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Abstract

In plants and fungi, small RNAs silence gene expression in the nucleus by establishing repressive chromatin states. The role
of endogenous small RNAs in metazoan nuclei is largely unknown. Here we show that endogenous small interfering RNAs
(endo-siRNAs) direct Histone H3 Lysine 9 methylation (H3K9me) in Caenorhabditis elegans. In addition, we report the
identification and characterization of nuclear RNAi defective (nrde)-1 and nrde-4. Endo-siRNA–driven H3K9me requires the
nuclear RNAi pathway including the Argonaute (Ago) NRDE-3, the conserved nuclear RNAi factor NRDE-2, as well as NRDE-1
and NRDE-4. Small RNAs direct NRDE-1 to associate with the pre-mRNA and chromatin of genes, which have been targeted
by RNAi. NRDE-3 and NRDE-2 are required for the association of NRDE-1 with pre-mRNA and chromatin. NRDE-4 is required
for NRDE-1/chromatin association, but not NRDE-1/pre-mRNA association. These data establish that NRDE-1 is a novel pre-
mRNA and chromatin-associating factor that links small RNAs to H3K9 methylation. In addition, these results demonstrate
that endo-siRNAs direct chromatin modifications via the Nrde pathway in C. elegans.
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Introduction

Small regulatory RNAs can silence gene expression in the

nucleus by establishing repressive chromatin states. This process,

termed Transcriptional Gene Silencing (TGS), was first observed

in plants, where small RNAs direct DNA methylation and histone

modifications (reviewed in [1]). In addition, the fission yeast,

Schizosaccharomyces pombe has been an important model in defining

the role of small RNAs in heterochromatin formation. In S. pombe,

small RNAs direct the formation of heterochromatin primarily at

repetitive DNA elements surrounding centromeres [2,3]. At these

repetitive elements, nascent RNAs, transcribed by RNA Polymer-

ase II (RNAP II), serve as platforms for the assembly of RNAi

machinery. For instance, the RNA Induced Transcriptional

Silencing (RITS) complex, composed of the Argonaute Ago1,

the chromodomain protein Chp1, and the glycine and tryptophan

(GW)-motif-containing protein Tas3, is guided to nascent

transcripts by Argonaute and centromeric siRNAs [4]. The RITS

complex recruits chromatin-modifying machinery, such as the

histone methyltransferase Clr4, to genomic sites of nuclear RNAi

[5,6]. Clr4 catalyzes the methylation of Histone H3 on Lysine 9

(H3K9me) [7]. H3K9me is a conserved molecular mark of

heterochromatin [8]. Thus, in plants and S. pombe, small RNAs

play a central role in regulating chromatin dynamics. The role of

TGS and heterochromatin formation in metazoan silencing

processes is less clear [3].

Experimentally provided small RNAs can elicit transcriptional

silencing and induce heterochromatic marks in metazoans. In

mammalian cells, experimentally provided siRNAs directed against

promoter regions can lead to transcriptional silencing and induce

heterochromatic marks [9–12]. Paradoxically, experimentally

provided small RNAs can also enhance transcription and decrease

H3K9me marks [13,14]. In C. elegans, experimentally provided

siRNAs are bound by the Ago NRDE-3 in the cytoplasm, and

escorted into the nucleus [15]. NRDE-3/siRNA ribonucleoprotein

complexes bind nascent transcripts and recruit the conserved

nuclear RNAi factor NRDE-2. The Nrde pathway inhibits RNA

Polymerase (RNAP) II during the elongation phase of transcription,

and directs the deposition of H3K9me marks at genomic sites that

exhibit homology to experimentally introduced siRNAs [16].

How and if endogenously expressed small regulatory RNAs

silence gene expression in metazoan nuclei is unclear. Dicer

deficient mouse embryonic stem cells express high levels of

centromeric repeat RNAs and exhibit altered heterochromatic

marks at centromeres [17]. In Drosophila, heterochromatic marks,

including H3K9me and HP1, are mislocalized in flies lacking

components of the RNAi machinery such as Piwi, Aubergine, and

Homeless [18]. In addition, the Drosophila Ago-like protein PIWI

binds small RNAs, termed piRNAs, and associates with chromatin

[19]. Loss of piwi has variable effects on chromatin states at

genomic sites homologous to piRNAs [20–24]. Finally, in C.

elegans, animals lacking two RNAi-related factors: the RNA-

dependent RNA Polymerase EGO-1, or the Ago CSR-1, exhibit

large-scale changes in chromosomal H3K9me patterns during

germline development [25,26]. Thus, endogenous small regulatory

RNAs have been implicated in chromatin regulation in metazo-
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ans. However, a direct link has yet to be established, and the

molecular mechanisms by which this might occur are unknown.

Here we show that the endogenous small RNAs, termed endo-

siRNAs, direct H3K9me marks at discrete genomic loci in C. elegans.

Small RNA-directed H3K9 methylation requires the Nrde pathway

and results in the inhibition of transcription from these loci. In

addition, we identify two novel nuclear RNAi factors termed

NRDE-1 and NRDE-4, and show that these factors are required for

small RNA-directed H3K9 methylation. Finally, we show that small

RNAs direct NRDE-1 to associate with pre-mRNA and chromatin

of genes, which have been targeted by RNAi. Thus, the Nrde

pathway links endogenously expressed small regulatory RNAs to the

regulation of transcription and chromatin dynamics in C. elegans.

Results

A genetic screen identifies novel nrde genes
We previously reported a forward genetic screen that identified

two genes (termed nrde-2 and nrde-3) required for nuclear RNAi

[15,16]. The mechanism(s) by which NRDE-2/3 silence nascent

transcripts and inhibit RNAP II transcription are unknown. To

understand this mechanism we continued screening for nuclear

RNAi factors. .80% of the nrde alleles identified in our original

genetic screen were alleles of nrde-3 (Table S1, [15]). To maximize

our chances of identifying novel nuclear RNAi factors, we

performed our modified screen in animals harboring ectopic copies

of nrde-3 (nrde-3::gfp), which was integrated into the genome on

chromosome V (Figure S1). eri-1 encodes an exonuclease that

negatively regulates RNAi [27]. Our original screen was conducted

in an eri-1(2) genetic background. Our modified screen was

conducted in eri-1(+) animals (Figure S1). Our modified screen

identified twenty-three alleles of nrde-2, nineteen alleles of nrde-1,

nine alleles of the RNA-dependent RNA Polymerase (RdRP) rrf-1,

four alleles of nrde-4, and one additional nrde allele, which

complements the known nrde genes, but has not yet been assigned

a nrde gene designation (Figure 1a, and Table S1). Here we report

the identification and characterization of nrde-1 and nrde-4.

nrde-1 is a component of the nuclear RNAi pathway
We first focused our attention on characterizing the role of nrde-

1 in nuclear RNAi. Three lines of evidence indicate that nrde-1

functions with nrde-2 and nrde-3 to silence nuclear-localized RNAs

during nuclear RNAi. First, NRDE-1, like NRDE-2/3, is required

for RNAi-based silencing of nuclear-localized RNAs. For instance,

the lir-1 and lin-26 genes are expressed in an operon; these genes

are co-transcribed as a polycistronic pre-mRNA, which is spliced

into distinct mRNAs in the nucleus before export to the cytoplasm

[28,29]. lir-1(2) mutant animals are viable, whereas lin-26(2)

mutant animals exhibit a lethal phenotype [30]. RNAi targeting

lir-1 induces a lethal phenotype, indicating that lir-1 RNAi silences

the nuclear-localized lir-1/lin-26 RNA [15,30]. nrde-2(2) and nrde-

3(2) animals are viable following lir-1 RNAi, indicating that

NRDE-2 and NRDE-3 are required for lir-1-mediated silencing of

the lir-1/lin-26 RNA [15,16]. nrde-1 mutant animals were also

viable when exposed to lir-1 RNAi, indicating that, like NRDE-2

and NRDE-3, NRDE-1 is required for silencing of the lir-1/lin-26

RNA (Table 1). Similarly, NRDE-1/2/3 are required to silence

the nuclear-localized lin-15b/lin-15a RNA. lin-15b and lin-15a

genes are encoded in an operon. Mutations in lin-15b or lin-15a

alone produce no obvious phenotype, but animals harboring

mutations in both lin-15b and lin-15a exhibit a Multi-vulva (Muv)

phenotype [31]. RNAi targeting lin-15b induces a Muv phenotype,

indicating that lin-15b RNAi silences the nuclear-localized lin-15b/

lin-15a RNA [15,16]. nrde-1/2/3 mutant animals do not exhibit a

Muv phenotype in response to lin-15b RNAi, indicating that

NRDE-1/2/3 are required for silencing the lin-15b/lin-15a RNA

(Table 1). Second, nuclear-localized siRNAs direct a NRDE-2/3

dependent inhibition of RNAP II during the elongation phase of

transcription [16]. For instance, lin-15b RNAi inhibits RNAP II

transcription 39 to the site of lin-15b RNAi (Figure 1b). RNAi-

mediated inhibition of RNAP II transcription is dependent upon

NRDE-2 and NRDE-3 [15,16]. nrde-1 was also required to link

small RNAs to RNAP II inhibition; in nrde-1 mutant animals, lin-

15b RNAi did not result in transcription inhibition (Figure 1b).

Thus, like nrde-2/3, a wild-type copy of the nrde-1 gene is required

for RNAi to inhibit transcription elongation. Third, we conducted

a genetic analysis using double mutant combinations of the Nrde

factors. This analysis indicated that nrde-1 functions in a genetic

pathway with nrde-2 and nrde-3 (Figure S2). Taken together, these

data argue that nrde-1 is a component of the Nrde silencing

pathway.

NRDE-1 is a nuclear-localized protein
To determine the molecular identity of nrde-1, we used a single

nucleotide polymorphism (SNP)-based mapping approach [32].

We mapped nrde-1 to a 0.86cM interval on Chromosome III that

contained 42 genes. The open reading frame (ORF) c14b1.6 lies

within this mapping interval. Sequencing of c14b1.6 from three

independent nrde-1 alleles revealed three mutations in c14b1.6

(Figure 1c). Two of these alleles encode premature stop codons,

and therefore likely reveal the null phenotype of nrde-1. Expression

of a wild-type copy of c14b1.6 was sufficient to rescue the Nrde

phenotype associated with nrde-1 (see below). We conclude that

c14b1.6 corresponds to nrde-1. Analysis of nrde-1 expressed

sequence tags (ESTs) indicated that nrde-1 encodes a protein con-

taining 793 amino acids [33]. Database searches revealed that

nrde-1 is conserved in other nematode species, but these searches

failed to detect any obvious orthologues of nrde-1 outside

nematodes. In addition, these database searches did not identify

any obvious protein domains within NRDE-1.

We assessed the sub-cellular distribution of NRDE-1. We

constructed a NRDE-1 and Green Fluorescent Protein fusion

protein (NRDE-1::GFP), which encodes GFP 59 to a full length

copy of nrde-1. We observed fluorescence in nuclei of NRDE-

1::GFP expressing animals (Figure 1d). NRDE-1::GFP rescued

Author Summary

Chromatin consists of DNA and proteins. Chromatin can
exist in many different states. The state of chromatin in
highly regulated in order to ensure that genes are
expressed correctly. RNAs play an important role in the
regulation of chromatin. For example, in plants and fungi
small RNAs drive the formation of heterochromatin, a
repressive chromatin state. Many types of small RNAs have
been identified in animal cells, but the functions of these
small RNAs are largely unknown. Using the nematode C.
elegans as a model system, we identified a small RNA
pathway that regulates the state of chromatin. We report
the identification of two new factors, termed NRDE-1 and
NRDE-4, which act in this nuclear small RNA pathway.
NRDE-1 and NRDE-4 link small RNAs to chromatin
regulation. Additionally, we show that endogenously
expressed small RNAs, termed the endo-siRNAs, direct
the post-translational modification of histone proteins,
which are core components of chromatin. These results
establish a direct connection between small RNAs and
chromatin regulation in animals.

NRDE-1 Links Small RNAs to Chromatin Regulation
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Nrde phenotypes associated with nrde-1(2) animals (Figure 1e),

suggesting that the NRDE-1::GFP expression pattern reflects the

expression pattern of endogenous NRDE-1. We conclude that

NRDE-1 is a nuclear localized protein.

NRDE-1 functions downstream of NRDE-3
The Ago protein NRDE-3 binds siRNAs in the cytoplasm and

transports these siRNAs to the nucleus to facilitate nuclear RNAi

[15]. NRDE-3 can bind small RNAs generated from exogenously

provided dsRNAs, which are termed exogenous (exo) siRNAs.

NRDE-3 also associates with endogenously expressed small RNAs

termed endo-siRNAs [15]. NRDE-3 shuttles siRNAs from the

cytoplasm to the nucleus; NRDE-3 localizes to the nucleus when

bound to either endo or exo-siRNAs, and localizes to the

cytoplasm in the absence of these siRNAs [15]. We asked if

NRDE-1 was required for NRDE-3/siRNA shuttling. NRDE-3

retained the ability to bind endo-siRNAs in nrde-1(2) animals,

indicating that nrde-1 is not required for loading NRDE-3 with

siRNAs (Figure 2a). In addition, NRDE-3 remained localized in

the nucleus in nrde-1(2) animals, indicating that NRDE-1 activity

Figure 1. nrde-1 encodes a nuclear-localized protein that is required for nuclear RNAi. (A) Genetic map positions of genes identified in
genetic screen. Number of alleles identified in screen are indicated. (B) RNAi-driven transcriptional inhibition requires nrde-1 and nrde-4. Nuclear Run
On (NRO) analysis of transcription from the lin-15b/a gene from nuclei of animals exposed to +/2 lin-15b dsRNA or +/2 a-amanitin. Data are
expressed as a ratio +/2 lin-15b dsRNA (normalized to transcription detected from eft-3 gene) or +/2 a-amanitin (5 mg/ml). Dotted line indicates a
ratio of 1; i.e. no change. The genetic background for this experiment was eri-1(mg366). Control +/2 lin-15b dsRNA (n = 3–8, +/2 s.e.m.), nrde-1(gg088)
(n = 4–6, +/2 s.e.m., data point represented by triangle n = 1), nrde-4(gg129)(n = 5, +/2 s.e.m.), control +/2 a-amanitin (n = 3 +/2 s.e.m., data point
represented by triangle n = 1). D= fold change. Below: diagram of lin-15b/lin-15a gene structure indicating location of primers and trigger dsRNA
(magenta). (C) Predicted nrde-1 gene structure. Arrows indicate mutant alleles. (D) NRDE-1 localizes to the nucleus. Fluorescence microscopy of two
seam cells in a L4 larval animal expressing gfp::nrde-1. Arrows indicate nuclei. (E) gfp::nrde-1 fusion gene rescues nrde-1 mutant phenotype. Animals of
the indicated genotypes were exposed to lir-1 dsRNA. A score of 5 indicates all animals died during larval development and a score of 0 indicates
animals did not exhibit any developmental defects. Plates were scored blind and in triplicate for lir-1 RNAi-mediated lethality (a.u. arbitrary units).
doi:10.1371/journal.pgen.1002249.g001

NRDE-1 Links Small RNAs to Chromatin Regulation
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was not required for NRDE-3 shuttling (Figure 2b). These data

suggest that NRDE-1 functions downstream of NRDE-3 siRNAs

transport. Following exposure to dsRNA, NRDE-3 associates with

un-spliced RNAs (pre-mRNA) that exhibit sequence homology to

the trigger dsRNA. The association of NRDE-3 with pre-mRNA is

dependent upon the ability of NRDE-3 to localize to the nucleus,

the ability of NRDE-3 to bind siRNAs, and is restricted to those

pre-mRNAs that have been targeted by RNAi [15]. Thus, siRNAs

direct NRDE-3 to associate with pre-mRNAs. To test the idea that

NRDE-1 functions downstream of NRDE-3 shuttling, we asked if

NRDE-1 was required for the association of NRDE-3 with pre-

mRNA in response to RNAi. We performed NRDE-3 RNA

Immuno-Precipitation (RIP) and found that, in response to lin-15b

RNAi, NRDE-3 retained the ability to bind lin-15b pre-mRNA in

nrde-1(2) animals, indicating that NRDE-1 functions downstream

of NRDE-3/pre-mRNA association during nuclear silencing

events (Figure 2c).

Our genetic screen identified nine alleles of the gene rrf-1

(Figure 1a, Table S1). rrf-1 encodes one of four C. elegans RNA-

dependent RNA Polymerases (RdRPs) [34]. We sought to position

rrf-1 in the nuclear RNAi pathway. In animals lacking RRF-1,

NRDE-3 binds fewer small RNAs, suggesting that RRF-1 may

generate the small RNAs bound by NRDE-3 [15]. Consistent with

this idea, in rrf-1(2) animals, NRDE-3/lin-15b pre-mRNA

association was reduced relative to rrf-1(+) animals, indicating

that RRF-1 acts upstream of NRDE-3/pre-mRNA association

during nuclear silencing (Figure 2c). Taken together, these data

indicate that our genetic screen is identifying components of the

Nrde pathway that function both upstream and downstream of

NRDE-3-mediated siRNA transport.

NRDE-1 is recruited to pre-mRNAs in response to RNAi
We asked if NRDE-1 was recruited to pre-mRNA following

RNAi. We performed NRDE-1 RNA Immuno-Precipitation (RIP)

experiments in animals exposed to lin-15b dsRNA. lin-15b RNAi

induced a ,30–706 enrichment in un-spliced lin-15b RNA that

co-precipitated with FLAG::NRDE-1 (Figure 2d, 2e). The dpy-28

gene encodes a subunit of the C. elegans dosage compensation

complex [35]. We tested if dpy-28 dsRNA would induce NRDE-1-

dpy-28 pre-mRNA association. Following dpy-28 RNAi, NRDE-1

associated with dpy-28 pre-mRNA (Figure 2d). Finally, dpy-28 or

lin-15b RNAi did not result in enrichment of NRDE-1 with lin-15b

or dpy-28 pre-mRNA, respectively, indicating that the association

of NRDE-1 with pre-mRNA (induced by RNAi) is sequence

specific (Figure 2d). We were concerned that NRDE-1 might

associate with pre-mRNA targets, in vitro, during sample

preparation. To address this issue we pooled extracts from animals

exposed to lin-15b dsRNA, and extracts from NRDE-1::GFP

expressing animals not exposed to lin-15b, dsRNA and failed to

detect an association of NRDE-1 with lin-15b pre-mRNA,

indicating that NRDE-1/pre-mRNA interactions likely occurs in

vivo (Figure 2e). Taken together, these data show that NRDE-1

associates with pre-mRNAs that have been targeted by RNAi.

NRDE-1 co-precipitating pre-mRNA was enriched for RNA

sequences encoded at, or near, the site of RNAi- relative to

sequences encoded 59 or 39 to the site of RNAi (Figure 2e). We

have previously shown that NRDE factors fail to associate with

pre-mRNA sequences encoded 39 to the site of RNAi due to

RNAi-mediated inhibition of transcription elongation [16]. We

investigated the apparent lack of pre-mRNA sequences encoded 59

to the site of RNAi and found that, while the NRDE factors fail to

associate with un-spliced RNA 59 to the site of RNAi, the Nrdes do

associate with spliced RNA 59 to the site of RNAi (Figure S3).

Splicing is thought to occur co-transcriptionally [29]. Therefore,

the apparent lack of NRDE-1/pre-mRNA association 59 to sites of

RNAi may be due to co-transcriptional splicing of nascent

transcripts.

We investigated the genetic requirements of NRDE-1/pre-

mRNA association. In nrde-2(2) animals, RNAi failed to induce

an association of NRDE-1 with pre-mRNA (Figure 2e). In

addition, ,106 less lin-15b pre-mRNA co-precipitated with

NRDE-1 in nrde-3(2) animals than in nrde-3(+) animals

(Figure 2e). We conclude that the recruitment of NRDE-1 to

pre-mRNAs by small RNAs requires NRDE-2 and is largely

dependent upon NRDE-3 (see discussion).

NRDE-1 promotes RNAi-directed Histone 3 Lysine 9
methylation

In plants and S. pombe small RNAs direct the methylation of

Histone 3 Lysine 9 (H3K9me). Histone methylation results from

small RNA-mediated recruitment of histone methyltransferase

enzymes to genomic sites exhibiting sequence homology to small

RNAs [5]. RNAi also directs H3K9 methylation in C. elegans [16].

nrde-2 is required for RNAi-mediated H3K9 methylation in C.

elegans [16]. The mechanism by which the C. elegans Nrde pathway

mediates H3K9 methylation is unknown. We conducted H3K9me

Chromatin Immuno Precipitation (ChIP) to determine if NRDE-1

was required to link small RNAs to H3K9 methylation. lin-15b

RNAi induced a ,306 increase in H3K9me marks at the lin-15

locus (Figure 3). In nrde-1(2) animals, however, lin-15b RNAi had

no effect on the methylation status of chromatin at the lin-15b gene

(Figure 3). We conclude that NRDE-1 is required to link small

RNAs to H3K9 methylation at a genomic site that has been

targeted by RNAi.

RNAi directs NRDE-1 to associate with chromatin
We asked if the NRDE factors themselves might become

associated with chromatin in response to RNAi. In order to

address this question, we performed NRDE-1/2/3 ChIP exper-

Table 1. nrde-1 is required for silencing nuclear localized
RNAs.

dsRNA

(phenotype scored)

lin-15b lir-1

Genotype (Multi-vulva) (Lethality)

eri-1(mg366) + +

eri-1(mg366); rde-1(ne219) 2 2

eri-1(mg366); nrde-1(gg088) 2 2

eri-1(mg366); nrde-4(gg129) 2 2

eri-1(mg366); nrde-1(gg088); nrde-2(gg091) 2 2

eri-1(mg366); nrde-1(gg088); nrde-3(gg066) 2 2

eri-1(mg366); nrde-1(gg088); nrde-4(gg129) 2 2

Animals of the indicated genotypes were fed bacteria expressing indicated
dsRNAs (e.g. lin-15b). eri-1 encodes an exonuclease that is required for the
biogenesis of endogenous small interfering RNAs (endo-siRNAs) [36]. eri-1(2)
animals have an enhanced RNAi phenotype; they respond more robustly to
dsRNA than wild-type animals [27]. Therefore, an eri-1(2) background was
used to facilitate phenotypic analysis. The phenotypes (e.g. Multi-vulva) of
eri-1(mg366) animals exposed to dsRNA were defined as ‘+’ (,90–100% of
animals with phenotype), the phenotypes of eri-1(mg366);rde-1(ne219) were
defined as ‘2’ (0% of animals with phenotype). 50–250 animals were scored
blind in each trial (n$3).
doi:10.1371/journal.pgen.1002249.t001
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Figure 2. NRDE-1 is recruited by NRDE-2/-3 to pre-mRNAs that have been targeted by RNAi. (A) NRDE-3 retains the ability to bind siRNAs
in nrde-1(2) animals. FLAG::NRDE-3 co-precipitating RNAs were radiolabeled with 32P and analyzed by polyacrylamide gel electrophoresis. (B) NRDE-3
localizes to the nucleus in nrde-1(2) animals. Fluorescence microscopy of NRDE-3::GFP in seam cells from ,L3 animals. (C) The recruitment of NRDE-3
to pre-mRNAs by RNAi is unaffected in nrde-1(2) animals. FLAG::NRDE-3 co-precipitating RNAs were converted to cDNA and quantified by qRT-PCR
using primers that span exon-intron junctions. Throughout the remainder of this manuscript pre-mRNA levels are measured using exon-intron primer
pairs. Data are expressed as a ratio of NRDE-3 precipitating pre-mRNA with or without lin-15b RNAi. For wild-type (n = 7,+/2 s.e.m.), nrde-1(2) (n = 5,
+/2 s.e.m.), rrf-1(2) (n = 5, +/2 s.e.m.), nrde-4(2) (n = 5, +/2 s.e.m.), rde-1(2) (n = 3, +/2 s.e.m.). Below, western blot detecting FLAG::NRDE-3 verified
similar levels of NRDE-3 were Immuno-Precipitated (IP’ed) from each strain and for each condition. (D) NRDE-1 associates with pre-mRNAs that have
been targeted by RNAi. NRDE-1 co-precipitating RNAs were converted to cDNA and quantified by qRT-PCR. Data are expressed as a ratio of NRDE-1
co-precipitating pre-mRNAs with or without indicated RNAi. Samples exposed to dpy-28 RNAi or lin-15b RNAi were probed with primers targeting

NRDE-1 Links Small RNAs to Chromatin Regulation
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iments before or after exposure of animals to dsRNA. In response

to lin-15b RNAi, we did not detect any significant increase in the

association of NRDE-2 or NRDE-3 with chromatin at the lin-15b

gene (Figure 4a). Interestingly, NRDE-1 precipitated ,66 more

lin-15b DNA following lin-15b RNAi (Figure 4a). In nrde-2(2) and

nrde-3(2) animals, lin-15b RNAi failed to trigger an increase in lin-

15b DNA that co-precipitated with NRDE-1 (Figure 4b). We

conclude that NRDE-1 is able to IP chromatin of a gene that has

been targeted by RNAi, and that the association of NRDE-1 with

chromatin requires NRDE-2 and NRDE-3. It is possible that the

ability of NRDE-1 to co-precipitate with chromatin may occur as

an indirect consequence of NRDE-1/pre-mRNA interactions. To

address this issue, we turned our attention to nrde-4.

NRDE-4 is required for RNAi-directed recruitment of
NRDE-1 to chromatin

We mapped and cloned nrde-4 (Figure S4). nrde-4 is predicted to

encode a protein containing 788 amino acids [33]. Database

searches revealed that nrde-4 is conserved within other nematode

species, but not in other species. nrde-4 encodes a predicted

bipartite nuclear localization signal (NLS) and no other obvious

protein domains (Figure S4). NRDE-4 is required for silencing

nuclear localized RNAs (Table 1), for linking small RNAs to the

inhibition of transcription (Figure 1b), and for linking small RNAs

to H3K9 methylation (Figure 3). Interestingly, the recruitment of

NRDE-1 (and NRDE-2/3) to pre-mRNA was largely unaffected

in animals lacking NRDE-4 (Figure 2c, 2e, Figure S5). NRDE-4

was, however, required for recruitment of NRDE-1 to chromatin

in response to RNAi (Figure 4b). These data indicate that NRDE-

4 functions downstream of NRDE-1/2/3/pre-mRNA interactions

during nuclear RNAi. These data also demonstrate that the ability

of NRDE-1 to associate with chromatin is dissociable from the

ability of NRDE-1 to associate with pre-mRNA, supporting the

idea that NRDE-1 associates with chromatin at genomic sites

targeted by RNAi.

Endo-siRNAs direct NRDE-dependent H3K9 methylation
C. elegans express at least three types of endogenous small RNAs;

the microRNAs, the piRNAs, and the endo-siRNAs. A sub-set of

the endo-siRNAs requires ERI-1 for their expression [36,37].

NRDE-3 associates with the ERI-1-dependent endo-siRNAs, but

not the other classes of endogenous small RNAs [15,37]. Five lines

of evidence cumulatively argue that ERI-1 dependent endo-

siRNAs are able to direct the deposition of H3K9me marks in C.

elegans. First, in animals that fail to express endo-siRNAs H3K9me

marks are depleted at genomic regions exhibiting sequence

complementarity to endo-siRNAs. For instance, e01g4.5 siRNAs

are amongst the most abundant endo-siRNAs expressed in C.

elegans [36]. eri-1(2) animals do not express e01g4.5 endo-siRNAs

([36,37] and Figure 5a). We conducted H3K9me ChIP and

detected a ,66depletion of H3K9me marks at the e01g4.5 gene

in eri-1(2) animals (Figure 5b). The changes in H3K9me marks

were restricted to genomic regions exhibiting homology to endo-

siRNAs; surrounding genomic regions, which are not homologous

to known small regulatory RNAs, did not exhibited altered

H3K9me marks (Figure 5b). Second, in nrde-1/2/3/4 mutant

animals we observed a similar localized depletion of H3K9me

marks at e01g4.5 (Figure 5c and Figure S6). Third, the e01g4.5 pre-

mRNA was over-expressed 2–56 in eri-1 and nrde-1/2/3/4

mutant animals ([15], Figure S7, and data not shown). Fourth,

we performed NRDE-1 RIP and quantified the amount of e01g4.5

pre-mRNA that co-precipitated with NRDE-1. We conducted this

experiment in both nrde-2(+) and nrde-2(2) animals as NRDE-2 is

required for NRDE-1 recruitment to pre-mRNAs in response to

feeding RNAi. We found that NRDE-1 associated with ,56more

e01g4.5 pre-mRNA in nrde-2(+) animals than in nrde-2(2) animals

(Figure 5d). These data suggest that NRDE-1 can associate with

pre-mRNAs that are homologous to endo-siRNAs, and that this

process depends upon components of the Nrde pathway. Five, we

detected a subtle and complex, yet reproducible, increase in

transcription at the e01g4.5 gene in eri-1 and nrde-1/2/4 mutant

animals (Figure 5e and Figure S8). Taken together, these data

indicate that e01g4.5 endo-siRNAs are able to direct chromatin

modification in C. elegans and that this process requires the Nrde

pathway.

Lastly, we investigated the generality of small RNA-mediated

chromatin regulation in C. elegans. We queried seven additional

genomic sites that exhibit sequence homology to eri-1-dependent

endo-siRNAs. At four of these loci H3K9me marks were depleted

in eri-1 and nrde-1/2/3/4 animals (Figure 5f). At three of these loci,

no significant differences in H3K9me marks were observed. We

conclude that Nrde-dependent endogenous small RNA-mediated

chromatin modification occurs at multiple loci in C. elegans.

Discussion

Here we report that small RNAs are necessary and sufficient to

direct chromatin modification in C. elegans. We show that a class of

endogenous small RNAs, termed the endo-siRNAs, direct H3K9

methylation at discrete genomic loci, and that this process requires

the Nrde pathway. Finally, we identify two novel nuclear RNAi

factors including NRDE-1, which we show is recruited to pre-

mRNAs and chromatin by RNAi, and is required to link small

RNAs to chromatin regulation.

Hierarchical assembly of nrde factors on nascent RNAs
In S. pombe silencing factors assemble upon nascent transcripts

during nuclear RNAi [3]. Here, we present evidence that nascent

transcripts serve a similar role in C. elegans. The Ago NRDE-3 is

guided to nascent transcripts via base pairing between NRDE-3

bound siRNAs and nascent transcripts [15]. In nrde-1 mutant

animals, NRDE-3 can still associate with the target pre-mRNA,

but nuclear silencing does not occur (Figure 2c). Thus, NRDE-3

bound siRNAs provide the information of where to silence, but

additional downstream factors, such as NRDE-1, are required for

silencing to occur. NRDE-3 is required for recruitment of NRDE-

2 to pre-mRNA in response to RNAi [16]. NRDE-3 and NRDE-2

are required for the recruitment of NRDE-1 to pre-mRNAs in

response to RNAi (Figure 2e). Thus, we propose that the NRDE

factors assemble in a hierarchical manner on pre-mRNA; NRDE-

3 identifies pre-mRNAs, and in association with NRDE-2, recruits

NRDE-1 to pre-mRNAs that have been targeted by RNAi

(Figure 6).

either dpy-28 pre-mRNA or lin-15b pre-mRNA. For dpy-28 RNAi (n = 3, +/2 s.e.m.), lin-15b RNAi (n = 5, +/2 s.e.m.). For lin-15b RNAi, one data point is
also shown in panel E and is marked with * in both panels. (E) NRDE-1 association with pre-mRNAs requires NRDE-2 and NRDE-3. FLAG::NRDE-1 co-
precipitating pre-mRNAs were converted to cDNA and quantified by qRT-PCR. Data are expressed as a ratio of co-precipitating lin-15b pre-mRNA with
or without lin-15b RNAi. Control (n = 5, +/2 s.e.m., data point represented by triangle n = 1), nrde-2(2) (n = 3, +/2 s.e.m.), nrde-3(2) (n = 6, +/2 s.e.m.),
nrde-4(2) (n = 5, +/2 s.e.m.), n = 1 for pooled extracts. This experiment was performed in an nrde-1(gg088) background. Below, western blot of
FLAG::NRDE-1 verified similar amounts of NRDE-1 were IP’ed.
doi:10.1371/journal.pgen.1002249.g002
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NRDE-1 and NRDE-4 in nuclear RNAi
What is the role of NRDE-4 in nuclear RNAi? Our preliminary

investigation has shown that: NRDE-4 is required to link small

RNAs to transcription and chromatin regulation. Interestingly, we

find that NRDE-4 is not required for small RNA-directed NRDE-

1/pre-mRNA association, but is, required for the recruitment of

NRDE-1 to chromatin. Therefore, it seems reasonable to

speculate that one role of NRDE-4 during nuclear RNAi may

be to load/stabilize NRDE-1 on chromatin, following the

recruitment of NRDE-1 to pre-mRNAs by NRDE-2/3 (Figure 6).

What is the role of NRDE-1 in nuclear RNAi? In response to

RNAi, NRDE-1 co-precipitates with both pre-mRNAs and

chromatin. We did not detect an association of NRDE-3 or

NRDE-2 with chromatin despite the fact that NRDE-2/3 are able,

like NRDE-1, to associate with pre-mRNA in response to RNAi

(Figure 4a). These data hint that NRDE-1 may possess a chromatin

associating property not exhibited by NRDE-2/3. We considered

the possibility that NRDE-1 might IP chromatin indirectly via pre-

mRNA/RNAP II intermediates. However, we found that in nrde-

4(2) animals, NRDE-1 is recruited to pre-mRNAs by RNAi, but

does not become associated with chromatin (Figure 2e and

Figure 4b). These data demonstrate that the RNA and chromatin

associating properties of NRDE-1 can be separated. Additionally,

we find that NRDE-1 association with RNA occurs predominantly

59 to the site of RNAi, whereas NRDE-1 association with chromatin

occurs predominantly 39 to the site of RNAi (Figure 2e and

Figure 4a). Taken together, these data argue that NRDE-1

associates with chromatin in response to RNAi, and that NRDE-1

interacts with pre-mRNAs first and chromatin second during

nuclear silencing processes (Figure 6). The question then becomes;

what is the role of NRDE-1 at chromatin?

H3K9me and nuclear RNAi
Here we show that small RNAs promote H3K9 methylation in

C. elegans. We show that experimentally introduced small RNAs

are sufficient to direct H3K9me marks at genomic sites targeted by

RNAi. We also show that small RNAs are necessary to establish

H3K9me marks; in animals that fail to express endogenous

siRNAs, H3K9me marks are depleted at genomic sites homolo-

gous to endo-siRNAs. In S. Pombe, the RNAi machinery directs

H3K9 methylation at pericentromeric repeats via recruitment of

the H3K9 methyltransferase Clr4 to pre-mRNAs exhibiting

homology to pericentromeric siRNAs [5]. Interestingly, fungi

lacking H3K9me, due to loss of Clr4, fail to express abundant

pericentromeric siRNAs [38]. Thus, H3K9me and the RNAi

machinery are thought to comprise a self-reinforcing loop that

facilitates heterochromatin formation at pericentromeric regions in

S. pombe [39,40]. We find that, in C. elegans, RNAi directs both

Figure 3. NRDE-1 is required for RNAi-directed H3K9 methylation. Chromatin Immunoprecipitation (ChIP) with anti-H3K9me3 (Upstate, 07-
523) was performed on extracts derived from embryos of animals exposed to +/2 lin-15b RNAi. Co-precipitating H3K9me3 DNA was quantified with
qRT-PCR and data are expressed as ratios of samples exposed to lin-15b RNAi or no RNAi (n = 3 +/2 s.d).
doi:10.1371/journal.pgen.1002249.g003
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H3K9 methylation and the association of NRDE-1 with

chromatin. These data hint that C. elegans may employ a similar

strategy as S. pombe for establishing heterochromatin; e.g. RNAi

promotes H3K9 methylation and H3K9 methylation may help

recruit components of the RNAi machinery, such as NRDE-1, to

chromatin. In order to test this model, the C. elegans methyltrans-

ferase(s) responsible for depositing H3K9me marks in response to

RNAi will need to be identified.

H3K9me and transcription
We find that H3K9me marks become distributed throughout a

gene that has been targeted by RNAi (Figure 3). These data raise

several interesting questions. First, how do H3K9me marks spread

from the site of RNAi, and how are these marks prevented from

spreading into adjacent genes? A simple model posits that the

deposition of H3K9me marks (directed by small RNAs) is coupled

to transcription in C. elegans. In other words, the act of

Figure 4. NRDE-1 associates with chromatin at genomic loci targeted by RNAi. (A) FLAG::NRDE co-precipitating DNA was quantified with
qRT-PCR. Data are expressed as ratios of NRDE associated DNA with or without lin-15b RNAi. Data was normalized to input. NRDE-1 (n = 4, +/2 s.e.m.),
NRDE-2 (n = 3, +/2 s.e.m.), NRDE-3 (n = 3 +/2 s.e.m.) * indicates the same FLAG::NRDE-1 ChIP data are shown in panel A and B. (B) Genetic
requirements for RNAi-driven NRDE-1/chromatin association. FLAG::NRDE-1 co-precipitating DNA from indicated genetic backgrounds was quantified
with qRT-PCR. Data are expressed as ratios of NRDE-1 co-IPed DNA with or without lin-15b RNAi. Control (n = 4, +/2 s.e.m.), for all other strains
(n = 3,+/2 s.e.m.).
doi:10.1371/journal.pgen.1002249.g004

NRDE-1 Links Small RNAs to Chromatin Regulation

PLoS Genetics | www.plosgenetics.org 8 August 2011 | Volume 7 | Issue 8 | e1002249



Figure 5. Endo-siRNAs promote H3K9 methylation. (A) e01g4.5 is an endo-siRNA target. Small RNAs cloned from wild type or eri-1(mg366) L4
larval animals [36] were counted in 100 bp non-overlapping windows across a 30 kb region surrounding e01g4.5. Small RNAs were normalized to
total sequenced small RNAs from each sample. (B–C) eri-1(2) and nrde-1(2) animals are depleted for H3K9me3 at e01g4.5. H3K9me3 ChIPs were
performed in wild-type (WT), eri-1(mg366), and nrde-1(gg088) animals. Data are represented as ratios of H3K9me3 co-precipitating DNA in WT/eri-
1(mg366) (B) or WT/nrde-1(gg088) (C). Data in B and C are normalized to ChIPed eft-3 DNA (n = 3, +/2 s.d.). (D) NRDE-1 associates with the pre-mRNA
of an endo-siRNA target. Co-precipitating FLAG::NRDE-1 RNAs were isolated from +/2 nrde-2 animals, converted to cDNA, and quantified with qRT-
PCR. Data are expressed as ratios of NRDE-1 associated e01g4.5 pre-mRNA +/2 nrde-2 (n = 2, +/2 s.d.). (E) Endo-siRNAs inhibit transcription. NRO
transcription analysis from wild-type and nrde-1 mutant animals. Data are represented as a ratio of transcription in nrde-1(2)/WT (n = 4, +/2 s.e.m.).
The genomic region surrounding e01g4.5 is depicted below the graph. (F) endo-siRNAs direct H3K9me marks at genomic loci homologous to endo-
siRNAs. H3K9me3 ChIPs were performed in wild-type (WT) or animals of the indicated genotypes. Data are expressed as ratios of H3K9me co-
precipitating DNA in WT/indicated genotype. eri-1(2) (n = 3 +/2 s.d.), nrde-1(2) (n = 1) , nrde-2(2) (n = 2, +/2 s.d.), nrde-3(2) (n = 2, +/2 s.d.), nrde-
4(2) (n = 3, +/2 s.d.).
doi:10.1371/journal.pgen.1002249.g005
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transcription may alter chromatin in such a way as to permit (and

limit) H3K9me spreading. Another question that arises is; what is

the connection between H3K9 methylation and RNAP II

transcription in C. elegans? We show that both endo-siRNAs and

exo-siRNAs direct H3K9 methylation, which correlates with

decreases in transcription. These data are consistent with the

established repressive role of H3K9 methylation on transcription

[8]. We find that RNAi-directed H3K9me marks peak 39 to sites

of RNAi (Figure 3). In addition, we find that NRDE-1 associates

with chromatin predominantly 39 to sites of RNAi (Figure 4a), and

Figure 6. Model of NRDE pathway. siRNAs (from either an exogenous or endogenous source) are bound by the Ago NRDE-3 in the cytoplasm and
escorted into the nucleus. Once in the nucleus, NRDE-3/siRNA complexes bind nascent transcripts synthesized by RNAP II. NRDE-3/siRNA complexes
recruit NRDE-2, and NRDE-2/3 recruit NRDE-1 to these nascent transcripts. NRDE-1 is deposited on chromatin in a NRDE-4 dependent manner. An
unknown histone methyltransferase (HMT) catalyzes the methylation of histone 3 lysine 9 (H3K9me3). H3K9me marks may facilitate recruitment of
NRDE-1 to chromatin. Alternatively, NRDE-1 may recruit an H3K9 methyltransferase to sites of RNAi. Together, H3K9me marks and NRDE-1 inhibit
RNAP II elongation. Additional small RNAs and Argonaute proteins (Ago X) may engage NRDE-1/2/4 to direct chromatin modifications.
doi:10.1371/journal.pgen.1002249.g006
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RNAP II transcription is inhibited by RNAi predominantly 39 to

the site of RNAi (Figure 1b). Therefore, H3K9me marks and

NRDE-1 may contribute to the inhibition of RNAP II elongation

by small RNAs (Figure 6). It should be noted, however, that while

H3K9me marks peak 39 to sites of RNAi, we observe H3K9

methylation throughout genes targeted by RNAi, hinting that

H3K9me marks alone may not be sufficient to inhibit RNAP II

transcription in C. elegans (Figure 3).

Why nuclear RNAi?
In S. pombe small RNAs primarily target repetitive genomic

elements. RNAi-directed heterochromatization at pericentromeric

repeats permits efficient segregation of chromosomes during

meiosis [41]. In plants, small RNAs silence genomic regions

enriched in transposons, pericentromeric regions, and rRNA genes

[1]. Here we show that ERI-1-dependent endo-siRNAs direct the

establishment of heterochromatic marks on chromatin. The

biological role(s) of this small RNA-mediated chromatin regulation

in C. elegans is unknown. The ERI-1-dependent endo-siRNAs are

anti-sense to several hundred cellular mRNAs [36]. In general,

these mRNAs appear to be poorly conserved and repetitive,

hinting that these mRNAs may represent the products of dead and

dying genes [42]. The purpose of nuclear RNAi may be to prevent

expression of these dysfunctional genes. Alternatively, these

mRNAs may simply serve as templates for the creation of small

RNAs, which, in turn, regulate chromatin dynamics.

There are 26 Agos encoded in the worm genome, in addition to

nrde-3 [43]. We have detected pleiotropic fertility defects exhibited

by nrde-1/2/4(2), but not nrde-3(2), animals, hinting that other

Ago proteins and, perhaps, other types of small RNAs, may

engage NRDE-1/2/4 to promote H3K9 methylation during

development (Figure S9). In support of this idea, we find that the

recruitment of NRDE-1 to pre-mRNAs and chromatin, in

response to RNAi, is not completely abolished in animals

harboring null alleles of nrde-3 (Figure 2e). These data support

the idea that other Ago proteins may engage the Nrde pathway to

elicit nuclear silencing and chromatin regulation in C. elegans

(Figure 2e, Figure 6). The identification of these Ago factors and

their small RNA partners will be important for unraveling the

cellular connections that exist between endogenous small RNAs

and chromatin dynamics in metazoans.

Materials and Methods

Strains
N2, (YY160) nrde-1(gg088), (YY186) nrde-2(gg091), (YY158) nrde-

3(gg066), (YY453) nrde-4(gg129), (GR1373) eri-1(mg366), (YY191)

eri-1(mg366); nrde-1(gg088), (YY468) eri-1(mg366); nrde-4(gg129),

(YY268) nrde-1(gg088); ggIS12[nrde-3p::3xflag::gfp::nrde-1], (YY464)

nrde-1(gg088); nrde-2(gg091); ggIS12, (YY459) nrde-1(gg088); nrde-

3(gg066); ggIS12, (YY462) nrde-1(gg088); nrde-4(gg129); ggIS12,

(YY174) ggIS1[nrde-3p::3xflag::gfp::nrde-3], (YY225) rde-1(ne219);

ggIS1, (YY228) nrde-1(gg088); ggIS1, (YY454) nrde-4(gg129); ggIS1,

(YY230) rrf-1(pk1417); ggIS1, (YY346) nrde-2(gg091); ggIS28[nrde-

3p::3xflag::gfp::nrde-2].

Construction of plasmids and transgenic strains
For FLAG::GFP::NRDE-1 (referred to as GFP::NRDE-1 when

assaying NRDE-1 expression or FLAG::NRDE-1 when referring

to NRDE-1 immunoprecipitation or western blotting) the nrde-1

coding region and predicted 39UTR were amplified by PCR from

genomic N2 DNA and inserted into the pSG082 plasmid 39 to the

nrde-3p::3xFLAG::GFP. Low copy integrated transgenes were

generated by biolistic transformation [44].

RNAi
RNAi experiments were conducted as described previously [45].

The lir-1 and unc-15 bacterial clones were taken from the Ahringer

library [46]. The lin-15b clone was described previously [15].

RNA IP (RIP)
RIPs were performed as described previously [15]. Hypochlo-

rite-isolated embryos were used for all RIPs. FLAG::NRDE-1 and

FLAG::NRDE-3 proteins were immuno-precipitated with anti-

FLAG M2 antibody (Sigma, A2220).

Chromatin IP (ChIP)
ChIP experiments were performed as described previously [16].

Hypochlorite-isolated embryos were used for ChIP experiments.

Isolated embryos were snap-frozen in liquid-Nitrogen before

performing ChIP. FLAG::NRDE-1, FLAG::NRDE-2, and

FLAG::NRDE-3 proteins were immuno-precipitated with anti-

FLAG M2 antibody (Sigma, A2220). H3K9me3 antibody was

from Upstate (07-523).

Nuclear run on (NRO) assay
NRO was performed as described previously [16]. Hypochlo-

rite-isolated embryos were used for NROs.

cDNA preparation
RNAs were converted to cDNA by the iScript cDNA Synthesis

Kit (Bio-Rad, 170–8890) following the vendor’s protocol.

Supporting Information

Figure S1 Modified genetic screen. We screened for cellular

factors that were required for the silencing of nuclear localized

RNAs. Wild-type animals expressing ectopic copies of nrde-3

(NRDE-3::GFP) were mutagenized and exposed to lir-1 RNAi.

The majority of animals exposed to lir-1 RNAi died due to the

silencing of the lir-1/lin-26 pre-mRNA. Animals that survived lir-1

RNAi were isolated and subjected to a secondary screen using pos-

1 RNAi. Mutant animals that survived pos-1 RNAi were discarded,

as we anticipate these animals harbor mutations in the upstream

and cytoplasmic RNAi machinery. The remaining alleles were

assigned to complementation groups.

(TIF)

Figure S2 nrde-1 functions in a genetic pathway with nrde-2 and

nrde-3. unc-15 RNAi directs a partially penetrant Uncoordinated

(Unc) phenotype in control animals. Single and double nrde

mutant strains were scored for Unc phenotypes in response to

unc-15 RNAi. The number of animals exhibiting a paralysis

phenotype and the strength of the paralysis phenotype was scored

blinded on an scale from 0–4. The paralysis phenotype of non-

blinded eri-1(mg366) animals fed unc-15 RNAi was defined as ‘4’

(100% animals paralyzed), and eri-1(mg366);rde-1(ne219) was

defined as ‘0’ (0% of animals paralyzed). 10–100 animals were

scored in each trial (n$5). nrde-1/2/3 mutants are partially

suppressed for unc-15 RNAi-meditated paralysis. nrde-1;nrde-2,

and nrde-1;nrde-3 double mutants do not have a synergistic effect

on unc-15 RNAi, suggesting that nrde-1/-2/-3 function in the

same genetic pathway. The genetic background of this experi-

ment was eri-1(mg366).

(TIF)

Figure S3 NRDE factors associate with spliced RNAs encoded

59 to the site of RNAi. (A) NRDE-1 associates with partially spliced

RNAs 59 to site of RNAi. NRDE-1 co-precipitating RNAs were

converted to cDNA and quantified by qRT-PCR using primers

NRDE-1 Links Small RNAs to Chromatin Regulation
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that recognize exon-exon splice junctions (spliced RNA). Data are

expressed as a ratio of NRDE-1 precipitating RNA with or

without lin-15b RNAi. This experiment was performed in a nrde-

1(gg088) background (n = 1). (B) NRDE-2 associates with spliced

RNA encoded 59 to the site of RNAi. NRDE-2 co-precipitating

RNAs were converted to cDNA and quantified by qRT-PCR

using primers that span splice junctions (spliced RNA) or exon-

intron junctions (pre-mRNA). Data are expressed as a ratio of

NRDE-2 precipitating RNA with or without lin-15b RNAi (n = 3

+/2, s.d.).

(TIF)

Figure S4 Molecular identity of nrde-4. (A) nrde-4 gene structure.

Arrows indicate mutant alleles. gg129, gg131, and gg132 were

identified in screen described in main text and Figure S1. gg194

was identified in screen described in panel C. (B) Amino acid

sequence of NRDE-4. Amino acids in red indicate mutated amino

acids in gg129, gg131, and gg132. Amino acids highlighted in yellow

encode a putative Nuclear Localization Signal (NLS). (C) Yet

another, and hopefully last, screen for factors required for nuclear

RNAi. eri-1(mg366) animals exposed to dpy-13 dsRNA exhibit a

super-Dpy phenotype. Mutant alleles that suppressed dpy-13

RNAi-mediated super-Dpy phenotype were selected and subjected

to the indicated secondary screens. gg194 was mapped to a

genomic region containing f45e4.10. f45e4.10 was sequenced and

the gg194 lesion was identified.

(TIF)

Figure S5 nrde-4 acts downstream of NRDE-2/pre-mRNA

association. NRDE-2 associates with pre-mRNAs targeted by

RNAi in an nrde-4 independent manner. FLAG::NRDE-2 co-

precipitating pre-mRNAs were converted to cDNA and quantified

by qRT-PCR. Data are expressed as a ratio of co-precipitating lin-

15b pre-mRNA with or without lin-15b RNAi. Wild-type (n = 2–6,

+/2 s.d.), nrde-4(2) (n = 2, +/2 s.d.).

(TIF)

Figure S6 nrde-2, nrde-3, and nrde-4 are required for endo-siRNA

driven H3K9me3. (A–C) H3K9me3 ChIPs were performed in

wild-type (WT), nrde-2(gg091), nrde-3(gg066), or nrde-4(gg129)

animals. Data are represented as ratios of e01g4.5 co-precipitating

DNA in WT/nrde. nrde-2(2) (n = 3; +/2 s.d.), nrde-3(2) (n = 3 +/

2 s.d.), nrde-4(2) (n = 5; +/2 s.d.).

(TIF)

Figure S7 e01g4.5 pre-mRNA is elevated in nrde-2 and nrde-4

mutants. RNA from WT and nrde mutants was isolated from

embryos and converted to cDNA. Primers that span exon-intron

junctions were used to quantify e01g4.5 pre-mRNA using qRT-

PCR. Data was normalized to eft-3 pre-mRNA. WT was defined

as 1 (n = 3, +/2 s.d.). Experiment was done in a background

containing the NRDE-3::FLAG (ggIS1) transgene.

(TIF)

Figure S8 Increased transcription of e01g4.5 in eri-1 and nrde-2/

-4 animals. eri-1 and nrde-2/-4 are required for transcriptional

silencing of e01g4.5. Data are represented as a ratio of

transcription in mutant/WT. Two different primer pairs in the

e01g4.5 gene were used to quantify transcription. (n = 2–3, +/

2s.d.).

(TIF)

Figure S9 A subset of nrde mutants have reduced fecundity. nrde-

1/-2/-4 mutants have reduced brood sizes. Brood sizes were

counted from individual animals grown at 25uC. (error bars +/2

s.d.).

(TIF)

Table S1 A modified genetic screen identifies novel nuclear

RNAi factors. We have performed two genetic screens for Nrde

factors. The table represents the genes (and number of mutant

alleles) identified in each of the two screens. In screen 2, we

mutagenized eri-1(+) animals expressing additional copies of nrde-3

in the form of a rescuing and integrated nrde-3::gfp transgene. As

expected, we failed to identify nrde-3 alleles in screen 2.

(XLSX)
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