
RESEARCH ARTICLE

Gene expression signatures as candidate

biomarkers of response to PD-1 blockade in

non-small cell lung cancers

Tomoiki AibaID
1*, Chieko Hattori1, Jun SugisakaID

1, Hisashi Shimizu1, Hirotaka Ono1,

Yutaka Domeki1, Ryohei Saito1, Sachiko Kawana1, Yosuke Kawashima1,

Keisuke Terayama1, Yukihiro Toi1, Atsushi Nakamura1, Shinsuke Yamanda1,

Yuichiro Kimura1, Yutaka Suzuki2, Atsushi NiidaID
3, Shunichi SugawaraID

1

1 Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan, 2 Department of

Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of

Tokyo, Chiba, Japan, 3 Human Genome Center, The Institute of Medical Science, The University of Tokyo,

Tokyo, Japan

* aibatomoiki@sendai-kouseihospital.jp

Abstract

Although anti-PD-1/PD-L1 monotherapy has achieved clinical success in non-small cell

lung cancer (NSCLC), definitive predictive biomarkers remain to be elucidated. In this study,

we performed whole-transcriptome sequencing of pretreatment tumor tissue samples and

pretreatment and on-treatment whole blood samples (WB) samples obtained from a clini-

cally annotated cohort of NSCLC patients (n = 40) treated with nivolumab (anti-PD-1) mono-

therapy. Using a single-sample gene set enrichment scoring method, we found that the

tumors of responders with lung adenocarcinoma (LUAD, n = 20) are inherently immuno-

genic to promote antitumor immunity, whereas those with lung squamous cell carcinoma

(LUSC, n = 18) have a less immunosuppressive tumor microenvironment. These findings

suggested that nivolumab may function as a molecular targeted agent in LUAD and as an

immunomodulating agent in LUSC. In addition, our study explains why the reliability of PD-

L1 expression on tumor cells as a predictive biomarker for the response to nivolumab mono-

therapy is quite different between LUAD and LUSC.

Introduction

For the last several decades, there have been remarkable advances in cancer immunology and

cancer immunotherapy. The clinical efficacy of immuno-oncology (IO) agents that inhibit the

programmed death 1 (PD-1)-programmed death ligand 1 (PD-L1) signaling pathway in

advanced NSCLC has been described. In particular, nivolumab, a fully human IgG4 anti-PD-1

monoclonal antibody, is the first approved IO agent for use in patients with previously treated

advanced NSCLC. Unfortunately, nivolumab monotherapy is not effective in all patients with

advanced NSCLC, with an objective response rate (ORR) of no higher than 20% [1, 2].

Preclinical and clinical studies have revealed that various factors can affect the clinical out-

comes of anti-PD-1/PD-L1 monotherapy in patients with advanced NSCLC; these factors
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include PD-L1 expression, the presence of tumor-infiltrating lymphocytes (TILs), the tumor

mutation burden (TMB), human leukocyte antigen class I (HLA-I) genotype, T-cell repertoire

diversity, the gene expression profile and the gut microbiota [3–7]. Among these factors,

PD-L1 expression, which is determined by immunohistochemical assays, is the only biomarker

currently approved as a companion or complementary diagnostic biomarker for the response

to anti-PD-1/PD-L1 monotherapy. In general, PD-L1 expression on tumor cells is positively

correlated with the clinical response to anti-PD-1/PD-L1 monotherapy in patients with non-

squamous NSCLC [2, 8]. Importantly, however, some patients with a positive PD-L1 expres-

sion rate of less than 1% also benefit from anti-PD-1/PD-L1 monotherapy, with an ORR of

approximately 10% [9]. Unlike in patients with nonsquamous NSCLC, PD-L1 expression has

no predictive value in patients with squamous NSCLC (1). PD-L1 expression alone remains an

imperfect biomarker, and none of the abovementioned factors has yet proven to be sufficiently

robust for clinical use. Therefore, extensive efforts have been devoted to exploring predictive

biomarkers for the response to anti-PD-1/PD-L1 monotherapy.

The recent development of next-generation sequencing (NGS) technology and computa-

tional genomic tools has enabled deep analysis of the so-called omics data, including genomic,

transcriptomic, proteomic, and epigenomic data [10]. To date, biomarker studies in NSCLC

have mainly focused on the histological or genomic analyses, and there have been very few

transcriptomic analyses. In metastatic melanoma and other types of cancer, multiple compre-

hensive transcriptomic studies have identified immune-related gene expression signatures that

are positively or negatively associated with the clinical response to anti-PD-1 and anti-CTLA4

monotherapy [11, 12]. We thus assumed that by combining gene expression signatures

obtained from pretreatment and on-treatment transcriptomic profiles with clinical data of

patients, we could identify a novel promising biomarker to predict the response to anti-PD-1/

PD-L1 monotherapy in NSCLC patients.

The two main histological subtypes of NSCLC are adenocarcinoma and squamous cell car-

cinoma. In biomarker studies, these subtypes have often been combined and analyzed in the

same way; however, each exhibits distinct mutational and genomic profiles. In this cohort, we

analyzed the patient’s transcriptomic features separately to identify histology-specific gene

expression signatures that are associated with the clinical response to nivolumab monotherapy.

Characterization of these signatures will help us to decipher the complexity of tumor-immune

interactions and deepen the understanding of the tumor microenvironment (TME) that favors

a better clinical response to nivolumab monotherapy.

Materials and methods

Ethical statement

All clinical data and patient samples were collected following approval by the Sendai Kousei

Hospital Institutional Review Board (IRB) (IRB number: 29–4). The study period is from 18

Jul 2017 to 31 Dec 2020. In all cases, written informed consent was obtained from the patients.

Patient characteristics and sample collection

A total of 40 patients with advanced NSCLC were enrolled in this cohort. All enrolled patients

were administered at least one dose of nivolumab. Tumor tissue samples were collected before

the first dose of nivolumab (pretreatment tumor tissue). Immediately after the biopsy proce-

dure (three tumor tissue samples of approximately 1.5−3.0 mm in diameter per patient), the

obtained tumor tissues were suspended in RNAlater RNA Stabilization Reagent (QIAGEN,

Hilden, Germany) and stored at −80˚C for batched RNA extraction. Whole blood (WB) sam-

ples were collected before the first dose and after the fourth or fifth dose of nivolumab
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(pretreatment WB and on-treatment WB, respectively). To obtain whole blood samples, 2.5

mL of blood was collected into PAXgene Blood RNA Tubes (BD, Franklin Lakes, NJ) and

stored at −80˚C for batched RNA extraction.

For 28 of the 40 patients (15 LUAD and 13 LUSC), pretreatment tumor tissue samples were

available and used in subsequent analyses; the other 12 patients were excluded because of an

inadequate quantity of tumor cells. Pretreatment WB was obtained from 39 patients (20

LUAD and 17 LUSC); for one patient, isolation of WB was unsuccessful due to a blood sam-

pling error. On-treatment WB was obtained from 32 patients (15 LUAD and 15 LUSC); for

the other 8 patients, blood sampling was not performed due to death, early disease progression

or early treatment discontinuation. In this cohort, we employed progression-free survival

(PFS) time as an outcome measure of treatment efficacy. The PFS time was defined as the

length of time from the start of nivolumab monotherapy until progression. Patients with a PFS

time equal to or more than 6 months were defined as responders; those with a PFS time less

than 6 months, non-responders.

The PD-L1 tumor proportion score (TPS) was determined by a commercial PD-L1 IHC

assay with PD-L1 IHC 22C3 pharmDx (Dako, Carpinteria, CA). During the enrollment and

follow-up period of this cohort, four genetic screens of driver mutations, including EGFR and

BRAF mutations and ALK and ROS1 fusions, had been approved and were commercially avail-

able for advanced NSCLC in Japan. Other genetic aberrations, such as KRAS mutations, were

screened in the LC-SCRUM-Asia (formerly LC-SCRUM-Japan) consortium [13], which

employed an amplicon-based next-generation sequencing (NGS) panel, Oncomine Compre-

hensive Assay (Thermo Fisher Scientific, Waltham, MA). Tumor responses to nivolumab

monotherapy were assessed by the investigators according to RECIST (Response Evaluation

Criteria in Solid Tumors) version 1.1.

RNA extraction and whole transcriptome sequencing (RNA-seq)

Total RNA was extracted from tumor tissue and WB samples using an RNeasy Mini Kit (QIA-

GEN) and a PAXgene Blood RNA Kit (QIAGEN), respectively, according to the manufactur-

er’s protocol. Homogenization of tumor tissue samples was carried out using a QIAshredder

homogenizer (QIAGEN). DNase I was used during processing with the manufacturer’s proto-

col to minimize DNA contamination.

The RNA-seq libraries were prepared from the total RNA extracts using an Illumina TruSeq

Stranded mRNA Library Kit (Illumina, San Diego, CA), following the manufacturer’s proto-

col. Paired-end 100 bp sequencing of these libraries was performed on an Illumina HiSeq3000

platform. We utilized HISAT2 [14] to align the RNA-seq reads to the human genome assembly

GRCh38. The raw read counts were generated with featureCounts in the Rsubreads Biocon-

ductor package (version 2.4.2) [15] and normalized by conversion to TPM (transcripts per mil-

lion) [16].

Identification of differentially expressed genes (DEGs)

The RNA-seq raw read counts were employed for differential expression analysis. As a prepro-

cessing step, filtering was applied to exclude genes with low expression, retaining genes with a

raw read counts > 1 in at least n samples (where n is the number of samples in each analysis).

We fitted a generalized linear model to the preprocessed count data, which is generally

assumed to follow a negative binomial distribution, using the DESeq2 Bioconductor package

(version 1.29.6) [17]. The statistical significance of differences between responders and nonre-

sponders was assessed with the Wald test. DEGs were defined as genes with |Log2(fold

change)|� 1 and an adjusted p-value< 0.1. MA and volcano plots were generated using the
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ggplot2 R package (version 3.3.2). Hierarchical clustering and heatmap representation of the

DEGs were implemented using the ComplexHeatmap Bioconductor package (version 2.5.3)

[18]. DESeq2-normalized counts were converted to log10 values, followed by normalization to

the z-score values for all genes to reduce expression variance for the genes expressed at differ-

ent levels.

Fast gene set enrichment analysis (FGSEA)

In classical GSEA [19, 20], correction for multiple hypothesis testing is performed using per-

mutation tests, where independent random gene sets are generated for each permutation and

each gene set. Accordingly, standard GSEA is relatively slow because of the huge computa-

tional burden imposed by the permutation tests. FGSEA with the fgsea Bioconductor package

(version 1.15.0) reuses sampling for different query gene sets to reduce the computational bur-

den, which enables quick and accurate performance of enrichment analysis [21]. As a prepro-

cessing step, we first generated a preranked gene list from the DESeq2 results. This preranked

gene list was used for FGSEA with 7,573 gene sets in the Gene Ontology (GO) biological pro-

cess ontology from MSigDB v7.2 (http://www.gsea-msigdb.org/gsea/msigdb/). The minimal

and maximal thresholds of the gene sets were set to 10 and 500 genes, respectively. Statistical

significance was calculated with 1,000 permutation tests. Significantly enriched gene sets were

defined as those with an adjusted p-value < 0.1. Lollipop plots of the normalized enrichment

scores (NESs) obtained from FGSEA were constructed using ggplot2. Running enrichment

scores were plotted using the fgsea package. The enrichment maps were generated using

Cytoscape App (version 3.8.2: https://cytoscape.org).

Singscore

The TPM normalized counts were used in single-sample gene set scoring with the singscore

Bioconductor package (version 1.9.0) [22, 23]. Genes with low counts were filtered based on

the CPM (counts per million) value in the edgeR Bioconductor package (version 3.31.4) [24]

to avoid rank duplication: we retained genes with a CPM > 1 across more than 50% of the

samples. Genes were ranked based on count in increasing order. For each gene set of interest,

the mean rank was calculated and normalized to the theoretical minimum and maximum val-

ues, centered on zero and then summed to provide a single-sample enrichment score, which

ranged between −1 and 1. As with FGSEA, single-sample enrichment scores were generated

using the singscore method for gene sets in the GO biological process ontology from MSigDB.

The distributions of the single-sample enrichment scores across all the gene sets were visu-

alized by stacked histograms. The single-sample enrichment scores of the gene sets of interest

were shown by scatter plots or box plots and statistically evaluated with the Wilcoxon rank-

sum test. In box plots, the lower and upper box hinges indicate the 25th and 75th percentiles,

respectively; the central bold line indicates the median; and the whiskers extend to the largest

and smallest scores within no more than 1.5× the interquartile range. All the statistical tests

were performed using the R program (version 4.0.2; https://www.r-project.org/). Stacked his-

tograms and box plots were generated with ggplot2.

Correlation analysis and regression model fitting using cubic regression

splines

Correlation coefficients and p-values between PFS time and the single-sample enrichment

scores of the gene sets of interest were calculated by Spearman rank correlation analysis using

R. The correlation matrix obtained was visualized with ggplot2.
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Nonparametric regression models using cubic regression splines with the R and mgcv pack-

ages (version 1.8.31) were fitted to the calculated relationship between PFS time and the sin-

gle-sample enrichment scores of the gene sets of interest, from which we estimated the

predicted PFS time from the scores [25]. Assuming that Log[observed PFS] is normally distrib-

uted, we employed the Gaussian family and identity link function. In addition, we used REML

(restricted maximum likelihood) as a smoothing parameter estimation method and performed

model selection based on AICc (second-order Akaike information criterion) with the MuMIn

package (version 1.43.17) [26]. The regression splines were plotted using ggplot2.

Survival analysis

Bubble plots displaying the relationships between PFS time and two of the gene sets of interest

were generated using ggplot2. All Kaplan-Meier curves were visualized with the survminer

package (version 0.4.9). With the survival package (version 3.2.3), Kaplan-Meier estimates of

PFS time for two independent groups were assessed using the two-sided log-rank test, and

those for four independent groups were assessed using the two-sided Wald test based on the

multivariable Cox proportional hazards model. When comparing the PFS times of patients

with high scores to those of patients with low scores, we set the threshold as the median value

of the score. Both the waterfall plots describing changes in tumor size and swimmer plots

showing patient responses were generated using ggplot2. Cox proportional hazard models

were built using the “coxph” function from the survival package and visualized as forest plots

using ggplot2.

Results and discussion

From clinically annotated NSCLC patients treated with nivolumab monotherapy in the sec-

ond- or later-line settings, we prospectively collected tumor tissue and whole blood (WB) sam-

ples before the first dose of nivolumab (pretreatment tumor tissues and WB), and WB samples

after the fourth or fifth dose of nivolumab (on-treatment WB) (S1 Fig). Patient characteristics

and clinical courses are summarized in S2 and S3 Figs, Table 1 and S1 Table. All tumor tissue

and WB samples obtained were subjected to whole transcriptome sequencing (RNA-seq). We

extracted transcriptomic datasets of LUAD and LUSC from the results, analyzed each histolog-

ical subtype separately, and explored whether transcriptomic features could differentiate

between responders and nonresponders to nivolumab monotherapy.

A previous study has provided a metric for immune cytolytic activity based on gene expres-

sion in tumors, where immune cytolytic activity was estimated by the average expression level

of CD8A, CD8B, GZMA, GZMB and PRF [27]. Using this metric, we assessed immune cyto-

lytic activity in tumor tissues from patients in our cohort. As the result, we found no significant

association between the immune cytolytic activity and clinical outcomes (S4 Fig).

A cohort of patients with LUAD

In the LUAD cohort (n = 20), differential expression analysis between responders and nonre-

sponders was performed using the RNA-seq datasets of pretreatment tumor tissues (n = 15),

pretreatment WB (n = 20) and on-treatment WB (n = 15). A total of 15, 68 and 160 differen-

tially expressed genes (DEGs) were identified in pretreatment tumor tissues, pretreatment WB

and on-treatment WB, respectively. Of the 15 DEGs in pretreatment tumor tissues, six genes

were upregulated and nine genes were downregulated in responders (n = 4) compared to non-

responders (n = 11) (S5A and S5B Fig and S2 Table). Of the 68 DEGs in pretreatment WB, 27

genes were upregulated and 41 genes were down-regulated in responders (n = 5) compared to

nonresponders (n = 15) (S5C and S5D Fig and S3 Table). In addition, of the 160 DEGs in on-
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Table 1. Baseline characteristics of patients in this cohort.

Characteristic (n = 40) no. (%)

Age Median (Range)—yr 69 (52–92)

Sex Male 28 (70.0)

Female 12 (30.0)

ECOG performance status 0 21 (52.5)

1 15 (37.5)

2 3 (7.5)

3 2 (2.5)

Brinkman index 0 (Never smoker) 11 (27.5)

200–599 6 (15.0)

600–1,199 18 (45.0)

�1,200 5 (12.5)

Stage of disease� Recurrent 13 (32.5)

III 5 (12.5)

IV 22 (55.0)

Histological subtype Adenocarcinoma 20 (50.0)

Squamous cell carcinoma 18 (45.0)

Adenosquamous carcinoma 1 (2.5)

Large cell neuroendocrine carcinoma 1 (2.5)

PD-L1 TPS <1% 15 (37.5)

1–49% 17 (42.5)

�50% 3 (7.5)

No. of prior systemic regimens 1 26 (65.0)

2 6 (15.0)

3 4 (10.0)

4 4 (10.0)

Gene alteration status EGFR mutation 6 (15.0)

ALK fusion 1 (2.5)

KRAS mutation 1 (2.5)

ERBB2 mutation 1 (2.5)

PIK3CA mutation 1 (2.5)

WT or Unknown 30 (75.0)

Prior immuno-oncology therapy Anti-PD-1/PD-L1�� 4 (10.0)

No 36 (90.0)

Best response to prior systemic regimen Complete response 0 (0.0)

Partial response 20 (50.0)

Stable disease 14 (35.0)

Progressive disease 6 (15.0)

CNS metastasis Yes 11 (27.5)

No 29 (72.5)

Treatment for CNS metastasis Radiosurgery 9 (81.8)

Whole brain radiotherapy 0 (0.0)

No 2 (18.2)

Prior radiotherapy Yes 21 (52.5)

No 19 (47.5)

� Clinical staging was conducted according to the 8th Edition TNM Classification for Lung Cancer.

�� One patient underwent anti-PD-1 therapy plus chemotherapy; one, anti-PD-L1 therapy plus chemotherapy; two,

anti-PD-L1 therapy as postoperative adjuvant therapy.

https://doi.org/10.1371/journal.pone.0260500.t001
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treatment WB, 20 genes were upregulated and 140 genes were down-regulated in responders

(n = 4) compared to nonresponders (n = 11) (S5E and S5F Fig and S4 Table). Heatmaps of

DEGs identified in the three datasets demonstrate the relationships between the expression

levels of DEGs and clinical factors, including progression-free survival (PFS), PD-L1 tumor

proportion score (TPS), Brinkman index and driver mutation status (S6 Fig).

To identify biological processes associated with clinical outcomes in LUAD patients treated

with nivolumab monotherapy, we performed gene set enrichment analysis (GSEA) (Fig 1, S7

Fig and S5–S7 Tables). In pretreatment tumor tissues of responders, gene sets related to B cell

function (e.g., ‘B CELL-MEDIATED IMMUNITY’ [padj = 8.424 × 10−20, NES = 2.738], ‘B

CELL RECEPTOR SIGNALING PATHWAY’ [padj = 1.692 × 10−11, NES = 2.625], and ‘POSI-

TIVE REGULATION OF B CELL ACTIVATION’ [padj = 3.990 × 10−7, NES = 2.225]) and

humoral immunity (e.g., ‘HUMORAL IMMUNE RESPONSE MEDIATED BY CIRCULAT-

ING IMMUNOGLOBULIN’ [padj = 1.534 × 10−20, NES = 3.003], ‘COMPLEMENT ACTIVA-

TION’ [padj = 1.317 × 10−19, NES = 2.896], REGULATION OF HUMORAL IMMUNE

RESPONSE’ [padj = 1.234 × 10−15, NES = 2.853], ‘HUMORAL IMMUNE RESPONSE’ [padj =

1.648 × 10−23, NES = 2.664], and ‘IMMUNOGLOBULIN PRODUCTION’ [padj =

4.344 × 10−16, NES = 2.626]) were significantly enriched (Fig 1A and S5 Table). Recently, three

studies demonstrated that B cells and tertiary lymphoid structures (TLSs) in the TME are asso-

ciated with favorable clinical outcomes to immunotherapy in patients with melanoma, renal

cell carcinoma and sarcoma [28–30]. It has also been reported that the presence of B cells and

TLSs could be a potential prognostic marker for NSCLC [31, 32]. Thus, these findings indicate

that the involvement of B cells and TLSs in the TME seems to facilitate a better response to

immunotherapy in LUAD.

Although gene sets enriched in nonresponders were extremely similar between pretreat-

ment tumor tissues and pretreatment WB, gene sets enriched in responders were quite differ-

ent between these sources (Fig 1A–1D and S5 and S6 Tables). Notably, in pretreatment WB,

gene sets significantly enriched in responders were those related to type I/II interferon (IFN)

signaling (e.g., ‘RESPONSE TO TYPE I INTERFERON’ [padj = 2.383 × 10−14, NES = 3.049],

‘INTERFERON-GAMMA-MEDIATED SIGNALING PATHWAY’ [padj = 6.655 × 10−14,

NES = 2.946], ‘RESPONSE TO INTERFERON-GAMMA’ [padj = 2.968 × 10−18, NES = 2.939],

‘RESPONSE TO INTERFERON-BETA’ [padj = 2.708 × 10−7, NES = 2.720], and ‘CELLULAR

RESPONSE TO INTERFERON-BETA’ [padj = 3.193 × 10−5, NES = 2.506]) and the process of

antigen processing and presentation (e.g., ‘ANTIGEN PROCESSING AND PRESENTATION

OF EXOGENOUS PEPTIDE ANTIGEN VIA MHC CLASS I’ [padj = 1.604 × 10−10,

NES = 2.755], ‘ANTIGEN PROCESSING AND PRESENTATION’ [padj = 5.540 × 10−17,

NES = 2.741], ‘ANTIGEN PROCESSING AND PRESENTATION OF PEPTIDE ANTIGEN’

[padj = 1.532 × 10−15, NES = 2.728], and ‘ANTIGEN PROCESSING AND PRESENTATION

OF PEPTIDE ANTIGEN VIA MHC CLASS I’ [padj = 4.537 × 10−11, NES = 2.706]) (Fig 1C and

S6 Table). Gene sets related to host defense against viral infection (e.g., ‘DEFENSE RESPONSE

TO VIRUS’ [padj = 1.799 × 10−17, NES = 2.750], ‘RESPONSE TO VIRUS’ [padj = 3.428 × 10−18,

NES = 2.583], ‘NEGATIVE REGULATION OF VIRAL LIFE CYCLE’ [padj = 1.072 × 10−7,

NES = 2.578], ‘NEGATIVE REGULATION OF VIRAL GENOME REPLICATION’ [padj =

4.863 × 10−7, NES = 2.546], ‘REGULATION OF VIRAL LIFE CYCLE’ [padj = 9.7864 × 10−10,

NES = 2.464], and ‘NEGATIVE REGULATION OF VIRAL PROCESS’ [padj = 1.642 × 10−7,

NES = 2.392]), where type I IFN signaling plays a key role, were also enriched in responders

(Fig 1C, S7 Fig and S6 Table). Type I IFNs, such as IFN-α and IFN-β, indirectly elicit antitu-

mor immune responses in the TME by stimulating the maturation of dendritic cells, increasing

the expression of perforin and granzymes in cytotoxic T cells, promoting the survival of mem-

ory T cells, and inactivating the suppressive function of regulatory T (Treg) cells. In addition,
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type I IFNs enhance antitumor immunity directly through the inhibition of tumor cell prolif-

eration and the acceleration of senescence and apoptosis [33, 34]. Type II IFN (IFN-γ) also

supports antitumor immunity by augmenting the function of tumor-infiltrating immune cells,

inactivating suppressive Treg cells, and modulating stromal cell function to alter metabolism

Fig 1. Classical gene set enrichment analysis (GSEA) in LUAD. A–F, Lollipop plots depicting the GSEA results in

the following samples: pretreatment tumor tissues (Pre-tissue) of responders (A) and nonresponders (B), pretreatment

WB (Pre-WB) of responders (C) and nonresponders (D), and on-treatment WB (On-WB) of responders (E) and

nonresponders (F). The X-axes show the normalized enrichment score (NES), and the Y-axes show gene sets ranked

among the top 30 enriched gene sets with adjusted p-value< 0.10 (in descending order of NES). The dot size is

proportional to the size of the corresponding gene set. The dot color indicates the adjusted p-value.

https://doi.org/10.1371/journal.pone.0260500.g001
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and inhibit angiogenesis [35]. Both type I and type II IFN signaling can promote the process of

antigen processing and presentation, which means that gene sets related to antigen processing

and presentation (hereinafter referred to as ‘APP signatures’) are closely linked to those related

to IFN signaling (hereinafter referred to as ‘IFN signatures’). Moreover, type II IFN can induce

the expression of PD-L1 on tumor cells and tumor-associated macrophages (TAMs) in the

TME, which is an ingenious strategy that tumor cells employ to evade the host immune system

[35]. In contrast to pretreatment WB of responders, pretreatment tumor tissues of responders

did not show strong enrichment of IFN and APP signatures (Fig 1A and S5 Table). We pre-

sume that this difference may arise from the presence of immunosuppressive conditions in the

TME mainly due to PD-1/PD-L1 signaling; that is, tumor-infiltrating immune cells are inacti-

vated in the immunosuppressive TME of responders, while WB of responders is entirely unaf-

fected by the TME.

In on-treatment WB, APP signatures, especially gene sets related to the process of antigen

processing and presentation via MHC class I molecules (e.g., ‘ANTIGEN PROCESSING AND

PRESENTATION OF EXOGENOUS PEPTIDE ANTIGEN VIA MHC CLASS I’ [padj =

3.337 × 10−7, NES = 2.565], and ‘ANTIGEN PROCESSING AND PRESENTATION OF PEP-

TIDE ANTIGEN VIA MHC CLASS I’ [padj = 3.795 × 10−7, NES = 2.453]), were significantly

enriched in responders (Fig 1E and S7 Table). This enrichment of APP signatures in respond-

ers seems to reflect a durable antitumor immune response elicited by nivolumab monotherapy.

Interestingly, gene sets related to mitochondrial metabolism (e.g., ‘ATP SYNTHESIS COU-

PLED ELECTRON TRANSPORT’ [padj = 4.044 × 10−6, NES = 2.442], ‘OXIDATIVE PHOS-

PHORYLATION’ [padj = 1.482 × 10−6, NES = 2.302], ‘RESPIRATORY ELECTRON

TRANSPORT CHAIN’ [padj = 3.639 × 10−5, NES = 2.219], ‘ATP SYNTHESIS COUPLED

PROTON TRANSPORT’ [padj = 5.748 × 10−3, NES = 2.216], and ‘MITOCHONDRIAL ELEC-

TRON TRANSPORT, NADH TO UBIQUINONE’ [padj = 4.266 × 10−3, NES = 2.042]) were

significantly enriched in responders (Fig 1E and S7 Table). Mitochondrial metabolism sup-

ports proinflammatory signaling; in addition, the proinflammatory milieu can reprogram

mitochondrial metabolism. The electron transport chain produces adenosine triphosphate

(ATP) and reactive oxygen species (ROS) via coupling with oxidative phosphorylation

(OXPHOS), which can drive the differentiation and activation of T cells [36, 37]. These find-

ings indicate that mitochondrial metabolism may be persistently enhanced to effectively sup-

port antitumor immunity in on-treatment WB of responders.

To verify the association between PFS and the gene signatures enriched in responders irre-

spective of phenotypic information (e.g., responders vs. nonresponders), we used an unsuper-

vised single-sample gene set enrichment scoring approach. Among the so-called unsupervised,

nonparametric methods, ssGSEA (single-sample gene set enrichment analysis) [38] and GSVA

(gene set variation analysis) [39] have been described as the most common methods. Both

ssGSEA and GSVA, however, need expression data and phenotypic information for all sam-

ples—the former to normalize enrichment scores and the latter to conduct kernel density esti-

mation to approximate the cumulative density function. Thus, we employed an alternative

unsupervised method, singscore, which is a truly single-sample gene set enrichment scoring

method [22].

Using the singscore method, we computed and evaluated single-sample gene set enrich-

ment scores of the enriched gene sets identified through the supervised GSEA method above

(hereinafter referred to as ‘GSEA gene sets’; Fig 2A, S8–S10 Figs and S8–S10 Tables). The sin-

gle-sample gene set enrichment scores of GSEA gene sets in pretreatment tumor tissues were

not significantly different between responders and nonresponders (S8 Fig). In pretreatment

WB of responders, the single-sample enrichment scores showed that IFN and APP signatures

were strongly enriched with high reproducibility, indicating that they were robustly enriched
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regardless of whether the enrichment analysis was supervised or unsupervised (Fig 2A). The

single-sample enrichment scores of APP signatures were also significantly higher in on-treat-

ment WB of responders (S10 Fig). In nonresponders, the enrichment scores of type I IFN sig-

naling in on-treatment WB were significantly increased compared with pretreatment WB

(‘IFN_I’, p = 0.0128; ‘IFNB1’, p = 0.0108; ‘IFNB2’, p = 0.0025) (Fig 2B). In responders, by con-

trast, the enrichment scores of type I IFN signaling in on-treatment WB showed no significant

differences compared with pretreatment WB (Fig 2B). It has been reported that sustained type

I IFN signaling contributes to resistance to anti-PD-1 monotherapy [34, 40]. Hence, these

findings suggest that nivolumab-induced activation of type I IFN signaling may be a predictive

biomarker for worse clinical outcomes in LUAD patients treated with nivolumab

monotherapy.

Moreover, we noted that the enrichment scores of APP signatures exhibited no significant

differences between pretreatment and on-treatment WB. As neoantigens are generated from

mutations, the higher the TMB, the greater the chance that some of the neoantigens presented

by MHC proteins will be immunogenic and hence enable the induction of anti-tumor immune

response. In fact, accumulating evidence has indicated that high TMB is correlated with better

clinical outcomes in NSCLC patients with anti-PD-1/PD-L1 therapy [41]. Additionally, several

studies have reported that tumor mutation burden (TMB) in blood (or circulating tumor

DNA) correlates with TMB in tumor tissue, and that high TMB in blood may serve as a poten-

tial biomarker of clinical benefit in NSCLC patients with anti-PD-1/PD-L1 therapy [4, 42].

Given that TMB in blood can be a surrogate for TMB in tumor tissue, it is rational to suggest

that TMB in blood reflect the immunogenicity of tumor cells. Therefore, the comparable levels

of APP signatures before and after nivolumab monotherapy indicate that nivolumab mono-

therapy has no significant impact on the immunogenicity of the tumor itself. Based on these

findings, we presume that the tumors of responders are inherently sufficiently immunogenic

to effectively elicit antigen processing and presentation for antitumor immunity. Clearly, it

seems that elevated IFN signaling reveals the magnitude of antitumor immunity, which in

turn upregulates PD-L1 expression on tumor cells to induce PD-1/PD-L1 signaling-mediated

immune evasion. Thus, the PD-1/PD-L1 immune evasion axis can be one of the primary tar-

gets of nivolumab monotherapy in LUAD patients.

For each single-sample enrichment score, we next calculated the Spearman correlation

coefficient (ρ) to estimate the correlation between the PFS time and the enrichment score (Fig

3A and S11A Fig). Consequently, we observed that both IFN and APP signatures were signifi-

cantly correlated with PFS time (e.g., IFN_I, ρ = 0.590, p = 0.0061; IFNB1, ρ = 0.546,

p = 0.0127; IFNG1, ρ = 0.526, p = 0.0173; APP1, ρ = 0.511, p = 0.0214). Gene sets related to

host defense against viral infection (hereinafter, referred to as ‘VIRUS signatures’), which have

extremely strong correlations with IFN signatures, also exhibited significant correlations with

PFS time (e.g., VIRUS1, ρ = 0.651, p = 0.0019; VIRUS2, ρ = 0.624, p = 0.0033). Nonparametric

regression models using cubic regression splines indicated that the enrichment scores of a sin-

gle gene set in the IFN and APP signatures in pretreatment WB could be candidate biomarkers

to predict PFS time (e.g., IFNB1, R-squared [R-sq] = 0.5861, AICc = 39.0470, p = 0.0007;

APP1, R-sq = 0.4353, AICc = 41.9426, p = 0.0010) (Fig 3B and S11B Fig). When the enrich-

ment scores for two gene sets in the IFN and APP signatures were combined, LUAD patients

with high values for both enrichment scores tended to have longer PFS time (Fig 4A and S12

Fig). By stratifying the LUAD patients into subsets with high and low enrichment scores (strat-

ification by the median), we found that there were quite large differences in PFS time between

the patients with high enrichment of signatures and those with low enrichment of signatures

(Fig 4B and S13 Fig). Multivariate Cox regression analysis identified that many combinations

of two of the IFN and APP signatures remained to be independent predictive factors of PFS
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Fig 2. Single-sample enrichment analysis (singscore) in LUAD. A, For representative GSEA gene sets that were

enriched in pretreatment WB of responders, the single-sample gene set enrichment scores and dispersions were

calculated using singscore and visualized on scatter plots. Red circles denote responders (n = 5); cyan circles,

nonresponders (n = 15). The enrichment scores were analyzed using the Wilcoxon rank sum test. All calculated p-

values are shown on the plots (�p< 0.05, ��p< 0.01, and ���p< 0.001). B, Box plots indicating the single-sample

enrichment scores of IFN and APP signatures calculated from four different groups with LUAD: pretreatment WB of

nonresponders (Pre-Tx/NR, n = 15), on-treatment WB of nonresponders (On-Tx/NR, n = 11), pretreatment WB of

responders (Pre-Tx/R, n = 5) and on-treatment WB of responders (On-Tx/R, n = 4). Red dots denote responders; cyan

dots, nonresponders. The differences in the single-sample enrichment scores between the groups (i.e., ‘Pre-Tx/NR vs.

On-Tx/NR’, ‘Pre-Tx/NR vs. On-Tx/R’, ‘Pre-Tx/R vs. On-Tx/R’ and ‘On-Tx/NR vs. On-Tx/R’) were evaluated by the

Wilcoxon rank sum test. Only significant p-values (p< 0.05) are shown on the plots (�p< 0.05, ��p< 0.01, and
���p< 0.001).

https://doi.org/10.1371/journal.pone.0260500.g002
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time (Fig 4C and S14 Fig). Collectively, these findings suggest that IFN and APP signatures in

pretreatment WB may have potential predictive performance in LUAD patients treated with

nivolumab monotherapy.

A cohort of patients with LUSC

In the LUSC cohort (n = 18), differential expression analysis between responders and nonre-

sponders was performed using the RNA-seq datasets of pretreatment tumor tissues (n = 13),

pretreatment WB (n = 17) and on-treatment WB (n = 15). A total of 424 DEGs were identified

in pretreatment tumor tissues. Of these 424 DEGs, 36 genes were upregulated and 388 genes

were downregulated in responders (n = 3) compared to nonresponders (n = 10) (S15A and

S15B Fig and S11 Table). In marked contrast to LUAD, LUSC had many more DEGs in tumor

tissues than in WB. In fact, only three DEGs were identified in on-treatment WB, among

which two genes were upregulated and one gene was down-regulated in responders (n = 2)

compared to nonresponders (n = 13) (S15E and S15F Fig and S12 Table). We found no DEGs

in pretreatment WB (S15C and S15D Fig). A heatmap of DEGs obtained from pretreatment

tumor tissues shows the relations between the expression levels of DEGs and clinical factors

such as PFS, PD-L1 TPS and Brinkman index (S16 Fig).

Surprisingly, the GSEA results indicated that the gene sets enriched in responders or nonre-

sponders were fairly similar between pretreatment and on-treatment WB in LUSC (Fig 5C–5F,

Fig 3. IFN and APP signatures predict the nivolumab response in LUAD. A, Spearman correlation matrix between

PFS and single-sample gene set enrichment scores of IFN and APP signatures in pretreatment WB. The upper

triangular region shows the values of Spearman’s ρ correlation coefficients (significant correlations are in bold;
�p< 0.05, ��p< 0.01, and ���p< 0.001). In the lower triangular region, positive correlations are visualized in red and

negative correlations in blue. The color intensity is proportional to the value of Spearman’s ρ, and the size of the circle

to the p-value. B, Scatter plots showing the relationships between PFS and the enrichment score for a single gene set in

the IFN and APP signatures in pretreatment WB, with a fitted line representing the regression model using a cubic

spline and 95% confidence interval. The accuracy of the fit was assessed by calculating the adjusted R-squared (R-sq)

and p-values (�p< 0.05, ��p< 0.01, and ���p< 0.001).

https://doi.org/10.1371/journal.pone.0260500.g003
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S17 Fig and S14 and S15 Tables). In WB of patients with LUSC, we identified no or few DEGs

between responders and nonresponders and almost no changes in the enrichment pattern

across the gene sets between the pre- and post-nivolumab monotherapy settings. Nivolumab

monotherapy seemed to have only limited impacts on WB, indicating that a transcriptome anal-

ysis of WB may be unable to elucidate systemic effects and predict the clinical response to nivo-

lumab monotherapy in LUSC patients. We therefore focused on pretreatment tumor tissues of

LUSC for the following analysis (Fig 5A, 5B, S18 Fig and S14 Table).

In pretreatment tumor tissues, gene sets related to mitochondrial metabolism (e.g., ‘MITO-

CHONDRIAL RESPIRATORY CHAIN COMPLEX ASSEMBLY’ [padj = 4.225 × 10−14,

NES = 2.919], ‘ATP SYNTHESIS COUPLED ELECTRON TRANSPORT’ [padj =

1.102 × 10−12, NES = 2.852], ‘NADH DEHYDROGENASE COMPLEX ASSEMBLY’ [padj =

Fig 4. Two gene sets in the IFN and APP signatures as candidate biomarkers for the nivolumab response in

LUAD. A, Bubble plots showing the relationships between PFS and the enrichment scores for two gene sets in the IFN

and APP signatures in pretreatment WB. Each bubble represents a patient, and the size of each bubble is proportional

to the PFS time. On a gradient color scale based on the PFS time, bubbles representing responders were assigned colors

ranging from white to dark red; nonresponders, ranging from white to lavender. B, Kaplan-Meier PFS curves for

patients stratified by the enrichment score (‘Low’ vs. ‘High’) for two gene sets in the IFN and APP signatures. Patients

with both scores above the median were defined as ‘High’ and the others as ‘Low’. The p-values were calculated by the

two-sided log-rank test (�p< 0.05, ��p< 0.01, and ���p< 0.001). C, Forest plot showing multivariate Cox regression

analysis for potential factors associated with prolonged or shortened PFS time. Squares represent estimated hazard

ratios and whiskers represent the 95% confidence intervals. Hazard ratios less than 1 indicate improved PFS time

(�p< 0.05).

https://doi.org/10.1371/journal.pone.0260500.g004
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2.407 × 10−10, NES = 2.850], ‘OXIDATIVE PHOSPHORYLATION’ [padj = 2.145 × 10−15,

NES = 2.838], ‘MITOCHONDRIAL GENE EXPRESSION’ [padj = 5.865 × 10−17, NES = 2.803],

‘INNER MITOCHONDRIAL MEMBRANE ORGANIZATION’ [padj = 1.819 × 10−9,

NES = 2.792], ‘MITOCHONDRIAL TRANSLATION’ [padj = 4.873 × 10−14, NES = 2.750],

Fig 5. Classical GSEA in LUSC. A–F, Lollipop plots depicting the GSEA results in the following samples:

pretreatment tumor tissues (Pre-tissue) of responders (A) and nonresponders (B), pretreatment WB (Pre-WB) of

responders (C) and nonresponders (D), and on-treatment WB (On-WB) of responders (E) and nonresponders (F).

The X-axes show the normalized enrichment score (NES); the Y-axes, gene sets ranked among the top 30 enriched

gene sets with adjusted p-value< 0.10 (in descending order of NES). The dot size is proportional to the size of the

corresponding gene set. The dot color indicates the adjusted p-value.

https://doi.org/10.1371/journal.pone.0260500.g005
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‘CRISTAE FORMATION’ [padj = 6.394 × 10−8, NES = 2.711], ‘RESPIRATORY ELECTRON

TRANSPORT CHAIN’ [padj = 5.114 × 10−11, NES = 2.694], and ‘MITOCHONDRIAL ELEC-

TRON TRANSPORT, NADH TO UBIQUINONE’ [padj = 2.189 × 10−7, NES = 2.596]) were

significantly enriched in responders (Fig 5A, S18A Fig and S13 Table). Additionally, gene sets

related to organization of the tumor microenvironment (e.g., ‘EXTRACELLULAR STRUC-

TURE ORGANIZATION’ [padj = 9.555 × 10−31, NES = −2.611], ‘COLLAGEN FIBRIL ORGA-

NIZATION’ [padj = 2.039 × 10−8, NES = −2.508], ‘COLLAGEN CATABOLIC PROCESS’ [padj
= 4.344 × 10−6, NES = −2.291], ‘REGULATION OF CELLULAR EXTRAVASATION’ [padj =

1.381 × 10−5, NES = −2.261], ‘COLLAGEN METABOLIC PROCESS’ [padj = 1.235 × 10−7, NES

= −2.229], ‘CELLULAR EXTRAVASATION’ [padj = 2.989 × 10−6, NES = −2.226], ‘MUCO-

POLYSACCHARIDE METABOLIC PROCESS’ [padj = 9.872 × 10−8, NES = −2.221], ‘POSI-

TIVE REGULATION OF CELLULAR EXTRAVASATION’ [padj = 3.971 × 10−5, NES =

−2.219], ‘EXTRACELLULAR MATRIX DISASSEMBLY’ [padj = 1.433 × 10−6, NES = −2.199],

‘NEGATIVE REGULATION OF HOMOTYPIC CELL-CELL ADHESION’ [padj =

1.000 × 10−4, NES = −2.199], and ‘TISSUE REMODELING’ [padj = 8.091 × 10−8, NES =

−2.114]) were significantly enriched in nonresponders (Fig 5B, S18B Fig and S13 Table)

[43–45].

Among these gene sets, singscore reproducibly identified three gene sets related to mito-

chondrial functions, namely, ‘MITOCHONDRIAL GENE EXPRESSION’, ‘INNER MITO-

CHONDRIAL MEMBRANE ORGANIZATION’ and ‘CRISTAE FORMATION’ (hereinafter

referred to as ‘mitochondrial signatures’), as significantly enriched in responders (S19 Fig and

S16 Table). In addition, seven gene sets related to the regulation of the TME, namely, ‘COLLA-

GEN CATABOLIC PROCESS’, ‘COLLAGEN METABOLIC PROCESS’, ‘MUCOPOLYSAC

CHARIDE METABOLIC PROCESS’, ‘POSITIVE REGULATION OF CELLULAR EXTRAV

ASATION’, ‘EXTRACELLULAR MATRIX DISASSEMBLY’, ‘NEGATIVE REGULATION

OF HOMOTYPIC CELL-CELL ADHESION’ and ‘TISSUE REMODELING’ (hereinafter

referred to as ‘TME signatures’), were significantly enriched in nonresponders (Fig 6A and

S16 Table). It has been well documented that the TME signatures identified contribute to the

structural organization and metabolic regulation of the extracellular matrix (ECM), which pri-

marily consists of collagens, mucopolysaccharides and proteoglycans [43–45]. ECM remodel-

ing in the TME plays important roles in various biological processes, including proliferation,

adhesion, angiogenesis and metastasis, to affect tumor progression [46]. In many solid tumors,

the TME exhibits excessive deposition of collagen and other ECM components. Dense colla-

gen and other ECM components give rise to an immunosuppressive and hypoxic microenvi-

ronment. Furthermore, the hypoxic TME can not only accelerate tumor proliferation and

metastasis but also promote the development of immunosuppressive conditions favoring

tumor immune evasion [47]. Thus, it is conceivable that the enrichment of TME signatures in

nonresponders may reflect the more immunosuppressive TME. Conversely, the enrichment of

mitochondrial signatures in responders probably means a relatively oxygen-rich and less

immunosuppressive TME.

We next investigated whether the enrichment scores of the IFN and APP signatures, which

were candidate predictive biomarkers in LUAD patients treated with nivolumab monotherapy,

also dynamically changed between responders and nonresponders or between the pre- and

post-nivolumab monotherapy settings in WB of LUSC patients (Fig 6B). We observed no sig-

nificant differences in the enrichment scores of the IFN and APP signatures between respond-

ers and nonresponders in pretreatment WB, indicating that both responders and

nonresponders have similar levels of preexisting antitumor immunity. The increase in type I

IFN signaling after nivolumab monotherapy observed in WB of nonresponders with LUAD

was not observed in those with LUSC (Fig 6B). Collectively, these findings suggest that
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Fig 6. Singscore in LUSC. A, For representative GSEA gene sets that were enriched in the pretreatment tumor tissues

of responders or nonresponders, the single-sample gene set enrichment scores and dispersions were calculated using

singscore and visualized on scatter plots. Red circles denote responders (n = 3); cyan circles, nonresponders (n = 10).

The enrichment scores were analyzed using the Wilcoxon rank sum test. All calculated p-values are shown on the plots

(�p< 0.05). B, Box plots indicating the single-sample enrichment scores of IFN and APP signatures calculated from

four different groups with LUSC: pretreatment WB of nonresponders (Pre-Tx/NR, n = 13), on-treatment WB of

nonresponders (On-Tx/NR, n = 13), pretreatment WB of responders (Pre-Tx/R, n = 4) and on-treatment WB of

responders (On-Tx/R, n = 2). Red dots denote responders; cyan dots, nonresponders. The differences in the single-

sample enrichment scores between the groups (i.e., ‘Pre-Tx/NR vs. On-Tx/NR’, ‘Pre-Tx/NR vs. On-Tx/R’, ‘Pre-Tx/R

vs. On-Tx/R’ and ‘On-Tx/NR vs. On-Tx/R’) were evaluated by the Wilcoxon rank sum test. No significant differences

were observed between the groups.

https://doi.org/10.1371/journal.pone.0260500.g006
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nivolumab success in LUSC depends entirely on the extent of the immunosuppressive TME,

not on the inherent immunogenicity of the tumor itself.

Spearman rank correlation analysis demonstrated significant correlations between PFS

time and the enrichment scores of the mitochondrial and TME signatures (Fig 7A). Notably,

the TME signatures were negatively correlated with the mitochondrial signatures, supporting

the hypothesis that the oxygenation and immunomodulation status of the TME can explain

the enrichment status of both the mitochondrial and TME signatures. Among the TME signa-

ture scores, the ADHES score was most strongly correlated with PFS time (ρ = −0.786,

p = 0.0015). Using a cubic regression spline, we found that the ADHES score is a potential pre-

dictive biomarker for PFS in LUSC patients treated with nivolumab monotherapy (R-

sq = 0.6009, AICc = 28.1764, p = 0.0009) (Fig 7B). Gene sets related to the regulation of platelet

activation (PLAT1 and PLAT2; hereinafter referred to as ‘platelet signatures’) were negatively

correlated with PFS time (PLAT1, ρ = −0.687, p = 0.0095; PLAT2, ρ = −0.659, p = 0.0142) and

positively correlated with TME signatures (Fig 7A). Platelets can suppress T cell antitumor

responses through the production and activation of immunosuppressive factors [48, 49].

Hence, platelet signatures are inferred to reflect the immunosuppressive conditions in the

TME, similar to TME signatures. The fitted models of the enrichment scores of platelet signa-

tures exhibited a relatively low but statistically significant predictive power for PFS time

(PLAT1, R-sq = 0.3135, AICc = 35.2646, p = 0.0289; PLAT2, R-sq = 0.4101, AICc = 34.4125,

Fig 7. TME signatures predict the nivolumab response in LUSC. A, Spearman correlation matrix between PFS and

single-sample gene set enrichment scores of MIT and TME signatures in pretreatment tumor tissues. The upper

triangular region shows the values of Spearman’s ρ correlation coefficients (significant correlations are in bold;
�p< 0.05, ��p< 0.01 and ���p< 0.001). In the lower triangular region, positive correlations are visualized in red and

negative correlations in blue. The color intensity is proportional to the value of Spearman’s ρ and the size of the circle

to the p-value. B, Scatter plots showing the relationships between PFS and the enrichment score for single gene sets in

the TME signature in pretreatment tumor tissues, with a fitted line representing the regression model using a cubic

spline and 95% confidence interval. The accuracy of the fit was assessed by calculating the adjusted R-squared (R-sq)

and p-values (�p< 0.05, ��p< 0.01 and ���p< 0.001).

https://doi.org/10.1371/journal.pone.0260500.g007
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p = 0.0116) (Fig 7B and S22 Fig). When two gene sets in the TME and platelet signatures were

combined, the LUSC patients with low values for both scores tended to have longer PFS times

(Fig 8A and S23 Fig). When the LUSC patients were stratified into subsets with high and low

scores (stratification by the median), there were quite large differences in PFS time between

the patients with high enrichment of signatures and those with low enrichment of signatures

(Fig 8B and S24 Fig). In multivariate Cox regression analysis revealed that the COL1/TISSUE

signature remained an independent predictive factor of PFS time (Fig 8). Other combinations

of two of the TME signatures seemed to be slightly better predictive factors compared to clini-

cal factors (age, ECOG PS, Brinkman index, PD-L1 TPS and CNS metastasis), but without sta-

tistical significance (S25 Fig). These findings indicate that TME signatures may have potential

predictive performance for PFS in LUSC patients treated with nivolumab monotherapy.

Fig 8. Two gene sets in the TME signatures as candidate biomarkers for the nivolumab response in LUSC. A,

Bubble plots showing the relationships between PFS and the enrichment scores for two gene sets in the TME signature

in pretreatment tumor tissues. Each bubble represents a patient, and the size of the bubble is proportional to the PFS

time. On a gradient color scale based on the PFS time, bubbles representing responders were assigned colors ranging

from white to dark red; nonresponders, ranging from white to lavender. B, Kaplan-Meier PFS curves for patients

stratified by the enrichment score (‘Low’ vs. ‘High’) of two gene sets in the TME signature. Patients with both scores

below the median are defined as ‘Low’; the others, as ‘High’. The p-values were calculated by the two-sided log-rank

test (�p< 0.05). C, Forest plot showing multivariate Cox regression analysis for potential factors associated with

prolonged or shortened PFS time. Squares represent estimated hazard ratios and whiskers represent the 95%

confidence intervals. Hazard ratios less than 1 indicate improved PFS time (�p< 0.05).

https://doi.org/10.1371/journal.pone.0260500.g008
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Discussion

PD-L1 expression on tumor cells has been widely accepted as a predictive biomarker for thera-

peutic decision making in NSCLC, although its accuracy is limited and it has virtually no pre-

dictive value in patients with LUSC. To the best of our knowledge, the cause of the discrepancy

in the reliability of its predictive power between LUAD and LUSC remains to be clarified. In

this study, we employed whole-transcriptome sequencing and a single-sample enrichment

analysis method—singscore—and found that the discrepancy can be explained by the differ-

ence in the immunogenicity of the tumor itself and the immunosuppressive conditions in the

TME.

In LUAD, we observed that the IFN and APP signatures, which are closely related to each

other and functionally cooperate to activate the antitumor immune response, were signifi-

cantly enriched in pretreatment WB of responders (Fig 1 and S6 Table). This enrichment of

the IFN and APP signatures suggests that responders may have preexisting antitumor immu-

nity prior to nivolumab monotherapy. In contrast, transcriptomic data of pretreatment tumor

tissues showed no significant enrichment of either IFN or APP signatures, suggesting that anti-

tumor immunity is locally disturbed in the TME to support tumor progression (Fig 1 and S5

Table). These findings highlighted the common features in responders as follows: First, the

tumors possess sufficiently high immunogenicity to induce effective antigen presentation to

host immune components (S26 Fig). Second, the host immune system activates IFN signaling

to activate tumor immunosurveillance, which is disrupted in the TME so that tumor immune

evasion (i.e., adaptive immune resistance) is established locally. Given that activated type II

IFN signaling can upregulate PD-L1 expression on tumor cells [35], it is highly likely that the

PD-1/PD-L1 axis is responsible for the establishment of adaptive immune resistance. Finally,

nivolumab monotherapy restores antitumor activity by inhibiting the PD-1/PD-L1 axis. In

this regard, it is possible to say that nivolumab functions just as a molecular targeted agent in

LUAD patients and that PD-L1 expression on tumor cells helps to predict the efficacy of nivo-

lumab monotherapy.

In LUSC, TME signatures were significantly enriched in nonresponders, and this enrich-

ment indicates the immunological condition within the TME. We found that the enrichment

scores of TME signatures were negatively correlated with PFS time (Figs 7 and 8), indicating

that patients with tumors strongly protected by the immunosuppressive TME are unlikely to

benefit from nivolumab monotherapy. More importantly, IFN and APP signatures were

strongly enriched in pretreatment WB of responders with LUAD, but this relationship was not

observed in those with LUSC (Fig 6B). This observation raises the possibility that there may be

no difference in the level of preexisting anti-umor immunity or, alternatively, in the immuno-

genicity of tumors between responders and nonresponders with LUSC. In support of this

hypothesis, no significant enrichment of IFN and APP signatures was observed in on-treat-

ment WB of responders (S15 Table). In fact, we identified the similarity in the patterns of

enriched gene sets between pretreatment and on-treatment WB of patients with LUSC. Thus,

nivolumab monotherapy has just a local impact in LUSC patients, a striking contrast to its sys-

temic impact in LUAD patients treated with nivolumab monotherapy. Specifically, the clinical

response to nivolumab monotherapy is actually determined by the extent of the immunosup-

pressive TME, where immunosuppressive factors other than the PD-1/PD-L1 axis may be con-

sidered to be critical, because the preexisting IFN and APP signatures exhibited no differences

between responders and nonresponders, as mentioned above. This hypothesis is in line with

the well-known finding that PD-L1 expression does not correlate significantly with clinical

outcomes in LUSC patients treated with anti-PD-1 monotherapy [1]. Collectively, these
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findings prompt us to note that nivolumab monotherapy functions just as an immunomodu-

lating agent and cannot overcome the highly immunosuppressive TME alone (S26 Fig).

One limitation of our study is the lack of validation in an independent cohort. However, by

using a true single-sample enrichment approach, singscore, we have devised a new workflow

for identifying gene expression signatures to predict a patient’s response to immunotherapy

and to gain a deeper understanding of cancer biology. For example, combination strategies to

enhance the immunogenicity of the tumor itself (e.g., cancer vaccines and CAR-T therapy) [4,

41–52] can be expected to improve the clinical response to nivolumab monotherapy in

patients with LUAD, whereas combinational strategies to overcome the immunosuppressive

TME are needed in LUSC [53, 54]. We envision that future studies will provide a blueprint for

innovating combination immunotherapy approaches and optimizing patient selection and

treatment strategies to improve long-term clinical outcomes in NSCLC.

Supporting information

S1 Fig. A schematic illustration of patient enrollment and sample collection.

(TIFF)

S2 Fig. Visualization of tumor response. A, Waterfall plot of the best percentage change

from baseline during nivolumab monotherapy according to RECIST v1.1. B, Swimmer plot of

all 40 patients treated with nivolumab monotherapy. PD, progressive disease.

(TIFF)

S3 Fig. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival

(OS) of patients according to different stratification schemes. A–B, the total patient cohort

and C–D, LUAD or E–F, LUSC patients with PD-L1 TPS� 1% versus< 1%. The p-values

were calculated by the two-sided log-rank test.

(TIFF)

S4 Fig. The association between the immune cytolytic activity in tumor tissues and clinical

outcomes of patients in this cohort. For each tumor sample, the immune cytolytic activity

was estimated as the average expression level of the marker genes (CD8A, CD8B, GZMA,

GZMB and PRF1). Patients with all expression levels above the average are defined as ‘High’;

the others, as ‘Low’. In the upper panel, above-average values are shown in red. The lower

panel illustrates Kaplan-Meier estimates of PFS and OS of patients stratified by the estimated

immune cytolytic activity. The p-values were calculated by the two-sided log-rank test.

(TIFF)

S5 Fig. Differential gene expression analysis in LUAD. A–B, MA plot (A) and volcano plot

(B) of DEGs in pretreatment tumor tissues. C–D, MA plot (C) and volcano plot (D) of DEGs

in pretreatment WB. E–F, MA plot (E) and volcano plot (F) of DEGs in on-treatment WB.

Red dots represent DEGs [adjusted p-value< 0.10 and |log2(fold change)|� 1]. Triangles and

diamonds represent genes with log2(fold change) and normalized counts, respectively, out of

the plot scale. The horizontal lines in the MA plots and vertical lines in the volcano plots indi-

cate the thresholds log2(fold change) = 1 or −1. The horizontal lines in the volcano plots indi-

cate the threshold −log10(adjusted p-value) = 1.

(TIFF)

S6 Fig. Heatmap representation of DEGs in LUAD. Heatmaps of DEGs between responders

and nonresponders with hierarchical clustering of samples: A, from pretreatment tumor tis-

sues (n = 15), B, pretreatment WB (n = 20), and C, on-treatment WB (n = 15). The DEGs
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clearly differentiated between responders and nonresponders in all three datasets.

(TIFF)

S7 Fig. Enrichment maps for representative gene sets significantly enriched in pretreat-

ment WB of responders with LUAD. Each node denotes a distinct gene set, and the size of

the node is proportional to the number of genes in the set. The thickness of the edges (pale

blue lines) represents the degree of overlap between the two connected gene sets.

(TIFF)

S8 Fig. Scatter plots of single-sample gene set enrichment scores in pretreatment tumor

tissues. For each gene set in the top 20 GSEA gene sets that were enriched in pretreatment

tumor tissues of responders (A) and nonresponders (B) with LUAD, the enrichment scores

and dispersions were calculated using singscore. Red circles denote responders (n = 4); cyan

circles, nonresponders (n = 11). The enrichment scores were analyzed using the Wilcoxon

rank sum test.

(TIFF)

S9 Fig. Scatter plots of single-sample gene set enrichment scores in pretreatment WB. For

each gene set in the top 20 GSEA gene sets that were enriched in pretreatment WB of respond-

ers (A, except for those shown in Fig 2A) and nonresponders (B) with LUAD, the enrichment

scores and dispersions were calculated using singscore. Red circles denote responders (n = 5);

cyan circles, nonresponders (n = 15). The enrichment scores were analyzed using the Wil-

coxon rank sum test (�p< 0.05 and ��p< 0.01).

(TIFF)

S10 Fig. Scatter plots of single-sample gene set enrichment scores in on-treatment WB. For

each gene set in the top 20 GSEA gene sets that were enriched in on-treatment WB of respond-

ers (A) and nonresponders (B) with LUAD, the enrichment scores and dispersions were calcu-

lated using singscore. Red circles denote responders (n = 4); cyan circles, nonresponders

(n = 11). The enrichment scores were analyzed using the Wilcoxon rank sum test (�p< 0.05

and ��p< 0.01).

(TIFF)

S11 Fig. Relationships between PFS and single-sample enrichment scores for gene sets sig-

nificantly enriched in responders with LUAD. A, Spearman correlation matrix between PFS

and the enrichment scores in pretreatment WB. The upper triangular region shows the values

of the Spearman’s ρ correlation coefficients (significant correlations are in bold; �p< 0.05,
��p< 0.01 and ���p< 0.001). In the lower triangular region, positive correlations are visual-

ized in red and negative correlations in blue. The color intensity is proportional to the value of

Spearman’s ρ and the size of the circle to the p-value. B, Scatter plots showing the relationships

between PFS and the enrichment score of the above gene sets in pretreatment WB, with a fitted

line representing the regression model using a cubic spline and 95% confidence interval. The

accuracy of the fit was assessed by calculating the adjusted R-squared (R-sq) and p-values

(�p< 0.05 and ��p< 0.01).

(TIFF)

S12 Fig. Bubble plots showing the relationships between PFS and two single-sample

enrichment scores in pretreatment WB of LUAD patients. Each bubble represents a patient,

and the size of the bubble is proportional to the PFS time. On a gradient color scale based on

the PFS time, bubbles representing responders were assigned colors ranging from white to

dark red; nonresponders, ranging from white to lavender.

(TIFF)
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S13 Fig. Kaplan-Meier PFS curves for patients stratified by the single-sample enrichment

score (‘Low’ vs. ‘High’) for two gene sets in the IFN and APP signatures. LUAD patients

with both scores above the median are defined as ‘High’; the others, as ‘Low’. The p-values

were calculated by the two-sided log-rank test (�p< 0.05, ��p< 0.01, and ���p< 0.001).

(TIFF)

S14 Fig. Forest plot showing multivariate Cox regression analysis for potential factors

associated with prolonged or shortened PFS time in LUAD patients. Squares represent esti-

mated hazard ratios and whiskers represent the 95% confidence intervals. Hazard ratios less

than 1 indicate improved PFS time (�p< 0.05).

(TIFF)

S15 Fig. Differential gene expression analysis in LUSC. A–B, MA plot (A) and volcano plot

(B) of DEGs in pretreatment tumor tissues. C–D, MA plot (C) and volcano plot (D) of DEGs

in pretreatment WB. E–F, MA plot (E) and volcano plot (F) of DEGs in on-treatment WB.

Red dots represent DEGs [adjusted p-value< 0.10 and |log2(fold change)|� 1]. Triangles and

diamonds represent genes with log2(fold change) and normalized counts, respectively, out of

the plot scale. The horizontal lines in the MA plots and vertical lines in the volcano plots indi-

cate the thresholds log2(fold change) = 1 or −1. The horizontal lines in the volcano plots indi-

cate the threshold −log10(adjusted p-value) = 1.

(TIFF)

S16 Fig. Heatmap representation of DEGs in LUSC. Heatmaps of DEGs between responders

and nonresponders with hierarchical clustering of samples from pretreatment tumor tissues

(n = 13).

(TIFF)

S17 Fig. The lists of the top 25 gene sets significantly enriched in WB of responders and

nonresponders with LUSC. Top 25 enriched gene sets in responders (A) and in nonrespond-

ers (B). The left panel shows the list for pretreatment WB; the right panel, on-treatment WB.

The enriched gene sets common between pretreatment and on-treatment WB are shown in

bold and connected by solid lines.

(TIFF)

S18 Fig. Enrichment maps for representative gene sets significantly enriched in pretreatment

tumor tissues of (A) responders and (B) nonresponders with LUSC. Each node denotes a dis-

tinct gene set, and the size of the node is proportional to the number of genes in the set. The

thickness of the edges (pale blue lines) represents the degree of overlap between the two con-

nected gene sets.

(TIFF)

S19 Fig. Scatter plots of single-sample gene set enrichment scores in pretreatment tumor

tissues. For each gene set in the top 20 GSEA gene sets that were enriched in pretreatment

tumor tissues of responders (A) and nonresponders (B) (except for those shown in Fig 5A)

with LUSC, the enrichment scores and dispersions were calculated using singscore. Red circles

denote responders (n = 3); cyan circles, nonresponders (n = 10). The enrichment scores were

analyzed using the Wilcoxon rank sum test (�p< 0.05).

(TIFF)

S20 Fig. Scatter plots of single-sample gene set enrichment scores in pretreatment WB. For

each gene set in the top 20 GSEA gene sets that were enriched in pretreatment WB of
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responders (A) and nonresponders (B) with LUSC, the enrichment scores and dispersions

were calculated using singscore. Red circles denote responders (n = 4); cyan circles, nonre-

sponders (n = 13). The enrichment scores were analyzed using the Wilcoxon rank sum test

(�p< 0.05).

(TIFF)

S21 Fig. Scatter plots of single-sample gene set enrichment scores in on-treatment WB. For

each gene set in the top 20 GSEA gene sets that were enriched in on-treatment WB of respond-

ers (A) and nonresponders (B) with LUSC, the enrichment scores and dispersions were calcu-

lated using singscore. Red circles denote responders (n = 2); cyan circles, nonresponders

(n = 13). The enrichment scores were analyzed using the Wilcoxon rank sum test.

(TIFF)

S22 Fig. Scatter plots showing the relationships between PFS and the single-sample enrich-

ment score for gene sets significantly enriched in pretreatment tumor tissues of responders

with LUSC. The fitted line on each scatter plot represents the regression model using a cubic

spline and 95% confidence interval. The accuracy of the fit was assessed by calculating the

adjusted R-squared (R-sq) and p-values (�p< 0.05 and ��p< 0.01).

(TIFF)

S23 Fig. Bubble plots showing the relationships between PFS and two single-sample

enrichment scores in the pretreatment tumor tissues of LUSC patients. Each bubble repre-

sents a patient, and the size of the bubble is proportional to the PFS time. On a gradient color

scale based on the PFS time, bubbles representing responders were assigned colors ranging

from white to dark red; nonresponders, ranging from white to lavender.

(TIFF)

S24 Fig. Kaplan-Meier PFS curves for patients stratified by the single-sample enrichment

score (‘Low’ vs. ‘High’) for two gene sets in the selected TME signatures. LUSC patients

with both scores below the median are defined as ‘Low’; the others, as ‘High’. The p-values

were calculated by the two-sided log-rank test (�p< 0.05 and ��p< 0.01).

(TIFF)

S25 Fig. Forest plot showing multivariate Cox regression analysis for potential factors

associated with prolonged or shortened PFS time in LUSC patients. Squares represent esti-

mated hazard ratios and whiskers represent the 95% confidence intervals. Hazard ratios less

than 1 indicate improved PFS time.

(TIFF)

S26 Fig. Schematic depicting the different mechanisms of action of nivolumab monother-

apy between LUAD and LUSC. The success of nivolumab monotherapy depends on the

inherent immunogenicity of the tumor itself in LUAD and the preexisting TME favoring an

antitumor immune response in LUSC.

(TIFF)

S1 Table. Assessment of tumor response to nivolumab monotherapy according to RECIST

v1.1.

(DOCX)

S2 Table. The lists of DEGs identified from pretreatment tumor tissue of LUAD patients.

(XLSX)
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S3 Table. The lists of DEGs identified from pretreatment whole blood of LUAD patients.

(XLSX)

S4 Table. The lists of DEGs identified from on-treatment whole blood of LUAD patients.

(XLSX)

S5 Table. The results from classical GSEA (FGSEA) of pretreatment tumor tissue of LUAD

patients.

(XLSX)

S6 Table. The results from classical GSEA (FGSEA) of pretreatment whole blood of LUAD

patients.

(XLSX)

S7 Table. The results from classical GSEA (FGSEA) of on-treatment whole blood of LUAD

patients.

(XLSX)

S8 Table. The results from single-sample enrichment analysis (singscore) of pretreatment

tumor tissue of LUAD patients.

(XLSX)

S9 Table. The results from single-sample enrichment analysis (singscore) of pretreatment

whole blood of LUAD patients.

(XLSX)

S10 Table. The results from single-sample enrichment analysis (singscore) of on-treatment

whole blood of LUAD patients.

(XLSX)

S11 Table. The lists of DEGs identified from pretreatment tumor tissue of LUSC patients.

(XLSX)

S12 Table. The lists of DEGs identified from on-treatment whole blood of LUSC patients.

(XLSX)

S13 Table. The results from classical GSEA (FGSEA) of pretreatment tumor tissue of

LUSC patients.
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S14 Table. The results from classical GSEA (FGSEA) of pretreatment whole blood of

LUSC patients.
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S15 Table. The results from classical GSEA (FGSEA) of on-treatment whole blood of

LUSC patients.
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S16 Table. The results from single-sample enrichment analysis (singscore) of pretreatment

tumor tissue of LUSC patients.
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S17 Table. The results from single-sample enrichment analysis (singscore) of pretreatment

whole blood of LUSC patients.
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S18 Table. The results from single-sample enrichment analysis (singscore) of on-treatment

whole blood of LUSC patients.

(XLSX)

S19 Table. The raw count data from RNS-seq.

(CSV)
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