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ABSTRACT

BACKGROUD/OBJECTIVES: Hepatic steatosis is the most common liver disorder, particularly 
in postmenopausal women. This study investigated the protective effects of standardized rice 
bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats.
MATERIALS/METHODS: HepG2 cells were incubated with 200 µM oleic acid to induce lipid 
accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups 
and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 µg/kg) and RBS (500 
mg/kg) for 16 weeks.
RESULTS: RBS supplementation improved serum triglyceride and free fatty acid levels in OVX 
rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation 
and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS 
suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol 
regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, 
glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1.
CONCLUSIONS: RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell 
hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the 
SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing 
fatty liver in postmenopausal women.
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INTRODUCTION

Hepatic steatosis is the most important cause of chronic disease. It is characterized 
by excessive fat accumulation in the liver, which can eventually lead to hepatocellular 
carcinoma [1]. The prevalence of hepatic steatosis among adults with obesity, diabetes, and 
hyperlipidemia in Western countries is 20–30%, similar to that in South Korea [2,3]. Hepatic 
steatosis is more likely to occur in women than in men, particularly among those aged 56–60 
years, corresponding to the post-menopausal transitional period [4].

During menopause, there is an age-related decline in ovarian function and estrogen levels. 
Recently, the relationship between menopause and histopathological alterations in the liver, 
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which is the primary target organ of estrogen, has attracted attention [5]. There is increasing 
evidence that estrogen regulates lipid metabolism, and its deficiency following menopause is 
associated with the occurrence of hepatic steatosis [6]. In fact, estrogen replacement therapy 
reduces the risk of fatty liver [7]. In menopause, a loss of the liver's capacity to oxidize fatty 
acids occurs, along with an increase in lipogenesis, resulting in excessive fat accumulation 
in the liver [8]. Therefore, menopausal women should be considered targets for clinical 
interventions for further investigations of hepatic steatosis.

Rice (Oryza sativa L.) is an important cereal crop consumed by more than half of the world's 
population as a staple food [9]. Rice bran, the byproduct of rice milling, contains an array of 
phytochemicals, such as phenolics, flavonoids, vitamins, amino acids, and phytosterols. Various 
studies have indicated that rice bran has diverse health effects, including antioxidant, anti-
inflammatory, cholesterol-lowering, anti-hyperlipidemic, and anti-diabetic activities [10-13]. In 
addition, several clinical studies reported that the consumption of stabilized rice bran, which 
is rice bran inactivated by the lipase enzyme through heating, decreases fasting glucose, total 
cholesterol (TC), low-density lipoprotein cholesterol, apolipoprotein B, and triglyceride (TG) 
levels, and increases insulin in the sera of patients with diabetes [14,15]. In particular, γ-oryzanol, 
which is a major compound in rice bran, reduced the bone mineral density loss associated with 
ovariectomized (OVX)-induced estrogen deficiency in rats via γ-amino butyric acid B receptors 
[16]. Moreover, it ameliorates lipopolysaccharide-induced cognitive and memory impairments in 
mice by promoting hippocampal antioxidant and anti-inflammatory molecular responses [17]. 
Despite the diverse pharmacological activities of rice bran, its effects and underlying molecular 
mechanisms in protecting against hepatic steatosis induced by estrogen deficiency are unclear. 
In the present study, we hypothesized that a standardized rice bran extract (RBS) impacts hepatic 
steatosis induced by estrogen deficiency by altering lipogenesis-related genes. Therefore, the 
protective effects of RBS on the liver were investigated in the livers of OVX rats, animal models of 
human menopause, as well as in oleic acid-treated HepG2 cells [18].

MATERIALS AND METHODS

Preparation of RBS
The RBS (Lot No. SD-RB-002) standardized with 0.45% γ-oryzanol was obtained from S&D 
Co., Ltd. (Cheongju, Korea) as previously described [19-21]. Briefly, rice bran (O. sativa L.) 
was extracted in an ethanol/water solution at 40°C for 8 h. The ethanol extract was filtered, 
concentrated, and spray-dried for storage. The yield of RBS was 29.3%. HPLC analysis was 
performed using a LiChrospher 100 Diol column (250 × 4.0 mm, 5 µm; Merck Millipore, 
Billerica, MA, USA). The solvent systems used for separation were an isocratic elution 
(A: 0.1% acetic acid in cyclohexane, and B: 0.1% acetic acid in ethyl acetate) in a ratio of 
85:15 (v/v). The injection volume was 10 µL and the column eluent was monitored at UV 
315 nm; chromatography was performed at 30°C with a flow rate of 0.5 mL/min. The HPLC 
quantitative analysis was replicated three times. A representative chromatogram of the 
γ-oryzanol reference and its corresponding peak in the RBS is presented in Fig. 1.

Cell culture and oil red O (ORO) staining
HepG2 cells were obtained from ATCC (Manassas, VA, USA). The cells were maintained in 
DMEM supplemented with antibiotics (100 U/mL penicillin A and 100 U/mL streptomycin) 
and 10% fetal bovine serum. The cells were treated with or without samples in oleic acid (200 
µM) for 24 h. Lipid droplets were visualized and subsequently quantified by ORO staining. 
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The cells were fixed in 10% formaldehyde for 1 h, washed with 60% isopropanol, and mixed 
with ORO solution. Red-stained lipid droplets were observed with a light microscope. To 
quantify lipid accumulation, ORO was eluted with 100% isopropanol, and then, the optical 
densities of the eluates were measured using a spectrophotometer at 500 nm.

Animal studies
Female sham-operated and OVX rats (Sprague-Dawley, 6 weeks of age) were purchased from 
SLC (Shizouka, Japan). The rats were maintained at a temperature and humidity of 21–25°C 
and 50–60%, respectively, and under a 12-h:12-h light:dark cycle with free access to water 
and food. Thirty rats were subjected to the removal of the bilateral ovaries (OVX), and 10 
rats were subjected to incision and suturing without ovary removal (SHAM group). After a 
2-week recovery period, the OVX rats were randomly divided into 3 groups (n = 10 per group) 
as follows: OVX rats fed a normal diet (ND; OVX group), OVX rats fed an ND containing 
17β-estradiol (E2, 10 µg/kg body weight; OVX+E2 group), and OVX rats fed an ND containing 
RBS (500 mg/kg body weight; OVX+RBS group) for 16 weeks. The dosage of RBS and E2 
were chosen based on our preliminary study and previous reports [20,22,23]. This dosage 
was converted from dose per kg body weight to % of diet considering daily intake and body 
weight of rats. Finally, rats were fed an ND containing 0.00002% E2 or ND containing 1% 
RBS. The ND was prepared by supplementing the basal American Institute of Nutrition-93G 
diet (Research Diets, New Brunswick, NJ, USA). The experimental diets were prepared by 
mixing RBS or E2 into the AIN-93G diet, shown in Supplementary Table 1.

Body weight was measured once per week, and food intake was measured 3 times per week. 
After feeding the rats with the experimental diets for 16 weeks, we collected blood from 
the retro-orbital sinus in the fasted state. The sera were separated and stored at −80°C until 
analysis. The liver and adipose tissues were removed, weighed, and stored at −80°C. All 
animal experiments were approved by the Korea Food Research Institutional Animal Care 
and Use Committee (permission number: KFRI-M-16056).

Serum biochemical analysis
Serum TC, TG, high-density lipoprotein-cholesterol (HDL-C), free fatty acid (FFA), and glucose 
levels were measured using commercial enzyme kits (Shinyang Chemical Co., Ltd., Seoul, 
Korea). Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were 
measured using commercial reagent kits (Young-Dong Diagnostics, Yongin, Korea).
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Fig. 1. HPLC chromatograms of RBS detected at ultraviolet 315 nm. A standard chromatogram of γ-oryzanol (A) was compared with the chromatogram of RBS (B) 
and contents of the compounds were calculated based on the standard. 
RBS, rice bran extract.



Hepatic lipid analysis
Hepatic total lipids were extracted as described by Folch et al. [24]. Hepatic TG and TC were 
measured using a commercial enzyme kit (Shinyang Chemical Co., Ltd.).

Histological analysis
Liver tissue was removed from the same part of the left lobe of each rat and fixed with 4% 
formaldehyde in phosphate-buffered solution. The paraffin-embedded liver samples were sliced 
into 5-µm-thick sections and stained with hematoxylin and eosin (H&E). Stained sections were 
analyzed by light microscopy (BX50, Olympus, Tokyo, Japan), and digital images were captured.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
The expression of the sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA 
carboxylase 1 (ACC1), fatty-acid synthase (FAS), stearoyl-CoA desaturase 1 (SCD1), and 
glycerol-3-phosphate acyltransferase 1 (GPAT) genes was analyzed by qRT-PCR. The primers 
used in this study are shown in Table 1. Total RNA was extracted from the liver tissue using a 
total RNA isolation kit (Macherey-Nagel, Düren, Germany) according to the manufacturer's 
protocol. The cDNA was synthesized using ReverTra Ace qPCR RT Master Mix (Toyobo, 
Osaka, Japan). qRT-PCR was performed with SYBR Green Master Mix (Toyobo) and forward/
reverse primers using a QuantStudio 6 Flex RT PCR System (Applied Biosystems, Foster City, 
CA, USA). The relative gene expression levels were normalized to that of β-actin.

Statistical analysis
The results are expressed as the mean ± SD. Differences were assessed by analysis of variance 
and Tukey's multiple comparis[INSERT FIGURE 001]on test using the SPSS 18.0 statistical 
package (SPSS, Inc., Chicago, IL, USA); P < 0.05 was considered significant.

RESULTS

Identification of γ-oryzanol in RBS
γ-oryzanol, which is a unique component of rice bran, is widely known as the marker compound 
in rice bran extracts or products [25]. To confirm its existence in RBS, HPLC analysis was 
performed (Fig. 1). As a result, γ-oryzanol in RBS was detected at 4.50 ± 0.01 mg/g extract.

Effect of RBS on lipid accumulation in oleic acid-induced HepG2 cells
To investigate the effect of RBS on oleic acid-induced intracellular lipid accumulation, HepG2 
cells were treated with 200 µM oleic acid and RBS (100 and 250 µg/mL) or γ-oryzanol (1 and 
10 µM). As shown in Fig. 2, oleic acid-treated HepG2 cells showed a significant increase in 
lipid droplets, whereas untreated control cells did not. However, the development of lipid 
droplets induced by oleic acid was significantly decreased by RBS or γ-oryzanol treatment.
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Table 1. Primer sequences
Gene Forward Reverse
SREBP1 GCTCACAAAAGCAAATCACT GCGTTTCTACCACTTCAGG
ACC1 TGAGGAGGACCGCATTTATC AAGCTTCCTTCGTGACCAGA
FAS CTATTGTGGACGGAGGTATC TGCTGTAGCCCAGAAGAG
SCD1 CAGTTCCTACACGACCACCACTA GGACGGATGTCTTCTTCCAGAT
GPAT CGTGGGAAGGTGTTGCTATT CAGCAATTGCCTCTTGGACT
β-actin CGAGTACAACCTTCTTGCAGC CCTTCTGACCCATACCCACC
ACC1, acetyl-CoA carboxylase 1; FAS, fatty acid synthase; GPAT, glycerol-3-phosphate acyltransferase; SCD1, 
stearoyl-CoA desaturase 1; SREBP1, sterol regulatory element-binding protein 1.



Effect of RBS on body and organ weights
Compared to those in the SHAM group, the OVX group showed significant increases in the 
final body weight, body weight gain, and fat pad weight. However, the final body weight, 
body weight gain, and fat pad weight in the RBS group were lower than those in the OVX 
group, although the differences were not significant. We also found that liver weight was 
significantly higher in OVX rats than in SHAM rats, and this increase was significantly 
attenuated by RBS supplementation (Table 2).

Effect of RBS on blood parameters
As shown in Table 3, OVX rats exhibited significantly higher serum TG and FFA levels than 
the SHAM group. In contrast, RBS supplementation restored serum TGs and FFAs to levels 
similar to those of the SHAM group. However, TC, HDL-C, ALT, and AST levels did not differ 
significantly among the experimental groups.

RBS attenuates hepatic lipid accumulation
Next, we investigated whether RBS protects against OVX-induced hepatic steatosis. As 
shown Fig. 3, histological analysis showed that OVX rats developed hepatocellular micro- 
and macrovesicular vacuolation, but these alterations were ameliorated by RBS (Fig. 3). 
Furthermore, increases in hepatic total lipids, TG, and TC levels induced by OVX were 
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Fig. 2. Effects of RBS and γ-oryzanol on intracellular lipid accumulation in OA-stimulated HepG2 cells. After treatment with 200 µM OA with or without RBS and 
γ-oryzanol for 24 h, the cells were stained with ORO solution and intracellular lipid accumulation was visually observed under a light microscope (magnification, 
×200). Data are expressed as mean ± SD. 
RBS, rice bran extract; ORO, oil red O; CONT, not-treated cells; OA, oleic acid; ORY, γ-oryzanol; RBS, rice bran extract. 
###P < 0.001 compared to untreated cells. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to OA only treated cells.

Table 2. Effects of RBS on body weight and organ weights in OVX rats fed an experimental diet for 16 weeks
Variables SHAM OVX OVX+E2 OVX+RBS
Initial body weight (g) 171.8 ± 7.8 186.8 ± 7.2# 186.8 ± 6.5 186.8 ± 6.3
Final body weight (g) 312.0 ± 24.2 407.9 ± 40.4### 298.3 ± 15.0*** 388.0 ± 26.3
Body weight gain (g) 140.2 ± 20.8 221.1 ± 37.8### 111.4 ± 15.0*** 201.1 ± 26.1
Food intake (g/day) 14.2 ± 1.0 14.4 ± 1.0 11.6 ± 0.9** 13.9 ± 1.6
Liver weight (g) 7.2 ± 0.4 8.3 ± 1.2# 6.5 ± 0.8*** 6.5 ± 0.7***
Retroperitoneal fat weight (g) 7.2 ± 2.2 13.0 ± 3.1### 4.3 ± 1.4*** 11.8 ± 2.4
Data are expressed as mean ±SD.
SHAM, sham-operated controls; E2, 17β-estradiol; OVX, ovariectomized; RBS, rice bran extract.
#P < 0.05, ###P < 0.001 compared to the SHAM group. **P < 0.01, ***P < 0.001 compared to the OVX group.



significantly attenuated by RBS (45.5%, 49.3%, and 22.3% reductions compared to levels 
in the OVX group, respectively), similar to those in the OVX+E2 group (Table 3). These data 
indicate that RBS exerts inhibitory effects on hepatic steatosis.

RBS ameliorates expression of lipogenic genes
It is possible that RBS reduces fat accumulation in hepatocytes by regulating the expression 
of genes involved in lipogenesis. To test this hypothesis, we analyzed the hepatic expression 
of genes associated with lipogenesis by qRT-PCR. As shown in Fig. 3, the mRNA expression 
levels of lipogenic genes, including SREBP1, ACC1, FAS, SCD1, and GPAT, were increased in the 
livers of OVX rats compared to those in the SHAM group. In contrast, RBS supplementation 
decreased the expression levels of these genes (Fig. 4). These data suggest that RBS 
suppresses OVX-induced fatty liver by downregulating the expression of lipogenesis genes.
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Table 3. Effect of RBS on fasting serum lipids levels in OVX rats fed an experimental diet for 16 weeks
Variables SHAM OVX OVX+E2 OVX+RBS
TC (mg/dL) 127.5 ± 15.4 131.1 ± 21.8 108.0 ± 15.5* 124.5 ± 16.7
HDL-C (mg/dL) 41.8 ± 2.7 45.2 ± 2.3 37.1 ± 1.1* 38.8 ± 6.5
TG (mg/dL) 49.9 ± 9.6 69.8 ± 15.3## 38.9 ± 7.2*** 52.9 ± 9.4*
FFA (µEq/L) 188.9 ± 8.5 227.1 ± 24.2# 173.1 ± 15.9*** 180.5 ± 31.9**
Glucose (mg/dL) 108.3 ± 11.7 109.7 ± 13.1 107.8 ± 10.1 111.4 ± 9.8
ALT (U/L) 30.4 ± 5.8 39.1 ± 9.6 30.2 ± 9.6 30.7 ± 7.3
AST (U/L) 97.6 ± 18.4 95.9 ± 16.1 81.9 ± 21.1 92.1 ± 17.1
Data are expressed as mean ±SD.
RBS, rice bran extract; OVX, ovariectomized; SHAM, sham-operated controls; E2, 17β-estradiol; TC, total 
cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; FFA, free fatty acids; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase.
#P < 0.05, ##P < 0.01 compared with SHAM group. *P < 0.05, **P < 0.01, and ***P < 0.001 compared with OVX group.
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Fig. 3. Effect of RBS on hepatic lipid levels in OVX rats. (A) Histological changes (original magnification, ×200) and (B) hepatic lipid, triglyceride, and total 
cholesterol levels in rats. Data are expressed as mean ± SD. 
RBS, rice bran extract; OVX, ovariectomized; E2, 17β-estradiol; SHAM, sham-operated controls. 
#P < 0.05 and ###P < 0.001 compared to the SHAM group. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the OVX group.



DISCUSSION

Postmenopausal women exhibit more frequent development of hepatic steatosis than 
premenopausal women. For example, aromatase-knockout mice, a useful model for 
examining the role of estrogen, exhibit hyperlipidemia and hepatic steatosis [26]. In 
addition, OVX-induced estrogen decreases significantly increase serum lipoprotein levels 
and hepatic fat accumulation, whereas E2 treatment completely restores normal levels [27]. 
Heine et al. [28] reported that estrogen receptor-knockout mice exhibit greater fat masses 
and lower energy expenditures than wild-type mice. Estrogen has been reported to play a role 
in liver fat accumulation; thus, estrogen deficiency leads to a disturbance of lipid regulatory 
mechanisms in the liver [29]. As estrogen levels decrease, this lipid accumulation might 
be the result of several factors, including alterations in the uptake or export of fatty acids, 
changes in the mitochondrial oxidation of fatty acids, and reduced export of TGs [30]. Thus, 
fat accumulation in the liver is of critical concern in postmenopausal women. Therefore, we 
investigated the protective effects of RBS on HepG2 cells and OVX-induced hepatic steatosis 
in rats. In the present study, we found that lipid accumulation was significantly increased 
in oleic acid-treated HepG2 cells. RBS and γ-oryzanol, a major component of RBS, exerted 
an inhibitory effect on oleic acid-induced lipid accumulation in HepG2 cells. In agreement 
with the in vitro data obtained using HepG2 cells, we found that OVX caused hepatic fat 
accumulation, whereas RBS supplementation suppressed OVX-induced increases in hepatic 
lipid accumulation and lipid levels. Moreover, RBS reduced serum TG and FFA levels. RBS 
supplementation could have induced this reduction in circulating lipid levels by decreasing 
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Fig. 4. RBS suppresses the mRNA expression of lipogenic genes. Relative mRNA levels were measured by qRT-PCR and normalized against that of β-actin. Data 
from three independent experiments are presented as the mean ± SD. 
RBS, rice bran extract; qRT-PCR, quantitative reverse transcription polymerase chain reaction; SHAM, sham-operated controls; OVX, ovariectomized; E2, 
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GPAT, glycerol-3-phosphate acyltransferase. 
#P < 0.05, ##P < 0.01 compared to the SHAM group. *P < 0.05, **P < 0.01, and ***P < 0.001 compared to the OVX group.



lipid transport to the liver, thereby preventing hepatic lipid accumulation. Surprisingly, in 
our study, the serum AST and ALT levels, used as indicators of hepatic damage [31], did 
not differ among the experimental groups. Charatcharoenwitthaya et al. [32] reported that 
the level of hepatic enzymes is an insensitive tool to follow histological changes in the liver 
among patients with nonalcoholic fatty liver disease. Moreover, in animal studies comparing 
OVX and SHAM mice, serum markers of liver function, ALT or AST, showed no significant 
differences between both groups, although fat accumulation was observed in the OVX 
animals [33,34]. Thus, our results suggest that the effects of RBS on circulating lipid profiles 
in serum can be attributed to improved hepatic lipid accumulation.

In the present study, RBS altered hepatic lipid metabolism and the expression of genes 
involved in these processes. Liver fatty acid synthesis might result in hepatic steatosis and 
is mostly regulated by well-known transcription factors, such as SREBP1. SREBP1 is the 
key regulator of hepatic fatty acid and TG synthesis [35], and reducing its expression is 
thought to improve hepatic steatosis. SREBP-1c activates ACC1, FAS, SCD1, and GPAT, which 
are responsible for lipogenesis in the liver. ACC1, the enzyme that carboxylates acetyl-CoA 
to malonyl-CoA, is utilized by FAS in the synthesis of fatty acids [36]. A previous study 
showed that SCD1, a central lipogenic enzyme catalyzing the synthesis of monounsaturated 
fatty acids, -deficient mice display reduced lipid synthesis and enhanced lipid oxidation 
and insulin sensitivity in the liver [37]. Moreover, the human fatty liver is characterized 
by increased hepatic SCD1 levels and lipogenic activity [38]. GPAT catalyzes the first step 
in the synthesis of TGs and is recognized as contributing to lipogenesis in the liver [39]. 
Interestingly, GPAT has been suggested as a potential therapeutic target for dyslipidemia 
and obesity [40]. As expected, our results showed that the expression levels of the hepatic 
lipogenic genes SREBP1, ACC1, and FAS were increased in the livers of OVX rats, which is 
supported by previous studies showing that lipogenesis-related protein expression in the 
liver is dramatically increased in OVX animal models [41,42]. Based on our results, SREBP1-
induced expression of FAS and ACC1 mRNA might have affected the production of fatty acids. 
These fatty acids are used as a source for TG synthesis by SCD1 and GPAT, thereby triggering 
lipid accumulation in hepatocytes. However, in the present study, RBS supplementation 
notably inhibited the mRNA expression of these lipogenic genes. Our findings suggest that 
RBS ameliorates OVX-induced hepatic lipid accumulation by regulating genes involved in 
lipogenesis. Hao et al. [43] reported that a pre-germinated brown rice extract decreases the 
protein expression of SREBP1, SCD1, and FAS in the livers of high-fat diet (HFD)-fed mice. 
Moreover, the typical hepatic steatosis observed in the livers of ApoE−/− mice fed an HFD 
was reduced by rice bran enzymatic extract [44]. These effects could have been the result of 
various bioactive compounds (phytic acid, γ-oryzanol, GABA, phenolics, and anthocyanins) 
present in the rice bran [45]. Among them, γ-oryzanol, which consists of a mixture of ferulic 
acid esters of sterols, has been suggested to reduce circulating levels of liver lipoproteins in 
obese rats [46]. Furthermore, γ-oryzanol alleviates high-fat and high-fructose diet-induced 
hepatic steatosis through the inhibition of intracellular TG and TC accumulation in male 
SD rats and downregulates the expression of the lipogenic genes FAS, SCD1, ACCα, and ACCβ 
in HepG2 cells [47]. In the study by Wang et al. [48], γ-oryzanol was found to ameliorate 
HFD-induced obesity in mice and also reduced obesity-induced chronic inflammation in the 
hepatic tissues of mice. The authors indicated that γ-oryzanol-mediated inhibition of nuclear 
factor-κB activation might have participated in both anti-inflammation and lipid-lowering 
effects. Song et al. [49] reported that phytosterol esters attenuate hepatic steatosis in rats fed 
a HFD. Although not all components of RBS have been identified, we measured the content 
of γ-oryzanol in the RBS as 4.5 mg/g extract. Additionally, γ-oryzanol significantly inhibited 
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lipid accumulation in oleic acid-treated HepG2 cells. Thus, various components of RBS likely 
contributed to its hepatoprotective effects. Collectively, our results indicate that RBS inhibits 
increases in serum TG and FFA levels and hepatic lipid accumulation by downregulating 
SREBP1-mediated activation of lipogenic genes. This study provides a basis for the use of RBS 
as a supplement for the treatment or prevention of fatty liver in postmenopausal women.

SUPPLEMENTARY MATERIAL

Supplementary Table 1
Composition of experimental diets (g/kg of diet)

Click here to view
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