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A proteome map of the zebrafish (Danio rerio) lens reveals
similarities between zebrafish and mammalian crystallin
expression
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Purpose: To characterize the crystallin content of the zebrafish lens using two-dimensional gel electrophoresis (2-DE).
These data will facilitate future investigations of vertebrate lens development, function, and disease.

Methods: Adult zebrafish lens proteins were separated by 2-DE, and the resulting spots were identified by matrix-assisted
laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). The relative proportion of each crystallin
was quantified by image analysis, and phosphospecific staining was used to identify phosphorylated a-crystallins. The
proportion of each crystallin in the soluble and insoluble fraction of the lens was also determined by resolving these lens
fractions separately by 2-DE.

Results: o-, B-, and y-crystallins comprised 7.8, 36.0, and 47.2% of the zebrafish lens, respectively. While the a-crystallin
content of the zebrafish lens is less than the amounts found in the human lens, the ratio of aA:aB crystallin is very similar.
The phosphorylation pattern of zebrafish aA-crystallins was also similar to that of humans. The most abundant y-crystallins
were the diverse yMs, comprising 30.5% of the lens. Intact zebrafish crystallins were generally more common in the
soluble fraction with truncated versions more common in the insoluble fraction.

Conclusions: While the total o- and y-crystallin content of the zebrafish lens differs from that of humans, similarities in
a-crystallin ratios and modifications and a link between crystallin truncation and insolubility suggest that the zebrafish is
a suitable model for the vertebrate lens. The proteome map provided here will be of value to future studies of lens
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development, function, and disease.

Fishes have become a valuable tool for the comparative
study of vertebrate eye diseases [1]. In particular, the zebrafish
has been used to investigate eye development [2-7], glaucoma
[8,9], retinal degeneration and regeneration [10,11], and
cataract [12]. This species’ short generation time and nearly
completed genome facilitate its use as a model vertebrate.
Furthermore, the genes for a large number of lens crystallins,
the major structural and protective proteins of the lens, have
been cloned from zebrafish [13-16]. While several studies
have examined the expression of zebrafish crystallins at the
mRNA level [3,12,14-16], there are few data on the relative
proportions or posttranslational modifications of the proteins
themselves. Previous attempts to calculate the relative
proportions of each crystallin family have been hampered by
the inability to separate a- and B-crystallins by size exclusion
chromatography [14,17,18]. A proteomics approach using
two-dimensional electrophoresis (2-DE) such as the one used
in this study will increase the utility of zebrafish as a model
for eye disease and provide valuable data for future
investigations of lens development.
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2-DE has been used successfully to describe the crystallin
content and modifications that occur in the mammalian [19,
20] and chicken [21] lens. Protein truncation and other
modifications such as phosphorylation, deamidation, and
methylation alter the protective chaperone activity of a-
crystallins and the solubility of B- and y-crystallins [20,
22-24]. These posttranslational modifications accumulate
with age and increase the likelihood of cataract. We
previously performed a 2-DE analysis of zebrafish lens a-
crystallins [16], but very few other studies have used the
technique on zebrafish tissues [25,26]. A more detailed
proteome map of the zebrafish lens will facilitate the study of
age and stress-related changes to crystallins and their impact
on lens function. Comparison of these data with those from
other vertebrate species can provide additional insight into
lens function and disease.

In this study, we used 2-DE and mass spectrometry (MS)
to detail the expression of crystallins in the zebrafish lens.
Although we found that a-crystallin levels are lower than in
the mammalian lens, the ratio between aA- and aB-crystallins
is very similar, suggesting that these proteins play similar
roles in both groups. We also show that similar to the
mammalian lens, zebrafish aA-crystallin contains many
phosphorylated isoforms and that truncations of zebrafish
crystallins are correlated with protein insolubility. These data
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Figure 1. Two-dimensional
electrophoresis (2-DE) profiles of total
adult zebrafish lens protein. Separation
was performed on 11 cm IPG strips with
pH gradients of 5-8 (A), 3—10 nonlinear
(B) and 7-10 (C). Gels were Coomassie
stained and spots were identified by
MALDI-TOF MS. Mass standards are
indicated on the left in kiloDaltons.
Spots labeled with a “?” contain two or
more crystallins from the indicated
family. Accession numbers for each
crystallin are shown in Table 1. The
accession numbers for four identified
non-crystallins are as follows: actin
(AAO38846), BTB (POZ) domain
containing protein 2 (NP_001038557),
proliferation associated nuclear panel 1
(Panel; NP 991153), and galectin-
related inter-fiber protein (XP_684452).
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support the use of the zebrafish as a model for studying the
development, function, and aging of the vertebrate lens.

METHODS

Separation and visualization of lens proteins: Six to eight
lenses were collected from adult wild type zebrafish and
homogenized in 600 ul of sample buffer (8§ M urea, 2%
CHAPS, 50 mM DTT, 0.2% Bio-Lyte 3/10 ampholyte, and
0.001% bromophenol blue; Bio-Rad, Hercules, CA) to
solubilize total lens protein. Fish were obtained from
aquarium stores, and the exact ages were not known. All fish
were euthanized using methods authorized by Ashland
University’s Institutional Animal Care and Use Committee.
Lens homogenates were centrifuged at 15,000x g for 20 min
to remove any unsolubilized material, and the protein in the
supernatant was quantified using the RC DC protein assay kit
(Bio-Rad). One hundred and fifty micrograms of lens
homogenate were focused on immobilized pH gradient (IPG)
strips (11 cm; pH 3—10 nonlinear, pH 5-8, and pH 4-7; Bio-
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Rad). Second dimension separation was performed on 12%
SDS-PAGE gels with subsequent Coomassie staining. Gels
were digitally imaged with a Kodak 440 CF Imagestation
(Kodak, Rochester, NY), and the proportion of total protein
found in each spot on the pH 3-10 nonlinear gels was
quantified by densitometry using Kodak 1D Image Analysis
software (Kodak). The proportion of each crystallin was
calculated as the mean of three separate lens samples. Some
gels were stained with Pro-Q Diamond phosphoprotein gel
stain (Invitrogen, Carlsbad, CA) to identify phosphorylated
proteins. These gels were subsequently stained with SYPRO
Ruby protein gel stain to visualize all protein spots
(Invitrogen).

Identification of two-dimensional gel electrophoresis spots by
matrix-assisted laser desorption/ionization time of flight mass
spectrometry: Gel spots were selected for peptide mass
fingerprinting. Coomassie stained spots were excised from
SDS-PAGE gels, destained, and digested overnight with
proteomics grade trypsin (Sigma, St. Louis, MO). Digest
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solutions were acidified with 0.1% trifluoroacetic acid and
mixed with the matrix alpha-cyano-4-hydroxycinnamic acid.
Samples were analyzed by matrix-assisted laser desorption/
ionization time of flight (MALDI-TOF) mass spectrometry
using a Bruker MicroFLEX instrument (Bruker Daltonics,
Billerica, MA). Externally calibrated, positive-ion mass
spectra were obtained in reflection mode. The resulting mass
spectra were compared to theoretical peptide mass maps using
ProteinProspector software and the NCBI non-redundant
protein database. Further confirmation of protein identity was
performed on selected samples by the analysis of post-source
decay fragments of tryptic peptide ions.

Two-dimensional gel electrophoresis analysis of soluble and
insoluble protein fractions: Zebrafish lenses from 12
individuals were homogenized with a Wheaton homogenizer
(Wheaton Science Products, Millville, NJ) in 800 ul of 20 mM
sodium phosphate buffer containing protease and phosphatase
inhibitors (Roche Molecular Biochemicals, Basel,
Switzerland). The resulting homogenate was centrifuged at
15,000x g for 15 min. The supernatant containing the soluble
protein fraction was removed, and the insoluble pellet was
resuspended in 800 pl of 2-DE sample buffer (see above; Bio-
Rad). The protein content of the soluble and insoluble
fractions was quantified using a Bradford assay and RC DC
protein assay, respectively (Bio-Rad). Both samples were
diluted with 2-DE sample buffer to apply 150 ugto 11-cm IPG
strips (pH 5-8) before isoelectric focusing.

RESULTS
Our 2-DE analysis resolved over 80 protein spots. Sixty of
these spots were identified by MALDI-TOF MS as one of 28
different crystallins, and another four were identified as non-
crystallins (Figure 1). The large number of crystallin spots
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Figure 2. Proportion of a-, B-, and y-crystallins in the zebrafish lens
determined by densitometry of Coomassie stained two-dimensional
electrophoresis gels. Each crystallin family is further subdivided as
labeled. Error bars show standard deviation for three separate lens
samples. Abundance of protein spots that were identified only to
family or contained more than one member of each family are
indicated with question marks.
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reflects an abundance of posttranslational modifications.
Similar to data from a previous study [17], we found that the
y-crystallins were the most abundant crystallin family in the
fish lens (Figure 2). However, our data are the first to show
that of the y-crystallins, the aquatic specific yYMs were the most
abundant (Figure 2). Furthermore, the 7.8% total a-crystallin
shown here in the zebrafish lens is lower than previously
reported values for fish lenses [27,28]. Details for each
crystallin family are given in the following sections.

Quantitation and modification of a-crystallins: Few
studies have calculated the proportion of each major crystallin
family in the fish lens. Furthermore, since it was recently
shown that the zebrafish lens contains a second aB-crystallin
[16], no study has determined the relative amounts of all three
zebrafish a-crystallins. We found a-crystallins in 13 different
2-DE gel spots, suggesting several posttranslational
modifications (Figure 1A). Total a-crystallin content in the
lens was 7.8% with a 6.4:3.6:1 ratio of aA:aBa:aBb (Figure
2,Table 1). This value is very similar to the 3:2 ratio of
aA:aB crystallin reported for the adult human lens [29].

Phosphorylation has been shown to modify the function
of a-crystallins [30-32]. We used a phosphoprotein-specific
stain to identify phosphorylated a-crystallin spots (Figure 3).
This stain identified four phosphorylated aA-crystallin spots
of similar mass. These spots comprised a relatively small
proportion of the aA-crystallin on the 2-DE gels, indicating
that only a small proportion of aA-crystallin is phosphorylated
in the adult zebrafish lens. No phosphorylated aBa- or aBb-
crystallin was found.

Quantitation  of  P/y-crystallins: ~ Zebrafish  and
mammalian B-crystallins are similar in their diversity [13].
Both taxa have an acidic and basic group whose members are
well conserved, although the zebrafish genome lacks an
ortholog to mammalian SA3-crystallin. We identified five
BA-crystallins and three BB-crystallins comprising 36% of
zebrafish lens total protein (Figure 1A,Table 1). Many of the
B-crystallins were extensively modified. BB1 and B2, for
example, were identified as 11 and 8 spots, respectively. Many
of the B-crystallin modifications differ in mass, suggesting
that they are truncations. Other B-crystallin modifications are
of similar mass but have different isoelectric points, which
may be due to phosphorylation or other modifications. The
exact nature of these modifications still needs to be examined.
BB3 is the largest crystallin in the zebrafish lens due to the
COOH-terminal proline-asparagine (PNPN) and proline-
alanine (PAPA) repeats that are similar to the repeating PAPA
sequence found in mammalian and chicken B1-crystallin
[33]. The zebrafish fB-crystallin genes are not found on the
same chromosome as are the mammalian orthologs (Table 1).

Unlike the B crystallins, zebrafish and mammalian y-
crystallins have undergone greater evolutionary divergence
[13]. Most noticeably, the yA-F group does not occur in the
zebrafish but is replaced by at least 11 yM proteins (Table 1).
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TABLE 1. ZEBRAFISH LENS CRYSTALLINS IDENTIFIED BY MALDI-TOF MS FROM TWO-DIMENSIONAL ELECTROPHORESIS GELS.

Percent Number of Protein accession Zebrafish Human
Crystallin abundance spots number chromosome chromosome
oA 4.57+0.22 8 AAHS83177 1 21q22.3
aBa 2.56+0.25 4 AAD49096 15 11q22.3-q23.1
aBb 0.72+0.04 1 NP_001002670 5 h
BA1 8.02+0.82* 6 NP_001002410 15 17q11.2
BA1-2 nq 3 AAY18967 14 h
BA2 2.63+0.18 2 AAY18965 ? 2q34-q36
BA2-2 2.79+0.64* 3 AAZ66113 ? h
pA4 nq 2 AAY18966 ? 22ql1.2-ql13.1
BBI 7.58+1.20%* 11 AAH76186 10 22ql12.1
pB2 4.86+0.60* 9 AAY18969 8 22ql1.23
pB3 3.21+1.44 6 AAY18970 5 22ql1.23
YM1 nq 11 NP_001007786 2 na
YM2a nq 4 NP_001018131 2 na
YM2b nq 10 NP_001018619 2 na
YM2c nq 9 NP_001007784 2 na
yM2d1 nq 1 AAH95033 9 na
yM2d2 nq 1 NP_001038331 ? na
YM3 nq 8 NP_001007787 8 na
yM4 nq 3 NP_001007792 21 na
YM6 nq 1 NP_001018630 2 na
YM7 4.68+0.31 5 NP_001018631 2 na
YMx 1.14+0.33* 2 NP_001013280 12 na
yYN1 2.23+0.27 2 NP_001007785 2 7q36.1
YN2 1.75+0.48 3 NP_001003428 24 h
vS1 2.16+0.55%* 4 NP_001013294 22 3q25-qter
vS2 5.09+1.21 4 XP_696410 9 h
vS3 1.22+0.15% 7 AAH93207 9 h
vS4 1.26+0.30* 19 NP_001013293 9 h

Percent abundance of each protein was calculated by densitometry of three Coomassie stained gels. Error is standard deviation
(n=3). Percent abundance for some proteins was not quantifiable (nq) because they only occurred in mixed spots with other
proteins. Asterisks indicate crystallins that were found in both individual spots and mixed spots. Therefore, these percent
abundances are underestimates of the true protein abundance. The number of spots containing each crystallin is also indicated.
The presence of more than one spot per crystallin is due to truncations or other modifications. Protein accession numbers are
for GenBank. Chromosomal location for the corresponding zebrafish and human crystallin genes were identified using zfin and
GenBank, respectively. A “?” indicates an unknown chromosomal location; “na” indicates the lack of a human homolog for a
specific zebrafish crystallin; and “h” indicates that only one human homolog occurs for multiple paralogous zebrafish genes.

Zebrafish also have four yS proteins instead of the one found
in mammals. We identified protein resulting from all the y-
crystallin genes described by Wistow et al. [13] except YMS5
and Byx (Figure 1B,C;Table 1), totaling 47.2% of total protein
(Figure 2). In addition, we identified yM2D1- and yM2D2-
crystallins. The yM-crystallins were the most abundant family
in the zebrafish lens (30.5%; Figure 2). These were also the
most basic y-crystallins and the most difficult to resolve
similar to the YA-F crystallins in mammals [20]. Two large
unresolved yM-crystallin areas appeared when focused on the
pH 3-10 nonlinear IPG strips (Figure 1B). Improved
resolution on pH 7-10 strips showed that these areas also
contained minor amounts of yS3-crystallin (Figure 1C).
Therefore, our calculations of yM-crystallin content using the
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pH 3—10 nonlinear strips may slightly overestimate the total
yM-crystallin content of the zebrafish lens.

Zebrafish crystallin  truncation is correlated with
insolubility: The accumulation of protein modifications with
age can decrease the solubility of crystallins and contribute to
cataracts [20,24]. To determine whether the zebrafish lens will
make a good model for studying the impact of crystallin
insolubility, we separately quantified the proportion of
zebrafish crystallins in the soluble and insoluble fractions of
the lens. We found that putatively truncated proteins were
more abundant in the insoluble fraction. For example, the only
a-crystallin spots that were found at equal or greater
abundance in the insoluble fraction were lower mass aA- and
aBa-crystallins (Figure 4, white arrows). These spots were not
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phosphorylated, further suggesting that their insolubility is
linked to truncation. All other aA-crystallin spots are much
more abundant in the soluble fraction. The same pattern is
found in BB1- and BB3-crystallins. Lower mass spots of these
two crystallins are also found preferentially in the insoluble
fraction (Figure 4). Unlike the intact a-and B-crystallins, the
two yN-crystallins were not found preferentially in the soluble
fraction. yN1-crystallin occurred in both fractions in roughly
equal amounts while yN2-crystallin occurred primarily in the
insoluble fraction (Figure 4).

DISCUSSION

This is the first study to quantify the proportions of individual
crystallins in a fish lens and investigate their posttranslational
modifications. While there are some significant differences
between the crystallin content of the zebrafish and
mammalian lens, most notably the lower amounts of a-
crystallin and the higher amounts and greater diversity of y-
crystallins, there are also some significant similarities. In
particular, similarities in a-crystallin ratios and modifications
as well as the connection between crystallin truncation and
insolubility support the zebrafish as a useful model for lens
function and disease. This proteome map will also be of value
to future studies of lens development.

Our calculation of a-crystallin content is the first accurate

measurement for the fish lens. The 2-DE approach used here
resolves a previously noted difficulty in separating fish a-and

A

b

i

Figure 3. Phosphoprotein staining of two-dimensional
electrophoresis gels (pH 5-8) indicates phosphorylated aoA-
crystallins. Numbers identify the equivalent aA-crystallin spots on
gels stained with the total protein stain (A) and the phosphoprotein-
specific stain (B). Labels and arrows indicate a-crystallin spots that
were not detected by the phosphoprotein stain.
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B-crystallins by size exclusion chromatography, which made
it difficult to quantify their expression [14,17,18]. Two
previous studies found a-crystallin proportions of fish lens to
be 12% and 41.6% for two different species, both higher than
the 7.8% reported here for the zebrafish [27,28]. It is possible
that a-crystallin values do differ greatly between fish species.
Future studies will need to determine if the lower proportion
in the zebrafish is typical among fish species. The low
proportion of a-crystallin in the rat lens (20%) compared to
other mammals has been hypothesized to be due to this
species’ shorter life span and subsequent reduced need for
protection against age-induced protein denaturation [19]. The
zebrafish has a similar lifespan of about three years.
Examination of longer-lived fish species could test a possible
link between a-crystallin content and lifespan. An alternative
hypothesis is that the small percentage of a-crystallin in the
zebrafish and rodent lenses is a reflection of their high total
protein content [29]. Rodents have rigid, dense lenses that may
require an increased proportion of y-crystallin and reduced a-
crystallin levels. If a-crystallin content reflects total protein
concentrations, long-lived fishes should have low a-crystallin
proportions similar to the zebrafish.

A
Soluble

Figure 4. Comparison of soluble and insoluble protein from adult
zebrafish lens. Both soluble (A) and insoluble (B) fractions were
focused on pH 5-8 IPG strips before SDS-PAGE. Labels indicate
examples of spots that are more abundant in one specific protein
fraction (o-, BB1-, BB3-, and yN2-crystallin) or are equal in
abundance in both fractions (yN1-crystallin). The white arrows on
gel B show two a-crystallins that are preferentially found in the
insoluble fraction. Many of the preferentially insoluble spots appear
to be truncations.
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The large amount of y-crystallin (47.2%) found in the
zebrafish lens is similar to amounts measured in other fish
species from evolutionarily diverse groups and appears to be
a general feature of the fish lens [17,18]. It has been suggested
that an abundance of small, polydisperse y-crystallins allows
tighter protein packing to produce the dense lenses needed for
underwater vision [13,17,34]. Therefore, the expansion of the
yYM-crystallin family in fishes may be an adaptation for
underwater vision. Our finding that yM-crystallins are the
most abundant of the y-crystallins in the zebrafish lens
supports this hypothesis. Both the diversity and high
concentration of yM-crystallins suggest that they are
important for producing an aquatic lens with a high refractive
index. In a similar way, the dense rodent lens expresses all six
mammalian YA-F proteins while the softer, less dense human
lens only expresses two [29] and the soft avian lens expresses
none [35]. Kiss et al. [36] argue that the large number of yM-
crystallins also facilitated the evolution of cold tolerance in
the lens of the Antarctic toothfish, Dissostichus mawsoni.

Recent efforts to complete the annotation of the zebrafish
genome allow the comparison of crystallin gene chromosomal
locations and linkages with other vertebrate taxa. Unlike in
mammals and birds, the zebrafish fA4-crystallin gene and the
three fB-crystallin genes are not closely linked on the same
chromosome (Table 1). The linkage of these genes in
mammals and birds may be due to an original clustering of the
entire P-crystallin family on one chromosome [37] as is
currently seen in the mammalian yA-F-crystallins and most of
the zebrafish yM-crystallins (Table 1). The dispersal of the
zebrafish B-crystallins to separate chromosomes may simply
reflect the evolutionary distance from the last common
ancestor of teleost fishes, birds, and mammals. The possibility
that chromosomal linkage between chicken fA4- and pBI-
crystallin results in a mechanistic linkage in their expression
[37] could mean that the expression of these genes is
controlled differently in the zebrafish than in other vertebrate
taxa.

Our study agrees with that of Vihtelic et al. [38], which
used cDNA transcript abundance to infer that B- and y-
crystallins were the most highly expressed proteins in the
zebrafish lens. However, our data also differ from this study
in several ways. First, the three most abundant lens cDNA
transcripts from the Vihtelic et al. [38] study were the yS1-,
pB3-, and pB2-crystallins. The three most abundant
crystallins in our 2-DE gels were BAl-, BB1-, and yS2-
crystallin. However, since some of the 2-DE spots in our study
contained several proteins, we may be underestimating the
total abundance of some crystallins (Table 1). Second, this
previous study found a greater abundance of transcripts for
each of the two aB-crystallins than for aA-crystallin while our
data indicate that aA-crystallin is the most abundant a-
crystallin. And third, Vihtelic et al. [38] noted a large number
of transcripts for cystatin B and suggested the possibility that
this protein has been recruited as a taxon-specific crystallin in
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the zebrafish lens. We did not identify this protein in our 2-
DE gels, although we did identify four other highly expressed
non-crystallins (Figure 1), three of which were identified as
cDNA transcripts by Vihtelic et al. [38] (actin, BTB domain
containing protein 2, and galectin-related inter-fiber protein).

Several a-crystallin characteristics appear to be
conserved between the zebrafish and mammalian lens. We
previously showed that zebrafish aA-crystallin is a stronger
chaperone and has greater thermal stability than oBa-
crystallin, consistent with the pattern seen in mammals [39].
In this study, we show that even though the zebrafish lens
expresses a third a-crystallin (aBb-crystallin) [16], the ratio
of aA-crystallin to the combined aB-crystallins is very close
to that of the human lens. These combined data support the
conclusion that aA- and aB-crystallin play similar roles in the
zebrafish and mammalian lens. The higher abundance and
greater thermal stability of aA-crystallin compared to aB-
crystallin in both the zebrafish and mammals reflect its similar
role in preventing protein aggregation over the life of the lens.
Furthermore, zebrafish and mammalian aA-crystallin share a
similar phosphorylation pattern, although the exact nature of
zebrafish phosphorylation still needs to be determined.

Determining the function of oB-crystallin in the
mammalian lens has been problematic because it is also
expressed in numerous non-lenticular tissues. Therefore, any
functional analysis of mammalian aB-crystallin might not be
relevant to the lens but may instead reflect function in another
tissue. The presence of two aB-crystallins in the zebrafish,
one lens specific (aBa-crystallin) and one ubiquitous (aBb-
crystallin), provides an excellent model for discriminating
between lenticular and extra lenticular functions of aB-
crystallin [16]. Gene duplications are common in zebrafish
due to a genome-wide duplication event early in teleost fish
evolution [40]. In many cases, the functions of a single
mammalian protein become divided between the two
zebrafish copies [41-43]. The higher expression of the lens
specific aBa-crystallin compared to the ubiquitous aBb-
crystallin (2.56% and 0.72%, respectively) suggests that aBa-
crystallin plays a more prominent role in the zebrafish lens.
The very low chaperone-like activity of zebrafish aBa-
crystallin [39] may indicate that protective function is not a
primary role for aB-crystallins in the zebrafish lens. The lower
expression of the ubiquitous aBb-crystallin, which is a strong
chaperone [16], further suggests that the oB-crystallin
protective function is of greater importance outside of the lens.
If the function of mammalian aB-crystallin had been
subdivided between the two zebrafish proteins, our data
support the hypothesis that chaperone activity is not a
prominent role of aB-crystallin in the mammalian lens.

Crystallin truncation occurs with aging in the mammalian
lens and contributes to cataract [44-46]. The link between
insolubility and truncation in several zebrafish crystallins
suggests that this species may make a good model for studying
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the effects of crystallin aging on lens function. It is possible
that the loss of solubility seen in our data are not directly due
to truncation but instead to other modifications such as
deamidation or methylation [24]. Truncation of some [-
crystallins, for example, may be an adaptive response by the
lens to limit the increasing insolubility caused by other
modifications [47]. The preferential expression of zebrafish
yN-crystallins in the insoluble fraction may be due to
membrane interactions as has been shown for mammalian
vE- and yF-crystallin [48]. These data could also result from
yN-crystallin interaction with the cytoskeleton. Alternatively,
reduced yN-crystallin solubility could be a feature of the
protein itself as purified recombinant mouse yN-crystallin has
reduced solubility and lower conformational stability
compared to other vertebrate y-crystallins [13]. Future studies
will need to detail the B- and y-crystallin modifications that
lead to insolubility.

This study identifies several similarities between
zebrafish and mammalian crystallins that support the use of
the zebrafish as a model for investigations of vertebrate lens
development, function, and disease. Not only can this species
be used similarly to traditional models like rodents to study
the adult lens, but the zebrafish also provides the added benefit
of having an externally laid egg and transparent embryo,
allowing in vivo observation of lens and eye development.
Furthermore, a relatively low expense and ease of
maintenance adds to the utility of the zebrafish. Future studies
will need to further detail the posttranslational modification
of zebrafish crystallins and examine developmental changes
in zebrafish lens protein expression. The proteome map
provided here contributes a solid foundation for these
investigations.
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