEU2 unconfirmed 8 HCP5 36980766
4 MIR100HG 33088216 9 DGCR5 32521856
5 C5orf66-AS1 35499320 10 HIF1A-AS1 26339353

Table 7. Top 10 Lung Cancer-Related LncRNAs in Potential

case ranking LncRNA PMID case ranking LncRNA PMID

lung cancer 1 XIST 31553952 lung cancer 6 SNHG16 33015794
2 TUG1 35249784 7 TP73-AS1 36118078
3 CRNDE 35611803 8 BDNF-AS 31421833
4 DLX6-AS1 36017915 9 HULC 30575912
5 ZFAS1 36569479 10 SNHG6 32590190

Table 8. Top 10 Colorectal Cancer-Related LncRNAs in Potential

case ranking LncRNA PMID case ranking LncRNA PMID

colorectal cancer 1 CDKN2B-AS1 34436551 colorectal cancer 6 SNHG6 31322251
2 MIAT 35607443 7 PCAT1 33277833
3 TP73-AS1 35896939 8 SNHG3 34661273
4 CRNDE 33891491 9 SNHG14 31273190
5 DLX6-AS1 32785606 10 SNHG7 35747807
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for identifying potential LDAs. HGCNLDA incorporates a
GCN-based aggregation module and a heterogeneous informa-
tion fusion module to acquire semantic relationships from both
homogeneous and heterogeneous domains within the hetero-
geneous network, LDMN. In the information fusion module, a
dipolymerizer and global attention mechanism are employed to
acquire low-dimensional node representations, considering both
local neighborhood attribute information and structural
information. Lastly, a bilinear-decoder module rebuilt the
LDA matrix to obtain the predicted probability scores of
LDAs, through reinforcing common attributes and diminishing
differences of vectors. The evaluation results on both Data set1
andData set2, particularly onData set2, clearly demonstrate that
HGCNLDA outperforms the other five related state-of-the-art
models in terms of AUROC and AUPR values. Case studies
further confirm that HGCNLDA exhibits excellent predictive
capabilities in identifying potential LDAs, which will enable it to
contribute to the design of treatment strategies and the
development of therapeutics. However, it is worth noting that

HGCNLDA still did not fully leverage the abundant semantic
information within heterogeneous networks. Therefore, our
forthcoming work will center around, on one hand, further
enhancing the model’s ability in learning complex features on
heterogeneous networks by utilizing semantic information and,
on the other hand, integrating more diverse and richer biological
interaction information into the model’s computational process.

4. MATERIALS AND METHODS
4.1. Similarity Network Construction. 4.1.1. Disease

Semantic Similarity. Wang et al.40 employed medical subject
headings (MeSH), which describes relationships between
diseases using a directed acyclic graph (DAG), to calculate the
disease semantic similarity. Within the DAG, a disease node d is
represented by DAGd = (d, Td, Ed), where Td denotes the set
encompassing all ancestors of disease d (inclusive of d itself), and
Ed denotes the edges connecting these diseases within the set.

Figure 6. Model schematic depiction. First step, the initial features of lncRNAs, diseases, and miRNAs were linearly transformed into the same
projection space; second step, the intra-GCN encoder and inter-GCN encoder extracted features from the domains (homogeneous and
heterogeneous) in LDMN; third step, bipolymerization operations (summation and concatenation) that fused the features extracted parallelly.
Subsequently, a global attention mechanism was designed to further integrate heterogeneous information to obtain low-dimensional representations.
To stabilize the gradient and enhance model robustness, a residual connection and layer normalization (Layer Norm) were added between each
module’s input and output layers; and fourth step, the bilinear-decoder predicted the probability scores of LDAs.
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Consequently, the semantic contribution value of any disease d
to disease di was established using the expression
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{ × | }
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where γ denotes the semantic contribution factor whose value is
set to 0.5 by reference to the literature.40

The semantic value of disease di is denoted by SV(di), defined
as

d dSV( ) SC ( )i
d T

d
d

i
=

(2)

Based on this method, we calculated the semantic similarity
between any two diseases with which to construct the disease
similarity network denoted as Sd

o ox , where o represents the
number of diseases. In Sd, any element representing the semantic
similarity between disease di and disease dj is denoted as Sd
(di,dj), and calculated as

d d
d d

d d
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+
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4.1.2. LncRNA (MiRNA) Functional Similarity. It is well
known that lncRNAs (miRNAs) with similar functions tend to
be associated with similar diseases and vice versa.41,42 Based on
this assumption, we employed a method similar to the one
described in the literature43 to calculate the lncRNA functional
similarity between any two lncRNAs by calculating disease
semantic similarities. Consequently, the lncRNA similarity
network and miRNA similarity network were constructed,
denoted by Sl

u u× and Sm
v v× , where u and v represent

the numbers of lncRNAs and miRNAs, respectively.
Sets D(i) and D(j) represent the sets of disease nodes

associated with lncRNA li and lj, respectively. Hence, the
similarity between disease dt ∈ D(i) and D(j) is defined as

d D j d dSDS( , ( )) max ( ( , ))t
d D j

d t
( )

=
(4)

Within Sl, any element representing the functional similarity
between lncRNA li and lj is denoted by Sl(li,lj), and calculated as

l l
d D i d D j

D i D j
S ( , )

DS( , ( )) DS( , ( ))

( ) ( )l i j
d D i d D j( ) ( )=

+

| | + | |
(5)

The construction process of miRNA similarity network
Sm

v v× follows a similar procedure as described above.
4.1.3. Neighborhood Matrix. For any disease node in Sd, we

selected the nearest K neighbors related to this disease node to
construct a disease neighborhoodmatrix, denoted as Ad

o o×

. Matrix element Ad (di,dj) = Sd (di,dj) when disease dj belongs to
one of the K neighbors of disease di, otherwise Ad(di,dj) = 0. The
construction process for lncRNA neighborhood matrix
Al

u u× and miRNA neighborhood matrix A m
v v× is

similar.
4.2. LDMN Construction. According to the litera-

ture,19,44−46 LDAs, disease-miRNA associations (DMAs), and
lncRNA-miRNA interactions (LMIs) were acquired to create
the corresponding networks represented as matrices,
Ald

u o× , Adm
o v× , and Alm

u v× , respectively. Each

matrix element Ald (li,dj) = 1 when lncRNA li has a known
association with disease dj, otherwise Ald(li,dj) = 0. Matrix
elements Adm (di,mj) and Alm(li,mj) were calculated in a similar
manner. Finally, a heterogeneous network named LDMN,
represented as an adjacent matrix A u o v u o v( ) ( )+ + × + + , was
constructed as
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whereAld
T,Alm

T , andAdm
T represent the corresponding transpose

matrices of Ald
u o× , Adm

o v× , and Alm
u v× ,

respectively.
In the construction process of the LDMN, only K-nearest

neighbors of any related node were selected, which may result in
the loss of information from some nodes. Therefore, an initial
feature matrix, denoted as X u o v u o v( ) ( )+ + × + + , preserved the
similarity information on all nodes related to LDMN, with
definition as
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4.3. Model Structure. A new computational model to infer
LDAs, namely, HGCNLDA, was described in detail in this
section. The workflow of HGCNLDA consisted of three
modules: GCN-based aggregation, heterogeneous information
fusion, and a bilinear-decoder, as briefly depicted in Figure 6.

4.3.1. GCN-Based Aggregation. 4.3.1.1. Feature Linear
Transformation. The feature vectors of heterogeneous nodes
may exist in different dimensions. Even when feature vectors
have equal dimensions, they may be located in different feature
spaces.47 To facilitate the exchange of node information
between heterogeneous networks and uniformly processed
feature vectors, the initial features of heterogeneous nodes were
projected into the same potential vector space through a specific
linear transformation
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where H u o v h( )+ + × is the matrix obtained after projection
with the initial features, with Hl

u h× , Hd
o h× , and

Hm
v h× representing the projection matrices for three types

of nodes (lncRNA, disease, and miRNA), respectively.
W u o v h( )+ + × is a linear transformation matrix, and
dimension h is the dimension of the projected vector.

4.3.1.2. Encoder. GCN is capable of encoding both graph
structure and node features, serving as a powerful feature
extractor for nodes in a graph during convolution operations.48

A specific node, along with its homogeneous neighbors,
constituted a homogeneous domain, while a specific node,
along with its heterogeneous neighbors, constituted a
heterogeneous domain. In LDMN, the process of message
delivery among homogeneous nodes differs from that among the
heterogeneous nodes. Drawing from the description of inter-
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and intradomain feature extraction,49 we designed two distinct
encoders for feature extraction from homogeneous and
heterogeneous domains. Consequently, both inter-GCN and
intra-GCN encoders aggregated information from the node and
its neighbors to extract the local features of the node. This
aggregation relied on topological relationships between nodes,
enabling it to obtain more accurate feature representations

A H W D AD H WGCN( , , ) ( )n n n n( ) ( ) 1/2 1/2 ( ) ( )= (9)

A A I= + (10)

where I is an identity matrix with the same dimension as matrix
A,D is the degreematrix of A H, n u o v h( ) ( )+ + × that represents
the matrix of node features input into the nth layer of GCN,
W n h h( ) × represents a learnable weight matrix in the nth
layer of GCN, and σ is the ReLU activation function.50

4.3.1.3. Homogeneous Aggregation. In LDMN, there are
three types of homogeneous domains (lncRNA−lncRNA,
disease−disease, and miRNA−miRNA) in which homogeneous
features of nodes were extracted by the intra-GCN encoder
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where Wl
h h× , Wd

h h× , and Wm
h h× are the

learnable weight matrices in GCN for three types of
homogeneous domains (lncRNA−lncRNA, disease−disease,
and miRNA−miRNA) respectively. The dimension of the
hidden layer in the GCN is set to be h. Consequently, the
outputs Hl

u h× , Hd
o h× , and Hm

v h× represent the
homogeneous features extracted with the intra-GCN encoder
for three types of homogeneous domains, respectively.
The literature51 concluded that stacking multiple convolu-

tional layers did not improve performance, and a simple
combination of a convolutional layer followed by a dense layer
worked best. Consequently, the intra-GCN encoder in this study
was implemented with a single convolution layer in GCN.

4.3.1.4. Heterogeneous Aggregation. In LDMN, there are
three types of interactions between heterogeneous nodes,
forming three distinct heterogeneous domains: lncRNA−
disease, disease−miRNA, and lncRNA−miRNA. The inter-
GCN encoder aggregated interactions between one specific
node and the other two types of heterogeneous nodes to extract
heterogeneous features. For example, in LDMN, when lncRNA
node li interacts with two types of heterogeneous nodes (disease
and miRNA), the heterogeneous features of node li are extracted
by the inter-GCN encoder from two types of heterogeneous
domains, which are lncRNA-disease and lncRNA-miRNA
domains
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where Hd
h1

j

× and Hm
h1

q

× input into GCN represent
the feature vectors of disease node dj and miRNA node mq in

projection matrices Hd
o h× and Hm

v h× , respectively.
Wld

h h× and Wlm
h h× are the learnable weight matrices

for the heterogeneous domains (lncRNA−disease and
lncRNA−miRNA). Correspondingly, output vector
Hl

h1
i

× represents the heterogeneous extracted features of
lncRNA node li.
Similarly, the heterogeneous features of disease node dj and

miRNA node mq extracted with the inter-GCN encoder were
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4.3.2. Feature Fusion. 4.3.2.1. Bipolymerization Operation.
In the heterogeneous network LDMN, features coming from
both homogeneous and heterogeneous neighbors of one specific
node were aggregated into that node using inter- and intra-GCN
encoders. To enhance the accuracy and comprehensiveness of
the node’s representation, the extracted homogeneous features
were fused with the extracted heterogeneous features through a
bipolymerization operation (summation and concatenation)

H H Hl l li i i
= + (15)

H H H W B( )l l l c ci i i
= + (16)

whereHl
h1

i

× is the feature vector of lncRNA node li in the
extracted homogeneous feature matrix H̅l. Operator + denotes
the summation operation, and ∥ denotes the concatenation
operation on vectors. In the concatenation operation,
Wc

h h2 × is a linear transformation matrix, and vector
Bc

h1× is a bias. The resulting output vectors Hl
h1

i

×

and Hl
h1

i

× represent the fused feature vectors after the
bipolymerization operation.

4.3.2.2. Attention Mechanism. The summation operation in
the bipolymerization process aims to incorporate features from
all neighbors, including those with different properties
(homogeneity and heterogeneity), into the specific node. This
process helped to obtain the global-domain information.
Meanwhile, the concatenation operation in the bipolymerization
operation aims to preserve the diversity of homogeneous and
heterogeneous features, contributing to obtain the structure
information.
Since the contributions of global-domain and structure

information in forming a specific node’s representation differ,
an attention mechanism was employed to weigh and combine
these two types of information, resulting in the node’s integrated
low-dimensional representation

W H Btanh( )l a l
T

ai i
= · + (17)

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07923
ACS Omega 2024, 9, 1472−1484

1481

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
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where h1× is a mapping vector, and weight matrix
Wa

h h× and bias vector Ba
h 1× were used for nonlinear

transformation of a specific node’s features. The vectorsHl
T

i
and

Hl
T

i
are the transposed vectors corresponding to Hli

and Hli
,

respectively. The corresponding results l
i
and l

i
are the

attention scores for fused features (Hli
and Hli

) obtained with
the bipolymerization operation. Weights 0,1li

[ ] and
0,1li

[ ] are obtained with a softmax function that normalized
vector Hli

and Hli
. Finally, vector Hl

h1
i

× represents the
integrated representation of node li obtained through further
weighted summation.
In order to enhance the model’s generalization ability and

reduce training time, we introduced a residual connection52 and
applied layer normalization (Layer Norm)53 to acquire the final
representation of node li, with denotation as l

h1
i

×

H Hlayer norm( )l l li i i
= + (22)

Similarly, the final representation of disease node dj, denoted
as d

h1
j

× , was obtained by using the same procedure.
4.3.3. LDA’s Rebuilding. 4.3.3.1. Bilinear-Decoder. Multi-

plication between vectors that emphasizes common properties
of vectors and diminishes differences could effectively model
interactions.54 Inspired by the description of the bilinear-
decoder in the literature,51 the edge type (or rating type),
denoted as r∈ R = {0, 1} between node li and dj, was rebuilt with
element l dA ( , )ld i j in matrix Ald

u o× . When r = 0,

l d rA ( , )ld i j = indicates that no association exists between the

node pair (li,dj). Otherwise, when r = 1, l d rA ( , )ld i j = indicates
that node li doses associate with dj. Through a bilinear operation
followed by the application of softmax function, the decoder
outputs a probability of the possible rating type as a predicted
association score for a specific node pair
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where operator⊕ denotes the summation of each element in the
vector, operator ⊙ denotes the dot product between two
vectors, and matrixQ r

h h× is a trainable weight matrix.
4.3.3.2. Model Optimization. According to the literature,19

the original LDA matrix Ald
u o× is an extremely imbalanced

data set, where the known LDAs (positive samples) are
significantly fewer in number compared to the unknown or
nonexisting LDAs (negative samples). To mitigate the adverse
impact of treating positive and negative samples equally during
model optimization, the model parameters were learned by
minimizing the following negative log likelihood of the predicted
probability score51

I l d r

p l d r

A

A

loss ( , )

log( ( ( , ) ))

l d U r

R

ld i j

ld i j

( , ) 0i j

= [ = ]

=
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(24)

wh e r e I l d rA ( , ) 1ld i j[ = ] = when ma t r i x e l emen t
l d rA ( , )ld i j = , otherwise I l d rA ( , ) 0ld i j[ = ] = . Notation

(li,dj) ∈ U+ represents a known LDA in Ald, and U+ represents
the collection of all positive samples. Only the positive samples
require optimization.
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