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Abstract

Genome duplication event in edible dicots under the orders Rosid and Asterid, common dur-

ing the oligocene period, is missing for species under the order Caryophyllales. Despite this,

grain amaranths not only survived this period but display many desirable traits missing in

species under rosids and asterids. For example, grain amaranths display traits like C4 pho-

tosynthesis, high-lysine seeds, high-yield, drought resistance, tolerance to infection and

resilience to stress. It is, therefore, of interest to look for minor genome rearrangements with

potential functional implications that are unique to grain amaranths. Here, by deep sequenc-

ing and assembly of 16 transcriptomes (86.8 billion bases) we have interrogated differential

genome rearrangement unique to Amaranthus hypochondriacus with potential links to these

phenotypes. We have predicted 125,581 non-redundant transcripts including 44,529 protein

coding transcripts identified based on homology to known proteins and 13,529 predicted as

novel/amaranth specific coding transcripts. Of the protein coding de novo assembled tran-

scripts, we have identified 1810 chimeric transcripts. More than 30% and 19% of the gene

pairs within the chimeric transcripts are found within the same loci in the genomes of A.

hypochondriacus and Beta vulgaris respectively and are considered real positives. Interest-

ingly, one of the chimeric transcripts comprises two important genes, namely DHDPS1, a

key enzyme implicated in the biosynthesis of lysine, and alpha-glucosidase, an enzyme

involved in sucrose catabolism, in close proximity to each other separated by a distance of

612 bases in the genome of A. hypochondriacus in a convergent configuration. We have

experimentally validated that transcripts of these two genes are also overlapping in the 3’

UTR with their expression negatively correlated from bud to mature seed, suggesting a

potential link between the high seed lysine trait and unique genome organization.

Introduction

Amaranthus hypochondriacus (Linn.) is a diploid plant species (2n = 32) belonging to the dicot

family Amaranthaceae classified under the order Caryophyllales. A. hypochondriacus (Ah) and
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the other grain amaranths (A. caudatus and A. cruentus) are known to possess many desirable

traits including unique nutritional profile, high seed lysine, high seed yield, drought resistance,

pest tolerance and high biomass [1,2], which are rare in other edible dicots. Grain amaranths

are also of great interest as they undergo C4 photosynthesis for carbon fixation also rare

among edible dicots. Also grain amaranths use betalains, a class of accessory pigments in

plants unique to species under Caryophyllales, for coloration possessing high antioxidant

properties [3]. All these agronomically desirable traits displayed by grain amaranth is stimulat-

ing further research to link these phenotypes to the respective genotypes.

The genomes of majority of the plants of economic interest has now been sequenced. This

has already revealed that genome duplication has been used by plant species to survive cata-

strophic environmental changes during the cretaceous and oligocene periods [4]. More

recently, sequencing the genomes of grain amaranths and Beta vulgaris (Bv), the first few spe-

cies to be sequenced under Caryophyllales, reveal that species under Caryophyllales may not

have gone through genome duplication during the oligocene period common among other

edible dicots [5,6]. It is of interest to know how the species under Caryophyllales survived this

period and still display many desirable traits missing from other edible dicots.

Small-scale genome reorganization (overlapping genes) forms the second level of gene

regulation in plants [7] and is responsible for diversity in traits displayed by the species.

Overlapping genes in prokaryotic genomes have been well known. They are seen commonly

in viruses, mitochondria, and bacteria, and are suggested to compose a compact genome

organization to facilitate gene regulation efficiency like operons [8,9]. Recently, reports from

eukaryotic genomes have emerged. Overlapping genes resulting in chimeric transcripts, espe-

cially readthrough transcripts are now well documented for animals, especially in human

diseases such as cancer [10–12]. However, in plants, few reports have started emerging on

transcription induced chimera (TICs) and natural antisense transcripts (NATs). Of these

studies, majority are from Arabidopsis thaliana, which is a model organism for plant studies.

Almost 11% of A. thaliana genes are reported to be overlapping (in 5’ or 3’ ends) with their

NATs that may provide a substrate for RNAi activity through the formation of nat-siRNAs.

Another 28% of sense-antisense overlapping gene pairs are regulated in tissue-specific man-

ner [13,14].

Clusters of genes forming an operon-like regulon are also identified in plants. For example,

Bx genes TaBx-1-5, implicated in the synthesis of secondary metabolite Benzoxazinones, has

been reported to form a single cluster in Zea mays genome [7]. These genes are found split

into two groups that are not in the same chromosomes in the genomes of Rye, barley and

wheat, perhaps from divergent genome reorganization. Similarly, genes implicated in avenacin

biosynthetic pathways are also found clustered in Avena sativa. In this case, it is believed that

one of the homologous gene landed within a non-homologous gene cluster belonging to this

pathway by way of gene duplication [15].

More recently, because of NGS technologies, many more plant genomes and transcrip-

tomes have been sequenced and reported providing the much needed resource to study

differential genome organization. While most transcriptome efforts report chimeric tran-

scripts from assembly artefacts, these reports have not yet been utilized to study differential

genome reorganization with potential functional consequences. For example, a report on

transcriptome assembly of Ricinus communis elaborates more on the assembly methods that

result in least number of false chimeras [16]. Here, by deep sequencing of developmental

transcriptomes of Ah across different tissues we have identified and characterized in Ah and

reveal genome organization that is unique to Caryophyllales with potential functional

consequences.
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Results and discussion

From the 84.8 billion bases of high quality transcriptome sequencing, we predict 1,25,581 non-

redundant transcripts (Table 1). The 1,25,581 predicted transcripts correspond to 88,999,253

bases which is equivalent to 19% of the 466 Mb genome getting transcribed. Of these, 58058

are protein coding transcripts based on both orthology (44,529) to all known proteins and

gene prediction algorithms (13,529). The rest, 67,523 are classified as non-coding transcripts.

The 58,058 predicted coding transcripts correspond to 50,229,140 bases which is equivalent to

10.76% of the genome. The completeness of the proteome has been validated by aligning pre-

dicted proteome to the 248 core eukaryotic orthologous genes (CEGMA KOGs) with a cover-

age of>70%.

A total of 1810 chimeric transcripts were identified in the transcript assembly. From these,

we removed large number of false positives stemming from transcript assembly tools and auto-

mation of the annotation pipeline (shown in Fig 1) owing to incomplete annotation or varia-

tion in annotation of same proteins across different databases and species. Among the 1810

chimeric transcripts (S1 Dataset), there are 581 that are likely to be real positives as the gene

pairs forming the chimera are found within the same loci in plant genomes compared here (S2

Dataset). Of the 581, 406 (70%) are found in the same loci on Ah genome, 351 (60%) in Bv

genome (Caryophyllales), 139 (24%) in Sl genome (Asterid), 131 (20%) in Gm, 83 (14%) in At

(Rosid), and 44 (7%) in Zm (monocot) as shown in Fig 2 and Table 2. As expected, 32% (581)

of the 1810 initial chimeric transcripts turned out to be real positives and are validated in

dicots. The loci of the genes comprising one chimera is found to be conserved across the plant

kingdom, which comprises of genes Phosphoglycerate mutase family protein (AT1G22170)

and Sec14p-like phosphatidylinositol transfer family protein (AT1G22180). Gene pairs of 8

other chimeric transcripts have shared loci in all dicot genomes compared here with 140 chi-

meric transcripts specific to Caryophyllales and 115 specific to amaranth. A Gene Ontology

enrichment analyses of these chimeric genes revealed that apart from being chloroplastic or

mitochondrial in origin, many genes are nuclear and are involved in integral biological pro-

cesses like transport, developmental processes, stress-response and signal transduction. For

example, as shown in S1 Fig, 6.1% are enriched for developmental processes, 5.6% for response

to abiotic and biotic stimulus, 5.6% for protein metabolism and 5.2% for transport. Also, Car-

yophyllales-specific genes are from diverse cellular compartments including 13.7% chloroplas-

tic, 8.2% nuclear, 7% plastid, 6% mitochondrial, and 5.5% in plasma membrane.

It is not surprising that many chimeric transcripts are coming from chloroplasts and mito-

chondria which tend to form operon-like structures, as has been reported in other plant spe-

cies [17]. Among the dicot-specific chimera of nuclear origin, we have identified a chimeric

transcript comprising 3 genes for SAUR-like auxin-responsive proteins. These genes are quite

homologous at the protein level and are present in different configurations in different plant

genomes compared here (S2 Fig). In Ah genome, the same gene locus is the best hit for all the

three SAUR genes on scaffolds 1147 and 2872, but on scaffold 401, only the first two genes hit

Table 1. Assembly metrics of the merged transcriptome.

Total number of transcripts 1,25,581

Longest transcript (bases) 16,560

Average transcript length (bases) 709

N50 (bases) 834

Total assembly size (bases) 88,999,254

GC % 38.61

https://doi.org/10.1371/journal.pone.0180528.t001
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to identical coordinates and the third gene is in divergent configuration with them at a dis-

tance of 3.7 Kb. In Bv genome, the second and third genes hit to the identical coordinates on

the genome and are in divergent configuration with the first gene at a distance of 11.3 Kb. In

At, genes 2 (AT1G29490) and 1 (AT1G29510) are in a co-oriented configuration with an inter-

val of 2.1 Kb. In Gm, genes 2 and 1 hit to identical coordinates on the genome and are in co-

oriented configuration with gene 3 at a distance of 2.1 Kb. In Sl, the chimera is validated on

two chromosomes. While chromosome 4 has genes 1 and 3 in co-orientation at a distance of

Fig 1. Flow chart showing the approach for generating non-redundant set of transcripts from multiple

assemblies.

https://doi.org/10.1371/journal.pone.0180528.g001
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2.1 Kb and genes 3 and 2 in convergence at a distance of 10.3 Kb, chromosome 11 has genes 2

and 3 hitting to identical coordinates and being co-oriented to gene 1 at a distance of 6.3 Kb.

Interestingly, these three genes are also found to be tightly co-expressed in Ah with the expres-

sion being suppressed in the root and spike up in the bud stage. (S3, S4 & S5 Datasets, Tran-

script 1245). In Gm, SAUR genes have been reported [18] to form a cluster comprising five

homologous genes, spaced at intervals of about 1.25 kilobases and transcribed in alternate

directions. In this chimeric transcript, we identify two of the five genes from the cluster in Gm.

Table 2 shows the orientations of the genes within the 581 chimeric transcripts validated in

several genomes compared here. For example, the genes within the 406 chimeric transcripts

that share the same gene loci on the Ah genome, are classified into 402 paired and 4 multi-

gene chimera. Among the 402 chimeric pairs, 2 pairs (‘duplicated’) are found to be present in

more than one copy on the Ah genome, thus adding up to 404 chimeric pairs (with 400 unique

pairs and two copies of two pairs). Of these 404 chimeric pairs, 374 have their gene mates sepa-

rated on the genome by a distance up to 50 Kb and are referred to as ‘non-overlapping’ pairs.

In other 30 pairs, the coordinates of one gene partially overlaps in the coding region with the

coordinates of the other gene. Such pairs are referred to as ‘overlapping’ throughout this

Fig 2. Venn diagram showing the number of chimeric transcripts validated in plant genomes (AhP:

Amaranthus hypochondriacus; Bv: Beta vulgaris; Sl: Solanum hypochondriacus; Gm: Glycine max;

At: Arabidopsis thaliana; Zm: Zea mays).

https://doi.org/10.1371/journal.pone.0180528.g002
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manuscript. Those pairs where the coding part of one gene completely falls within the coordi-

nates of the other gene, these are termed as ‘contained’ throughout this manuscript, which are

very few in number.

The chimeric pairs are further classified based on their orientations in the genome as con-

vergent (with 3’ sharing), divergent (with 5’ sharing) and co-oriented (with same orientation

in either 3’-5’ or 5’3’ direction). It is observed that the gene pairs where one gene is contained

in the coordinates of the other, are always co-oriented. Also, the number of convergent gene

pairs predominates while the divergent pairs are few. For example, 28 out of 30 overlapping

pairs and 302 of 374 non-overlapping pairs are convergent in configuration while only 2 of the

30 and 6 of the 374 are divergent. While there are no co-oriented configurations under the

overlapping category, there are 66 in the non-overlapping category. This is also consistent with

the fact that overlapping genes are more likely to be coded on the opposite strands of the

genome.

Fig 3(a) lists the number of chimeric genes with the expression of their individual genes

coregulated or anti-regulated. Among the 13 co-oriented Caryophyllales-specific chimeric

gene pairs, 4 pairs are positively correlated (with r > = 0.6) in expression across the 16 condi-

tions sequenced (with 4 developmental stages across 4 tissues) and none are negatively corre-

lated. Out of the 117 convergent configurations under the Caryophyllales-specific chimeras,

the expression profiles of 21 pairs are positively correlated and 11 pairs are with negative corre-

lation (with r< = -0.6). The 3 chimeric pairs in divergent configuration show no correlation

in expression profile. These observations are consistent with those reported for A. thaliana. i.e.

co-oriented gene pairs are more tightly coregulated than sense-antisense gene pairs. Also, it

has been reported that adjacent/overlapping gene pairs in a genome are more likely to be

tightly co-regulated than unpaired genes [19].

Among the Caryophyllales-specific chimeric transcripts we find a gene pair that may have

functional consequences on the most important phenotype of Ah, such as high-lysine seeds.

One of the chimeric transcripts includes the gene for DHDPS1 and alpha-glucosidase. DHDPS

(EC 4.3.3.7) is one of the key enzymes regulating lysine synthesis while alpha-glucosidase (EC

Table 2. Count of chimeric transcripts validated across plant genomes.

Ah Bv At Gm Sl Zm Ah-specific Caryo-specific

# chimera 406 351 83 131 139 44 110 132

# multi-gene 4 2 0 1 12 10 0 1

# pairs 404 349 83 140 130 40 110 131

Unique 402 349 83 140 127 34 109 131

Duplicated 2 0 0 0 3 6 1 2

# overlapping 30 6 25 11 11 7 4 15

Convergent 28 5 25 11 10 2 4 13

Divergent 2 0 0 0 0 1 0 2

Co-oriented 0 1 0 0 1 4 0 0

# contained 0 1 1 5 0 5 0 0

Convergent 0 0 0 0 0 0 0 0

Divergent 0 0 0 0 0 0 0 0

Co-oriented 0 1 1 5 0 5 0 0

# non-overlapping 374 342 57 124 119 28 106 116

Convergent 302 276 29 94 67 3 78 102

Divergent 6 9 4 1 3 5 2 1

Co-oriented 66 57 24 29 49 20 26 13

https://doi.org/10.1371/journal.pone.0180528.t002
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3.2.1.20) is involved in starch and sucrose catabolism. These two genes are separated by a very

short distance in the Ah genome and found to be in a convergent configuration (Fig 4). From

an in-silico analysis, we observe linkage between DHDPS1 and alpha-glucosidase in Ah and

Bv where their coding sequences are only 612 bp and 11.3 Kbp apart, respectively. The expres-

sion profiles of DHDPS1 and alpha-glucosidase are shown in Fig 4(c). Alpha-glucosidase is

involved in the breakdown of D-sucrose while DHDPS1 is involved in the building up of L-

lysine and they are both negatively correlated with one being active while the other is sup-

pressed. Thus, the unique proximity of these two genes in both Ah and Bv (Caryophyllales-

specific gene pairs) is very interesting from the nutritional point of view. We validated the dis-

tance between the two genes, DHDPS1 and alpha glucosidase in both the cDNA and gDNA

from A. hypochondriacus using multiple primer pairs spanning the 612 bases separating the

two genes. Our result validates their proximity on the Ah genome and suggests that the

Fig 3. Caryophyllales-specific and amaranth-specific chimeras. Count of different types of chimeras (a),

length distribution of caryophyllales-specific (b) and amaranth-specific (c) chimeras, and expression profiles

of three positively correlated (d) and three negatively correlated (e) amaranth-specific chimeras.

https://doi.org/10.1371/journal.pone.0180528.g003

Identifying genomic rearrangements through RNA-Seq in Amaranthus hypochondriacus

PLOS ONE | https://doi.org/10.1371/journal.pone.0180528 August 7, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0180528.g003
https://doi.org/10.1371/journal.pone.0180528


transcripts of the two genes overlap in the 3’ regions, which explains the chimeric nature of the

transcripts from transcriptome assembly tools that ignore strand orientation.

DHDPS1 and alpha-glucosidase are neighbouring genes in opposite strands in Ah and Bv

whereas they are either far apart or on different chromosomes altogether in other dicots and

monocots compared here (Fig 5). In Ah these two genes are separated on the genome by 612

bases and in Bv it is separated by 11.3 kilobases. The distance between these two genes in Gm

is 46 million and at in At 5.5 million bases with two intervening genes from the same block of

colinear genes in Ah suggesting gene shuffling. In Sl and Zm one of the DHDPS isoenzyme is

found closer to one of the glucosidase genes in chromosomes 3 separated by 46 million bases

and chr9 separated by 39.5 million bases respectively. This suggests that the two genes may be

linked in Caryophyllales which may be a recent convergence evolution in Caryophyllales or

divergent evolution in other species triggered by genome duplication event missed by Caryo-

phyllales. The crowding of the 3’ UTR of two genes in the convergent configuration from

the opposite strands may suggest cooperative regulation during energy-exhausting seed

development.

The high-throughput and low cost of DNA sequencing has enabled us to interrogate the

genomes and transcriptomes of many organisms including even the non-agronomic or non-

model species. In non-agronomic crops, one does not have the luxury of having thousands of

variant plants with variant phenotypes for SNP-based genotyping. In order to explore the

genotype for the many desirable traits in Ah we have looked into the chimeric transcripts from

transcriptome assembly for clues to differential genome organization across species that can

shed light on the differential mechanisms. Since transcriptome sequencing is both essential

and cheaper to decipher the biology behind various phenotypes, we have used deep transcrip-

tome assembly to study differential genome organization that may have resulted in differential

phenotype. Using the chimeric transcripts from massive assembly of 84.8 billion bases of tran-

scriptome sequencing of 4 tissues across 4 developmental stages, we have identified 406 Caryo-

phyllales-specific functionally important gene pairs that are too close in the genome to be

functionally irrelevant. For one such gene pair involving DHDPS1, a critical gene is lysine bio-

synthetic pathway, and a-glucosidase separated in the genome by as small as 612 bases, we

have experimentally validated that the transcripts overlap in the 3’ UTR with potential role in

co-regulation and stabilization of RNA. We believe that this study is the first in utilizing chi-

meric transcripts from transcriptome assembly to study differential genome organization of

functionally critical genes that may relate to phenotypes.

Fig 4. DHDPS1-alpha glucosidase overlap in A. hypochondriacus. Schematic diagram showing the

convergent DHDPS1 and alpha-glucosidase pair with overlapping 3’ UTRs (top left), PCR validation of

DHDPS overlap from cDNA and gDNA showing the expected bands of 1.2 Kb for the chimeric product

containing the overlapping 3’ UTR region (bottom left) using the primers shown in S3 Fig, and expression

profiles of the two transcripts (right) across the 16 tissue and developmental stages sequenced.

https://doi.org/10.1371/journal.pone.0180528.g004
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Materials and methods

Sample collection

Seeds of Ah stored and maintained at IBAB as previously reported [6], were grown for four

generations in isolation in the institute premises on natural red soil of Karnataka. Tissues from

individuals from two batches of third generation plants and one batch of fourth generation

plants were used for transcriptome sequencing. Leaf, stem and root tissues were collected from

a pool of more than 10 individuals from the three batches separately at (i) 15 days, (ii) 20 days,

(iii) 25 days and (iv) 30 days of age, along with inflorescence including (v) buds, (vi) flowers,

(vii) young seeds and (viii) mature seeds for RNA extraction. The tissues, once excised, were

immediately cleaned with RNAse-free water, snap frozen in liquid nitrogen and further stored

at -80˚C until RNA extraction was done. The mature seeds were collected from the inflores-

cences which were sun-dried, threshed, cleaned and then stored at -80˚C. Thus, 48 tissue sam-

ples were collected and frozen.

Extraction of total RNA

Total RNA was extracted from the 48 tissues using the conventional Trizol extraction method

[20] as standardized in the laboratory. However, during the homogenization step itself, the

three stem and root samples (corresponding to cDNA libraries 6 and 7 in S1 Table) from 15

days old plants were each pooled together due to limitation in the amount of tissue available

unlike the other samples where pooling was done after RNA extraction.

Library preparation and quantification

One microgram of the total RNA extracted from the same type of tissue but from the three

different batches of the plants were pooled together to make 3μg of the starting material for

Fig 5. Microsynteny in Ah (Amaranthus hypochondriacus) and Bv (Beta vulgaris) in the region

containing DHDPS1 and alpha glucosidase as compared to the diffused arrangement of the genes in

At (Arabidopsis thaliana), Gm (Glycine max), Sl (Solanum lycopersicum) and Zm (Zea mays).

https://doi.org/10.1371/journal.pone.0180528.g005
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library preparation as measured by the NanoDrop Spectrophotometer. Thus, 14 pools of

RNA samples were made in addition to the 2 pools (pools 2 and 3 in S1 Table) that were

made by mixing equal amounts of the tissues during RNA extraction. Further, transcrip-

tome libraries were prepared using TruSeq RNA Sample Preparation Low Throughput (LT)

protocol (Illumina) as per the manufacturer’s guidelines and as reported previously [6]. The

quality and quantity of the libraries were estimated by Qubit fluorometry (Invitrogen), and

the size distribution was analysed on Bioanalyzer (Agilent) using high sensitivity DNA

chips.

Sequencing

The 16 barcoded cDNA libraries (S1 Table) were multiplexed using 4.5 pM of each and seeded

onto three lanes of the flow cell. Cluster generation was done on cBot (Illumina) and paired-

end sequencing on Hiseq 2500 (Illumina) to generate 100 bp long reads following the manu-

facturer’s recommendations.

Reads QC

The sequenced reads were demultiplexed and QCed using Casava 1.8.2 pipeline (Illumina), in-

house scripts and FastQC [21]. All the read pairs having at least 75% of the bases with Phred

quality 20 or more and at the most 15 Ns were considered to be of good quality and were used

for further analyses.

De novo assembly and quality control

Assembly using transcriptome de novo assemblers. A total of 20 transcriptomes (as

listed in S1 Table) were sequenced in-house and used for this study. Out of these, 16 were

sequenced afresh while 4 had been sequenced and assembled previously [6]. Multiple assem-

blies were run using Oases v0.2.8 [22], SOAPdenovo-Trans v1.03 [23], Trinity r20130216 and

Trinity 2.0.5 [24] using a combination of different read pools from the 20 transcriptomes (as

listed in S2 Table) and merged for annotation.

Merging de novo assemblies. The pooled transcriptome for downstream analyses was

achieved by merging all the assemblies together first using CD-HIT-EST [25] with -c 1.0

parameter followed by sequence cleaning using the EGassembler [26] pipeline with default

parameters, while disabling organelle masking process, and clustering again by CD-HIT-EST

with -c 0.99 to remove redundant transcripts that may differ slightly due to sequencing error

or mis-assembly. Thus, from a pool of 1.2 million transcripts, 0.7 million transcripts were

obtained after clustering with 99% identity.

Creating non-redundant sets of coding and non-coding transcripts

Prediction of coding and non-coding transcripts. The 0.7 million redundant set of

transcripts were aligned to known proteins from multiple public repositories for annotation.

BLASTX [27] of the transcripts was done against TAIR10, RefSeq (extracted for Viridiplan-

tae) and UniProt databases. The results were parsed to calculate the total number of posi-

tives and identities per query-subject pair and further filtered with homology > = 50%,

number of positives > = 35 amino acids and evalue < = 1e-05. Out of the 0.7 million tran-

scripts for A. hypochondriacus, 0.4 million got annotated to coding genes. Some of these

transcripts were found to be chimeras which could be assembly artefacts or true biological

chimeric transcripts. Therefore, the 0.4 million transcripts that could hit to orthologous
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proteins were split into 0.7 million transcripts based on alignment coordinates of the ortho-

logous regions extended by 75 bases on each end. These 0.7 million transcripts were further

clustered into a non-redundant set of coding transcripts based on a novel clustering

approach as described below. The filtering, splitting and clustering steps were done using

in-house scripts and MySQL tables.

Clustering of transcripts into non-redundant sets. A novel in-house method for cluster-

ing together redundant transcripts from multiple de novo assemblies and isoforms of a gene,

without alignment to the reference genome, was developed and utilized to create non-redun-

dant sets of coding annotated, coding novel and long non-coding transcripts. The clustering is

based on a greedy algorithm that implements the logic that if two de novo assembled transcript

sequences are > = 95% identical across a stretch of 100 or more identical bases, then they are

essentially the same sequences with slight variations owing to sequencing/assembly errors or

being isoforms. Therefore, before clustering, a self-BLASTN is done and the hits that pass the

given filters are processed by a clustering program written in C++ that will assign clusters

greedily to all the transcripts, i.e., if a transcript has been assigned a cluster, all the other tran-

scripts that hit to the cluster-assigned transcript, or any other transcript in the same cluster,

will be assigned the same cluster number.

Multiple levels of filtering are essential prior to clustering to minimize merging of distinct

clusters due to sequencing, assembly or annotation errors and to capture maximum number

of unigenes or isoenzymes. These filters include (i) retaining the longest self-BLASTN align-

ment block in cases where there are multiple alignments for the same query-subject pair that

can occur due to mis-assembly especially with shorter k-mers, (ii) removing transcripts from

21-mer assemblies to avoid merging of otherwise distinct clusters due to representatives of

misassembled transcripts in both the sets, (iii) optionally, removing all the transcripts shorter

than 300 bases, and (iv) retaining only those self-BLASTN hits that have> = 95% identity

across > = 100 nt identical bases, including the self-hits to ensure that every transcript in the

set is assigned a cluster.

The clustering method was validated by manually checking for all the unigenes from lysine

biosynthesis pathway in the non-redundant coding annotated set. All the isoenzymes impli-

cated in the pathway could be identified in the clustered set. Whereas, many unigenes from the

pathway were missing in multiple other clustering attempts made using CD-HIT-EST, espe-

cially isoenzyme 1 of dihydrodipicolinate synthase (DHDPS) which is a key regulatory enzyme

of the lysine biosynthesis pathway.

Screening for human and microbial contamination. The transcript sequences were

aligned (BLASTN) against the human (hg19) and microbial (downloaded from NCBI) refer-

ence genomes to identify sequences of microbial origin that may come from contamination

from the field or from endophytes within the plant tissues. The sequences with percent identity

> = 90 and > = 100 positives were considered to be of human/microbial origin and were fil-

tered out from the transcript pool.

A further self-tBLASTx of the predicted coding (orthologous and novel) transcripts was

done using the same filters of 90% identity and 100 identities to further reduce some redun-

dancy at protein level.

The entire workflow is depicted in Fig 1.

Prediction of novel coding transcripts

ORF prediction was done on the transcripts that could not be annotated based on orthology

using getorf program from EMBOSS [28] package and selecting for the longest ORF using in-

house script.
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Validation of transcript sets

The conventional assembly metrics of the transcripts were calculated using in-house scripts.

The completeness of the set of coding transcripts was validated by performing tBLASTn of the

set of 248 core eukaryotic genes (CEGMA) against the transcripts.

Transcript expression and its normalization

The high quality 100 bp Illumina reads were mapped to the de novo assembled transcriptome

using Bowtie2 [29] and the read counts calculated using SAMtools [30] and BEDTools [31].

Transcript abundance was measured using the conventional RPKM method.

Identification of gene chimera from transcriptome assembly

Chimeras among the coding transcripts were identified from the BLASTx performed for pre-

diction of coding transcripts (sub-section Creating non-redundant sets of coding and non-

coding transcripts). All transcripts which had an orthology to more than one protein with the

filters used above, were called chimeras. For every chimeric transcript, individual genes from

gene pairs were extracted based on the orthologous coordinates obtained from BLASTx as

described in Methods under the section prediction of coding and non-coding transcripts. To

compensate for non-orthologous termini of the genes from BLAST in the first and last exons,

the individual transcripts were extended by 75 bases on either side. These extended gene

pairs were aligned against multiple plant genomes (in Table 2, downloaded from Phytozome

[32]) at protein level (using > = 60% identity and > = 60% query coverage per subject as the

filters) to (i) ignore chimeras arising out of mis-assembly and identify true chimeras, and (ii)

identify Caryophyllales-specific and Ah-specific chimeras. In order to eliminate false posi-

tives stemming from transcriptome assembly tools, we have excluded transcripts comprising

potential genes that had a significant hit in identical coordinates in the genome and those

that were hitting to the genome in a region that was not annotated in the corresponding

release of the GFF3 file. Thus, only those chimeras were selected where the gene pairs were in

the same gene loci (i.e., either overlapping in coding sequences or closer than 50 kilobases as

previously reported [33]), either in a convergent, divergent or co-oriented manner. A Venn

diagram for the chimeric transcripts getting validated in six genomes was drawn using JVenn

[34].

Experimental validation of chimera

Primers were designed from a convergent gene pair, two forward and three reverse primers

for each of the genes in chimeric transcripts, using Primer3plus [35] with some manual

adjustments. Genomic DNA and total RNA were extracted from mature leaves using the

conventional extraction methods (CTAB and trizol, respectively). Reverse transcription of

the extracted RNA was done using the conventional protocol using M-MuLV reverse tran-

scriptase. Amplification of the DNA fragments was done using DNAzyme (Taq DNA poly-

merase (in house preparation) and the gene specific primers. PCR was performed using 10

pmol of each oligonucleotide primer (S3 Fig) and 1 U of Taq polymerase (Thermoscientific)

in a 10uL reaction volume. The reaction conditions for PCR included denaturation (94˚C)

for 1 min, primer annealing (52˚C) for 1 min and extension (72˚C) for 3 min for 35 cycles in

10 ml reaction volume. PCR Products was resolved on 1% agarose gel to check the DNA

amplification.
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