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Background
To date, lung cancer remains the leading cause of 
cancer-related deaths worldwide.1 Early detection 
and diagnosis are crucial to reduce the mortality of 
lung cancer. As the most promising tool for lung 
cancer screening, low-dose computed tomogra-
phy (LDCT) has been widely used in recent years, 
resulting in abundant peripheral pulmonary 
lesions (PPLs) being detected. Although a series 
of novel techniques for obtaining biopsy speci-
mens have been devised and improved continu-
ally, the diagnosis of PPLs remains a big challenge 
for pulmonary physicians. This review will pro-
vide a concise overview of the development of 
diagnostic techniques for PPLs, with a special 
focus on biopsy approaches and advanced guided 
bronchoscopy techniques by discussing their 
advantages, limitations, and prospects.

The development of diagnostic systems  
for PPLs

Early stage before flexible bronchoscope
Prior to the invention of fiberoptic bronchoscopes, 
PPLs were diagnosed mainly by exfoliative cytol-
ogy, with a diagnostic rate of 23.7–40%.2–4 In 

1952, Dr. H Metras designed a bronchial catheter, 
which was first introduced into the bronchus 
under fluoroscopy, and was widely applied in the 
following years.5 In 1967, Dr. Eitaka Tsuboi intro-
duced a curet through the modified Metras cath-
eter into the lesions under fluoroscopy and 
obtained biopsy specimens, promoting the devel-
opment of interventional respiration.6 However, 
the bronchial catheter can only reach the proximal 
bronchus, which greatly limits the diagnosis of 
PPLs. Therefore, it was urgent to design a flexible 
endoscope which can adapt to and enter the distal 
bronchus.

The stage of fiberoptic bronchoscopy
In 1967, Dr. Ikeda designed a flexible broncho-
scope that could change the curvature according 
to the shape of the bronchus to reach the distal 
ones. In addition, its powerful light conduction 
ability allowed people to observe the internal 
structure and lesions of the bronchi.7 Throughout 
the 1970s–1980s, various instruments adapted to 
the bronchoscope for biopsy through the working 
channel were designed, such as brush, forceps, 
curette, needle, and needle brush, greatly improv-
ing the biopsy rate. Nevertheless, the diagnostic 
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yield of PPLs by fiberoptic bronchoscopy alone 
remained low.8–10 The reason might be that the 
bronchial wall and parabronchial lesions were 
invisible in fiberoptic bronchoscopy, leading to 
inaccurate location and inaccessible biopsy.

Advanced guided bronchoscopy techniques
In recent years, new techniques emerge in end-
lessly. Guided bronchoscopy techniques devel-
oped from fluoroscopy to ultrasound, virtual 
navigation, and electromagnetic navigation. The 
development of diagnostic guided bronchoscopy 
techniques not only improved the clarity of endo-
scope images but also enhanced the accessibility 
of PPLs. To adapt the more distant bronchus, 
smaller bronchoscopes and steerable guides were 
designed, which improved the positive diagnostic 
rate of PPLs.11–14 Newer bronchoscopy tech-
niques, such as robot-assisted bronchoscopy and 
Lung Pro, have also been put into use. The com-
bination of guided bronchoscopy techniques, new 
biopsy instruments can promote strength and 
avoid weaknesses.

The commonly used biopsy techniques

Transbronchial needle aspiration
Transbronchial needle aspiration (TBNA) was 
first described in 1949 by Dr. Eduardo Schie-
ppati15 and developed by Dr. Kopen Wang for 
rigid bronchoscope and flexible bronchoscope in 
197816 and 1983,17 respectively, which remains 
one of the most commonly used sampling 

techniques (Table 1). Under the guidance of 
X-ray or other navigation techniques, insert the 
needle into the lesion and aspirate for 3–5 times 
under negative pressure to obtain the specimens, 
which is helpful for the diagnosis of PPLs and 
staging of lung cancer. A systematic review and 
meta-analysis published in European Respiratory 
Journal in 2016 reported the diagnostic rate of 
TBNA for PPLs was 53% [95% confidence inter-
val (CI): 44–61%], with a rare complication inci-
dence, mainly pneumothorax and moderate 
bleeding.18 The subgroup analyses suggested that 
the presence of CT bronchus sign, lesions size 
>3 cm and rapid on-site evaluation (ROSE) 
employment are the positive predictive factors of 
diagnostic yield.18

At present, the MW-319 needle (15 mm/3 mm ×  
140 cm, 19G/21G; CONMED Corporation) is 
recommended for TBNA and mainly used for 
central pulmonary lesions due to its enhanced 
hardness. On the contrary, the SW-221 needle 
(13 mm × 140 cm, 21G; CONMED Corporation) 
is commonly applied for PPLs. The SW-221 nee-
dle can partially retract the internal stylet, making 
it less stiff and easier to reach apical or superior 
segmental lesions for biopsy. The improvement 
of the puncture needles for PPLs has never 
stopped. For example, the PeriView FLEX 
(NA-403D-2021; Olympus Medical Systems), a 
new type of TBNA needle, came out. The smaller 
diameter of the PeriView FLEX makes it more 
suitable for the ultrathin bronchoscope working 
channel.19 What’s more, with a spiral pattern on 
the needle, PeriView FLEX is conferred flexibility 

Table 1. Overview of biopsy techniques for PPLs.

Biopsy technique Diagnostic yield Complication rate Advantage Disadvantage

TBNA 44–61% 0.43% 
pneumothorax
0.49% hemorrhage

A positive 
predictor for 
diagnostic yield

Need further 
improvement for 
PPLs in some specific 
locations

TBLB 53.8–60% 1–5% 
pneumothorax

Obtain relatively 
large tissues

Difficult to penetrate 
through the bronchial 
wall

PCNA 92.1–97.7% 20.5% 
pneumothorax
2.8% hemorrhage

High diagnostic 
sensitivity

Relatively high 
complication rate and 
high radiation dose

PCNA, percutaneous needle aspiration; PPL, peripheral pulmonary lesion; TBLB, transbronchial needle aspiration; TBNA, 
transbronchial lung biopsy.
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to reach PPLs through the angulation.20 The 
employment of PeriView FLEX increased the 
diagnostic rate of PPLs to 68–70%.19,20 More 
importantly, TBNA with PeriView FLEX is the 
only method to diagnose PPLs in some specific 
locations, such as the apical segment20 (Figure 1).

Transbronchial lung biopsy
Transbronchial lung biopsy (TBLB) can obtain 
lung tissue by biopsy forceps, curettes, and 
brushes. Clinically, biopsy forceps are predomi-
nantly used, which can obtain relatively large 
tissue to improve the positive diagnostic rate. 
Some studies have shown that the diagnostic 
yield of TBLB without fluoroscopy is 53.8–
60%,21,22 while it can increase more than 10% 
when combined with fluoroscopy.23,24 It is con-
firmed that the combination of navigation bron-
choscopy can improve the diagnostic rate of 
TBLB.25–27 Recently, a prospective randomized 
controlled trial conducted in China suggested 
that the diagnostic rate of TBLB could reach 
81.7% with the assistance of ultrathin bron-
choscopy, VBN, RP-EBUS, and other novel 
technologies.28 The diameter and location of the 
lesion would affect the diagnostic rate of TBLB, 
that is, the big size and located in the right lung 
and the lower lung are positive predictors of the 
diagnostic rate.22 The presence of bronchial 
signs on CT was also a positive factor in the 
diagnostic rate.29 In addition, repeated biopsy 
will significantly improve the diagnostic rate. 
Studies have shown that the diagnostic rate can 
be high enough for 3–4 repeated biopsies,30,31 
while some scholars discovered that it can still 
be improved for more than six repeated biop-
sies.32 The main complication is pneumothorax, 

with an incidence of 1–5%,24,33 which is gener-
ally safe and feasible.

Percutaneous needle aspiration/transthoracic 
needle aspiration
Compared with the traditional bronchoscopy 
technique, CT-guided percutaneous needle aspi-
ration (PCNA) has great advantages in the diag-
nosis of PPLs, which can take biopsy through 
percutaneous approach under real-time guidance. 
DiBardino and colleagues conducted a systematic 
review and meta-analysis involving 48 articles 
suggesting that the diagnostic yield of PCNA 
under CT guidance can reach 92.1%.34 Recently, 
it can even up to 97.7% in a prospective study.35 
A retrospective analysis demonstrated that the 
diagnostic sensitivity of CT-guided PCNA for 
lesions close to the chest wall was significantly 
higher than those away from (100% vs 80%, 
p = 0.04).36 The size of the lesions did not have a 
noticeable impact on the diagnostic rate.37 The 
high diagnostic yield of PCNA makes it appear to 
be the prior method for the diagnosis of PPLs, 
while it also has some limitations. First, PCNA 
has a high risk of complications, and a meta-anal-
ysis revealed that the incidence of bleeding and 
pneumothorax in PCNA was 2.8% and 20.5%, 
respectively.34 Subgroup analysis implied that 
pulmonary diseases and lesions away from the 
chest wall were risk factors for complications.36,37 
In addition, the high radiation dose is also a draw-
back of this technology. In recent years, emerging 
guidance techniques have been applied to PCNA, 
including ultrasound and electromagnetic naviga-
tion, with diagnostic rates of 88.7%34,38 and 
83%,39 respectively, but they also have a high risk 
of pneumothorax.34,38,39 Finally, PCNA cannot 

Figure 1. The image of MW-319 (a), SW-221 (b), and PeriView FLEX(c). (The image of PeriView FLEX needle is 
from the Olympus official website.)
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perform mediastinal staging in the meanwhile, 
which is not conducive to the formulation of ther-
apeutic schedules.

Comparison of TBNA, TBLB, and PCNA
Several prospective randomized controlled trials 
have demonstrated that PCNA has a higher diag-
nosis sensitivity to PPLs than TBNA or TBLB, 
especially when the lesions are close to the chest 
wall and have a smaller diameter.40–43 Nonetheless, 
the complication probability of PCNA was nota-
bly higher than that of TBNA and TBLB.40–43 As 
a traditional technology, TBLB alone has a low 
biopsy rate, and the participation of guiding tech-
nology is required to improve the positive diag-
nostic rate furtherly. The main reason is that 
TBLB alone often fails to break through the 
bronchial wall, resulting in poor sampling. 
Therefore, TBNA may be the preferred choice for 
the lesions lacking bronchial signs on CT (27% vs 
17%).44 Two studies discovered that when both 
TBNA and TBLB were completed simultane-
ously, 9.5%45 and 21%44 of patients were diag-
nosed with TBNA but not with TBLB, respectively. 
A prospective multicenter study (AQuIRE 
Registry) published in the American Journal of 
Respiratory and Critical Care Medicine in 2016 
indicated that novel navigation techniques did not 
improve the diagnostic yield of PPLs, while 
TBNA was a positive predictor.45 Hence, TBNA 
is still of great value in the diagnosis of PPLs.

The development of guiding technology

Fluoroscopy
In the face of these invisible PPLs in traditional 
bronchoscopy, the combination of guiding tech-
nology turns to be critical, in which fluoroscopy 
was the first one to be introduced into bronchos-
copy (Table 2). Several studies have shown that 
the diagnostic yield of PPLs under fluoroscopy 
guidance alone is 41.4–74.4%,23,46–50 which is 
similar to that of central pulmonary lesions.47 A 
retrospective comparative study indicated that 
the diagnostic rate of TBLB under fluoroscopy 
was markedly higher than that without guidance 
(41.4% vs 29.5%, p = 0.036), and there was no 
significant difference in the incidence of pneumo-
thorax, which were 1.2% and 0.6%, respec-
tively.23 The combination of fluoroscopy and 
other novel navigation technologies will be 
described in detail later.

The main factors affecting the diagnostic rate of 
fluoroscopy-guided bronchoscopy include the size 
and location of PPLs. A retrospective study con-
firmed that the diagnostic rate of PPLs larger than 
2 cm can reach 72.2% under fluoroscopy guid-
ance, while for those smaller than 2 cm was only 
33.3%.46 A two-center prospective study found 
that the diagnostic rate of PPLs located in the 
lower lobe was lower than those of non-lower 
lobes, but there was no statistical difference 
(p = 0.091).48 Moreover, Uchida et al.50 conducted 

Table 2. Overview of guided bronchoscopy techniques for PPLs.

Guided technique Diagnostic yield Characteristic Limitation

Fluoroscopy 41.4–74.4% Simple and affordable; real-time 
guidance and biopsy

High radiation exposure

RP-EBUS 72–82.5% Ultrasonic echo with no radiation Not real-time 
confirmation and biopsy

VBN 57.1–67.1% Construct a virtual bronchial 
approach

Lacked of a real-time 
adjustment

ENB 38.5–73% Electromagnetic effect with no 
radiation

The probe may deviate by 
respiration

BTPNA 83.3–86.3% Create a vascular-less channel 
from the bronchial wall to PPLs

Safety issue needs to be 
further validated

Robotic-assisted 
bronchoscopy

69.1–80% Adjust the angle of biopsy 
instruments flexibly

Fluoroscopy and human 
control required

BTPNA, bronchoscopic transparenchymal nodule access; ENB, electromagnetic navigation bronchoscopy; PPL, peripheral 
pulmonary lesion; RP-EBUS, radial probe – endobronchial ultrasonography; VBN, virtual bronchoscopy navigation.
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a prospective study and discovered that perform-
ing ROSE in patients with suspected peripheral 
lung cancer can increase the diagnostic rate by 
23% during fluoroscopy-guided bronchoscopy, 
which was independent of the experience of physi-
cians. As a result, ROSE is an effective method for 
bronchoscopy in the diagnosis of PPLs.

The leading drawback of fluoroscopy-guided 
technology is the radiation. Clark et al.51 expressed 
that the patient undergoing fluoroscopy-guided 
bronchoscopy was exposed to a radiation dose of 
0.26 m Sv averagely. Considering the patient has 
respiratory disease, although the dose of radiation 
is not too high to accept, the possibility of long-
term follow-up imaging examination makes it 
hard to be ignored.

Radial probe–endobronchial ultrasonography 
(RP-EBUS)
In order to reduce the radiation exposure of 
patients and interventional pulmonary physicians 
in the operation, the ultrasound-guided technol-
ogy–RP-EBUS was designed. Another advantage 
of RP-EBUS is that those invisible parabronchial 
and bronchial wall lesions in conventional bron-
choscopy can be detected through the echo level. 
RP-EBUS provides a 360° ultrasound view of the 
two-dimensional plane where the device probe is 
located, which enables real-time localization of 
distal lesions.

In 2002, Herth first used EBUS technology to 
guide bronchoscopy biopsy in the diagnosis of 
PPLs, confirming the feasibility.52 Triller et al.53 
conducted a prospective controlled trial and sug-
gested that the difference between TBLB guided 
by EBUS and fluoroscopy showed no statistical 
significance in the diagnosis of PPLs, and EBUS 
was more advantageous due to its no radiation. A 
retrospective study conducted by Boonsarngsuk 
et al.46 revealed that the addition of EBUS guid-
ance on the basis of X-ray fluoroscopy could fur-
ther improve the diagnostic rate (57.9% vs 82.5%, 
p = 0.004), especially in the lesions with diameter 
less than 20 mm (33.3% vs 79.3%, p = 0.001). In 
another retrospective analysis of 174 patients, 
Boonsarngsuk et  al.54 found that performing 
TBLB, brushing, and BAL simultaneously under 
EBUS guidance could achieve the greatest diag-
nostic yield. A meta-analysis of 51 studies with 
7601 patients displayed that EBUS had a diag-
nostic sensitivity of 72%, specificity of 99%, and 

an incidence of pneumothorax of 0.7%.55 In par-
ticular, the diagnostic rate of PPLs has been fur-
ther improved after ultrathin bronchoscopy and 
microultrasound probes were designed and 
widely used.56 In view of the efficacy and safety, 
American College of Chest Physicians (ACCP) 
guideline recommends RP-EBUS as the preferred 
guiding technology for patients with suspected 
lung cancer (Grade 1C).57

However, the success of R-EBUS is related to 
whether the lesion and airway branch are con-
nected, close, or far away. If the pulmonary nod-
ule is not passed directly by the bronchi, which 
means there is no bronchial sign on CT, its diag-
nostic yield will be greatly reduced. Minezawa 
et al.58 conducted a retrospective study and classi-
fied target lesions with bronchial accessibility on 
CT as type A, those without bronchial accessibil-
ity as type C, and those in between as type B. The 
corresponding positive diagnostic rates reported 
were 83.7%, 65.3%, and 28.6%, respectively, 
with significant statistical differences.58 Several 
other studies have shown similar results.36,59–67 
The reason is that RP-EBUS cannot confirm the 
relative position of the lesion and bronchus. The 
diagnostic rate can be improved when the probe 
is completely inserted into the lesion. When the 
probe is only unilaterally close to the lesion, we 
cannot confirm the positional relationship 
between the probe and the lesion, which brings 
uncertainty to the direction of the biopsy. At that 
time, it is necessary to combine CT to determine 
the biopsy direction. A prospective randomized 
controlled trial showed that TBNA has a clear 
diagnostic advantage over TBLB and brush when 
the probe is close to the lesion.68 The size and 
location of the lesions also have a great influence 
on the diagnostic rate. Several studies have con-
firmed that the diagnostic rate of lesions less than 
2 cm, located in the upper lobe, and proximal to 
the chest wall would be reduced mark-
edly.37,63,66,69–74 There are other studies showing 
that solid nodules are associated with a higher 
diagnostic yield.62,63,74 Dr Xu carried out a pro-
spective study on the value of ROSE in the diag-
nosis of PPLs under EBUS guidance, and pointed 
out that ROSE could increase the diagnostic rate 
(85.7% vs 70.3%, p = 0.018) and shorten the 
operation time (24.6 ± 6.3 min vs 31.5 ± 6.8 min, 
p < 0.01).75,76

Moreover, because of the deficiency of working 
channel, after RP-EBUS locates and confirms the 
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lesion, the probe needs to be withdrawn before 
sampling, which may lead to deviation during the 
sampling process due to breathing movement or 
placement of biopsy instrument. To overcome 
this problem, a guide sheath (GS) was introduced 
into the EBUS probe. After locating the lesion, 
withdraw the probe with GS left in situ to ensure 
the biopsy from the right position. Nevertheless, 
Kramer and Annema,70 Ho et  al.,77 and Huang 
et al.,78 clarified that the diagnostic yield did not 
have an obvious improvement after the introduc-
tion of GS, which may be related to the move-
ment or dislodgement of the sheath caused by 
stiff biopsy tools.79 On the contrary, Oki et al.80 
conducted a multicenter randomized trial show-
ing that histological specimens had a higher diag-
nostic yield in the GS group (55.3% vs 46.6%, 
p = 0.033), and the diagnostic yield of upper lobe 
lesions could be significantly improved upon 
using GS (63.1% vs 42.9%, p = 0.003).

Nowadays, the application of non-invasive analy-
sis technology in EBUS-guided bronchoscopy to 
assist in the diagnosis of PPLs is emerging. As a 
non-invasive quantitative imaging analysis 
method, radiofrequency spectrum is of great sig-
nificance in differentiating malignant or benign 
PPLs in EBUS-guided bronchoscopy. Ishiwata 
et  al.81 discovered that malignant PPLs had a 
lower intercept, lower midband-fit and higher 
slope than benign PPLs, with intercept showing 
the best diagnostic performance. In addition, 
confocal laser microendoscopy (CLE), known as 
‘optical biopsy’, enables real-time observation of 
the cytological morphology of target lesions. 
Fuchs et al.82 performed airway acriflavine stain-
ing in 32 patients with suspected neoplasma and 
used CLE to observe the airway lesions. They 
concluded that it could be distinguished from 
normal mucosa, inflammation, or regeneration 
and neoplastic tissue by the morphological fea-
tures of the cytoplasm and nucleus, with an accu-
racy of 91.0%, a sensitivity of 96.0%, and a 
specificity of 87.1%.

Virtual bronchoscopy navigation
By uploading the preoperative CT to the com-
puter workstation, virtual bronchoscopy naviga-
tion (VBN) can construct a three-dimensional 
image of the human bronchus, and design the 
optimal virtual bronchial approach to the target 
lesion. Shinagawa et  al.83 confirmed that the 
bronchi created by VB were highly consistent 

with those seen under ultrathin bronchoscopy. 
Miyoshi et  al.84 demonstrated that VBN could 
improve the diagnostic rate of PPLs (57.1% vs 
33.3%, p = 0.008) through a retrospective study. 
On the contrary, Asano et al.85 came to the con-
clusion that there was no significant difference in 
the diagnostic rate between the VBN-assisted 
group and the non-VBN-assisted group (67.1% vs 
59.9%, p = 0.173) in a prospective multicenter 
controlled trial. Asano et  al.85 also noticed that 
VBN played a positive role in the diagnosis of 
PPLs in the right upper lobe and invisible in X-ray 
fluoroscopy, which are usually difficult to be diag-
nosed by other bronchoscopy technologies. The 
imaging quality of VBN depends on the preopera-
tive CT data. Furthermore, since VBN is not a 
real-time imaging technology and lacks of a real-
time adjustment for navigation errors, it is neces-
sary to be assisted with locating technology. Lately, 
several studies have pointed out that the diagnos-
tic yield of VBN combined with X-ray fluoroscopy 
for PPLs was 62.5–81.6%83,86–89 and that com-
bined with EBUS-GS was 63.3–84.4%.90–94

Like other bronchoscopy technologies, the size 
and location of PPLs are the determining factors 
for diagnostic yield. The lesions larger than 3 cm 
and located in the left lower lobe have a higher 
diagnostic sensitivity.95,96 For the lesions smaller 
than 3 cm, the diagnostic sensitivity of non-solid 
lesions was evidently lower than that of solid and 
partially solid lesions (odds ratio = 0.161, 95% 
CI: 0.033–0.780, p = 0.023).96

As a well-developed bronchoscopy navigation 
technology, VBN is now trying to be applied in 
pre-procedure for EBUS-guided bronchoscopy. 
In order to evaluate the feasibility and effective-
ness of pre-procedural VBN, Xu et  al.97 carried 
out a single-center prospective study. They veri-
fied that with VBN assistance did not clearly 
improve the diagnostic rate of PPLs (76.0% vs 
65.5%, p = 0.287) but could shorten the opera-
tion time clearly (20.6 ± 12.8 min vs 
28.6 ± 14.3 min, p = 0.023). Two other studies 
suggested similar results.98,99

Although VBN may improve diagnostic yield and 
shorten operation time, the technology is expen-
sive and complicated so that not all hospitals are 
equipped. Currently, manual bronchial branch 
mapping techniques are emerging, which do not 
rely on the advanced navigational tools like VBN, 
and have been applied to EBUS-guided 
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bronchoscopy. Kho et  al.100 performed manual 
bronchial branch mapping of preoperative CT via 
the bronchial branch reading technology of 
DICOM software and then identified target 
lesions by EBUS according to the pre-planned 
airway road map, resulting in 98.9% successful 
rate. Our group created a hierarchical clock-scale 
hand-drawn mapping (HBN) for bronchoscopic 
navigation. That is, based on the ‘clock’ scale, 
mark each bronchial opening according to CT 
images, when the preoperative CT image spatial 
structure is consistent with bronchoscopic obser-
vation. We also conducted a comparative study 
between HBN and VBN, and the results showed 
that there was no significant difference in the 
diagnostic yield between the two groups (75.00% 
vs 61.90%, p = 0.25), but the HBN group had a 
shorter planning pathway time (1.32 vs 9.79 min, 
p < 0.001), total operation time (23.63 vs 
28.02 min, p = 0.002), as well as operating cost 
(758.31 ± 125.21 vs 1327.70 ± 116.25 USD, 
p < 0.001).101

Electromagnetic navigation bronchoscopy
Electromagnetic navigation bronchoscopy (ENB) 
is a bronchoscopy navigation technology that uti-
lizes electromagnetic effect for real-time guidance 
in a virtual tracheobronchial tree. To date, there 
are two systems: SuperDimension (Medtronic) 
and SPiNDrive (Olympus Medical Systems). 
ENB is designed to accurately locate the lesion 
and reach the vicinity of the lesion, making it 
available for the precise biopsy of PPLs.

Through a retrospective study, Brown et al.102 fig-
ured out that the diagnostic rate of early lung can-
cer was increased meaningfully after the 
introduction of ENB (23.4% vs 40%, p < 0.0001). 
By contrast, AQuIRE Registry found that the pos-
itive diagnostic rate was only 38.5% when using 
ENB alone, and even subgroup analysis suggested 
that ENB was associated with a lower diagnostic 
rate.45 Besides, Chee et al.103 revealed that EBUS 
combined with ENB improved the location of 
PPLs compared with EBUS alone (93% vs 75%), 
while did not promote the diagnostic rate (50% vs 
43%). The lower diagnostic yield is in part related 
to the fact that accuracy of electromagnetic navi-
gation is susceptible to respiratory motion. The 
probe position drifts and deviates from the actual 
position during respiration resulting in a discrep-
ancy between the virtual and true anatomic loca-
tion of the nodule. Most importantly, ENB alone 

cannot confirm the biopsy site within the lesion in 
real time like R-EBUS.

Recently, researchers have recognized the fact 
that ENB requires the support of X-ray fluoros-
copy, CBCT or EBUS for adjustment before 
biopsy to achieve a higher diagnostic rate.70,104–108 
One-year data from a prospective, multicenter, 
global cohort study (NAVIGATE study) found 
that the diagnostic rate of ENB combined with 
pre-biopsy adjustment can reach 73%.109 Studies 
have shown that PPLs with diameter ⩾2 cm and 
located in the upper lobe or middle lobe are 
important univariate predictors.70,109,110 There is 
also an apparent correlation between morbidity 
and diagnostic yield in the study population.70,111 
Bellinger et  al.112 confirmed that the diagnostic 
sensitivity of Tsuboi I (bronchus directly enters 
into the lesion) and Tsuboi II (bronchus is infil-
trated by the lesion) was significantly higher than 
Tsuboi III (bronchus curves around the lesion).

Two meta-analyses published by Folch et  al.111 
and McGuire et al.113 showed that the diagnostic 
rate of ENB after correction can reach 77% and 
76.4%, respectively, and the risk of pneumotho-
rax was less than 2%. However, the combination 
also increases the risk of radiation exposure to 
patients inevitably. Cho et al.114 demonstrated the 
feasibility of ENB combined with O-arm imaging 
system for the diagnosis of PPLs. Nevertheless 
the study showed that an average of 4.33 O-arm 
rotations was required in each case, with an aver-
age radiation dose of 3.73 mSv, which is equiva-
lent to a CT radiation dose.114 Dramatic radiation 
exposure goes against the orientation of ENB.

To avoid the discrepancy and additional radiation 
exposure, the 4D ENB system was put into use. 
The 4D ENB system requires inspiratory and 
expiratory CT scans prior to operation and utilizes 
an electromagnetic tip-tracked biopsy instrument 
to perform real-time located biopsy. The study 
confirmed that the diagnostic yield was 68.3%, 
which was still lower than that of other bronchos-
copy technologies in previous studies.115

Bronchoscopic transparenchymal nodule access
The presence of bronchial signs on CT has an 
important positive impact on the diagnosis of 
PPLs by bronchoscopy navigation technology. 
For that reason, bronchoscopic transparenchymal 
nodule access (BTPNA) has been designed to 
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improve the diagnostic rate of bronchial sign-neg-
ative PPLs. With the help of Archimedes VBN 
system (Bronchus medical, Inc, San Jose, 
California USA), establish a virtual bronchial 
image and select a virtual route. Subsequently, 
the operator uses a coring needle to puncture the 
point of entry (POE) and then dilates the accom-
panying balloon catheter. In this way, a vascular-
less channel from the bronchial wall to PPL is 
created. Through the created channel, the biopsy 
instruments can be introduced and reach the 
bronchial sign-negative PPLs successfully.

Silvestri et al.116 demonstrated the feasibility and 
safety of BTPNA in canine models. Sterman 
et al.117 made a study with 31 canine models, and 
verified the high diagnostic rate (90.3%) and low 
risk of BTPNA, without pneumothorax and mod-
erate bleeding.

Herth et al.118 performed the first human trial to 
evaluate the feasibility of BTPNA for entering the 
nodules and making biopsy. The study showed 
that 10 of 12 patients successfully created the 
channel and obtained sample, with no adverse 
events during the 6-month follow-up. The two 
failed PPLs were located in the apical section of 
the left upper lobe. Due to the limitation of the 
bronchoscope angulation and the proximity to 
the aorta and pulmonary artery, it was impossible 
to establish a straight-line tunnel. In addition, it 
was also pointed out that six of seven cases with 
PPLs invisible under fluoroscopy could be diag-
nosed by BTPNA. Harzheim et al.119 also reported 
the same diagnostic rate, and two cases (33.3%) 
developed pneumothorax, of which one case 
(16.7%) required drainage. Recently, Sun et al.120 
conveyed that the diagnostic rate of BTPNA was 
significantly higher than that of guided TBNA 
(86.3% vs 67.2%), with the low incidence of 
pneumothorax (1.9%) and mild bleeding (1.0%) 
in a prospective single-arm multicenter study. 
Furthermore, for those lesions without bronchial 
signs, less than 2 cm, located in the upper lobe 
and proximal to the chest wall, which might be 
difficult to be diagnosed by other conventional 
bronchoscopy technologies, the diagnostic rate of 
BTPNA did not significantly decrease.

For bronchial sign-negative PPLs, BTPNA seems 
to be a promising method. Trials with large sam-
ple are needed to further verify the safety before it 
can be widely carried out.

Robotic-assisted bronchoscopy
Very recently, robot-assisted bronchoscopy not 
only improves the ability to locate the lesion but is 
capable to adjust the angle of TBNA, and also 
takes full advantage of radiology, such as C arm 
and cone beam CT. To date, there are two types 
of robotic-assisted bronchoscopy devised by dis-
tinct principles, namely Monarch system and Ion 
system.

Monarch system (Auris Health) is consisted of an 
inner scope and an outer sheath, the lesion can be 
reached via direct visualization. The broncho-
scope can reach a more distal airway by 4-way 
steering control. The biopsy procedure is per-
formed under the direction of the magnetic navi-
gation system. Chen and colleagues compared 
the efficacy of Monarch robotic endoscopic sys-
tem and thin conventional bronchoscopy with the 
same outer diameter in human cadaveric lungs. 
The study demonstrated that the robotic bron-
choscopy can enter the eighth generation bronchi 
on average, much higher than thin bronchos-
copy.121 Chen and colleagues then successfully 
diagnosed 97% of lung lesions in cadavers by 
Monarch system and concluded that neither 
lesion diameter, appearance in EBUS, nor dis-
tance from the chest wall would affect the diag-
nostic yield.122 Rojas-Solano et  al.123 performed 
the Monarch robotic system in humans for the 
first time and identified 93.3% of pulmonary 
nodules without the occurrence of pneumothorax 
or severe bleeding. A multicenter retrospective 
study held in the United States suggested that the 
diagnostic rate of Monarch robotic system ranged 
from 69.1% to 77% (conservative and maximum 
estimate). The performance of nodules in EBUS 
was a predictor of diagnostic yield, whereas diam-
eter, density, and location were not.124 Recently, 
the first prospective, multicenter study 
(BENEFIT) to evaluate the efficacy and safety of 
the Monarch system noted a 96.2% localization 
accuracy rate and a 3.7% incidence of pneumo-
thorax, of which 1.9% required drainage.125

For the other type of robotic-assisted system, 
that is Ion system (Intuitive Surgical), the outer 
tube equipped with a camera can reach the lesion 
by four-way steering control. The real-time vir-
tual shape of the catheter is the predominant 
indicator to confirm it is in the right place, fol-
lowed by the validation through fluoroscopy. 
The biopsy is carried out after removing the 
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visualizing optic. Fielding et al.126 first used Ion 
system in humans and included 29 patients 
totally. Among the PPLs with an average diame-
ter of 1.2 cm and bronchial sign absent of 41.4%, 
the overall diagnostic rate was 79.3%, and the 
diagnostic rate for malignancy was 88%. There 
were no pneumothorax or excessive bleeding 
events in the trial. A prospective randomized 
comparative trial showed that the diagnostic rate 
of Ion robotic system guidance was clearly higher 
than that of ENB (p = 0.022) and RP-EBUS 
(p < 0.001) guidance127 (Figure 2).

Of note, both systems require a controller, and 
also require a C-arm or cone beam CT to confirm 
the position of biopsy instruments. Robot-assisted 
bronchoscopy uses remote direction control 
instead of manual control, but in fact it still relies 
on human judgment and operation.

Emerging insights beyond biopsy approaches 
and advanced guided bronchoscopy
LDCT is considered an important screening tool 
for lung cancer, but its high false-positive rate 
means that many patients are unnecessarily sub-
jected to invasive diagnostic testing. To reduce 
unnecessary invasive examinations, our team 
established a diagnostic classifier combining chest 
CT features with large airway epithelium tran-
scriptomics signatures obtained by bronchial 
brush.128 The results suggested an area under the 
curve (AUC) of 0.903, a sensitivity of 90.0%, a 
negative predictive value (NPV) of 0.811, and a 
positive predictive value (PPV) of 0.851.128 The 
advanced model can availably predict the risk of 
malignant lung nodules, and has a tendency to 
exclude diagnosis due to its high NPV. Moreover, 
the classifier performed well regardless of lesion 
size, location, or smoking status.

Figure 2. The image of Monarch System (a) and Ion System (b). (c) The working interface of Ion system. (d) The 
biopsy needle for Ion system (21G). (The image of Monarch System is from the Internet.)
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Currently, Lambin et  al.129 from Holland pro-
posed the concept of radiomics that do not rely on 
bronchoscopy. He attempted to capture intra-
tumoral spatial and temporal heterogeneity 
through non-invasive imaging method, which 
might be related to genomic and proteomics pat-
terns. Many scholars have made contributions to 
the application of radiomics in the diagnosis of 
pulmonary nodules. Dhara et  al.130 identified 
benign and malignant nodules of 891 patients by 
quantifying the imaging characteristics, with an 
accuracy of 95.05%. Chen et  al.131 extracted 76 
features that were statistically significant in identi-
fying the diagnosis from 750 imaging features and 
precisely predicted 84% of pulmonary nodules. 
Wu et al.132 and Zhu et al.133 set up the radiomic 
trait for histologic subtype classification, and the 
AUC can reach 0.893 in the validation cohort.133 
In addition, a recent review described a clear cor-
relation between radiomics and genomics, and 
established radiogenomics to identify the molecu-
lar biological basis of imaging phenotypes.134 At 
present, the radiomics technology is still in the 
stage of being further verified and improved.

Limitations
This review mainly discusses the current blue 
map of diagnostic techniques for PPLs. Although 
the relevant literatures have been read in detail, 
since emerging new technologies developed rap-
idly, it is possible that a few latest technologies are 
not fully covered in this review.

Conclusion
The innovation of advanced bronchoscopy tech-
niques has vastly contributed to the diagnosis of 
PPLs, while their combination with fluoroscopy 
is still the key point to improve the diagnostic 
rate. In the future, additional efforts are in urgent 
need in the following aspects: (1) devise more 
precise navigation systems to accommodate res-
piratory motion; (2) visualization of the guidance-
location-biopsy steps with minimum radiation 
exposure; (3) improve biopsy instruments, 
including TBNA needle; (4) employ minimally 
invasive and non-invasive technologies, and con-
sider adopting artificial intelligence (AI) technol-
ogy; (5) PPLs ablation right after diagnosis is also 
an important objective; and (6) carry out further 
studies to verify the value of emerging technolo-
gies such as BTPNA and robotic bronchoscopy. 
With unmet clinical needs in the diagnosis of 

PPLs, we as interventional pulmonary physicians 
should keep on learning and devising new tech-
niques, and inheriting and utilizing old methods. 
Clinical practitioners, researchers, and industry 
should work together to improve the long-term 
survival of lung cancer.
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