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Prediction of intraventricular 
haemorrhage in preterm infants 
using time series analysis of blood 
pressure and respiratory signals
Jacqueline Huvanandana1, Chinh Nguyen2, Cindy Thamrin2, Mark Tracy3,4, Murray Hinder1,3 & 
Alistair L. McEwan1

Despite the decline in mortality rates of extremely preterm infants, intraventricular haemorrhage 
(IVH) remains common in survivors. The need for resuscitation and cardiorespiratory management, 
particularly within the first 24 hours of life, are important factors in the incidence and timing of IVH. 
Variability analyses of heart rate and blood pressure data has demonstrated potential approaches to 
predictive monitoring. In this study, we investigated the early identification of infants at a high risk 
of developing IVH, using time series analysis of blood pressure and respiratory data. We also explore 
approaches to improving model performance, such as the inclusion of multiple variables and signal pre-
processing to enhance the results from detrended fluctuation analysis. Of the models we evaluated, 
the highest area under receiver-operator characteristic curve (5th, 95th percentile) achieved was 0.921 
(0.82, 1.00) by mean diastolic blood pressure and the long-term scaling exponent of pulse interval (PI 
α2), exhibiting a sensitivity of >90% at a specificity of 75%. Following evaluation in a larger population, 
our approach may be useful in predictive monitoring to identify infants at high risk of developing IVH, 
offering caregivers more time to adjust intensive care treatment.

Intraventricular Haemorrhage (IVH) remains a serious threat to survival for preterm infants and neurodevel-
opmental outcomes1. Despite advances in modern neonatal care such as antenatal steroids, artificial surfactant 
treatment and the use of neuroprotective agents such as magnesium sulphate given to mothers in labour, rates 
of IVH, particularly high grade, remain unchanged. Prematurity, respiratory-distress syndrome and mechanical 
ventilation are among the factors that may predispose infants to IVH. Recent studies have also suggested an asso-
ciation between IVH and cerebral pressure passivity, that is, where changes in cerebral blood flow correspond 
to changes in blood pressure2. The need for resuscitation and cardiorespiratory management of preterm infants 
within the first 24 hours of life play an important role in the development and timing of IVH3,4, where the majority 
of these cases can be detected at their full extent by the end of the first postnatal week5. The potential to identify 
infants at high risk of developing IVH is thus, particularly important.

Retrospective studies of premature infants after the diagnosis of IVH have highlighted altered autonomic 
functions which are reflected by heart rate variability analysis6,7. In particular, one study showed that these differ-
ences could be detected using electrocardiogram data from the first 24 hours of life8. Variability of beat-to-beat 
systolic blood pressure and mean arterial pressure has also been shown to offer useful information in distin-
guishing infants who later developed IVH from those who did not9. Such distinctions were demonstrated using 
detrended fluctuation analysis (DFA), a non-linear time domain technique that is able to quantify long-range 
power law correlations in a given time series. Its application is characterised by a scaling exponent (α) which can 
be calculated over different time scales and indicates the corresponding degree of correlation10,11.

More recent work in this area by Fairchild et al. has demonstrated associations between a heart rate charac-
teristic index and adverse neurodevelopmental outcomes or white matter damage12. Models for early prediction 
of IVH have explored either clinical risk factors, as in the case of Luque et al.13 with an AUC of 0.79, or employed 
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time series analysis techniques and physiological signals as in Tuzcu et al. who reported a sensitivity of 70% and 
specificity of 79% for their model using heart rate variability8.

The objective of this study was twofold; firstly, to explore means of improving prediction of IVH from DFA 
through pre-processing, and secondly, to evaluate the potential of multivariable or multimodal models in the 
prediction of IVH. The latter objective focused specifically on combinations of blood pressure and respiratory 
features and inherently involved an evaluation of robustness as applied in a clinical context. The features evalu-
ated comprised of the mean (μ) as well as short- and long-term scaling exponents derived from DFA (α1 and α2, 
respectively), extracted from five different time series. These were: mean arterial pressure (MAP), systolic blood 
pressure (SBP), diastolic blood pressure (DBP) and pulse interval (PI) series as derived from the arterial blood 
pressure data, as well as the interbreath intervals (IBI) from the respiratory air flow data.

Results
Study Population.  The study cohort consisted of 27 low birth-weight (<​1500 g) infants, 8 of which subse-
quently developed IVH. We examined the differences in physiological characteristics and other metadata between 
the two groups, as summarised in Table 1. Although the IVH and non-IVH groups did not exhibit significant dif-
ferences in the collected metadata, certain clinical characteristics, namely, the mean DBP values were observed to 
be significantly different for the two groups after non-linear trend removal (p <​ 0.05). This established a founda-
tion for fitting the univariate logistic regression models, though evaluation of their overall performance requires 
reference to leave-one-out cross-validation (LOOCV) results.

Effect of Detrending.  In the initial stages of model fitting, we observed that in certain instances, the arterial 
blood pressure was subject to non-linear drift. We examined the effect of detrending the arterial blood pressure 
signal and noted that prediction performance of the fitted logistic regression models could be improved. This 
detrending affected the linear blood pressure features in particular, which also propagated to the beat-to-beat 
blood pressure values and thus the scaling exponents derived from DFA (α1 and α2, the short- and long-term 
scaling exponents, respectively). The Mann-Whitney U-test comparisons of the non-detrended features are 
shown in Table 2, where the effect of detrending was characterised by the changes in AUC and p values from the 
two-sided Mann-Whitney U-test. For example, the AUC scores of the mean DBP model improved from 0.757 to 
0.807 subsequent to detrending. A similar increase from 0.757 to 0.771 was also observed for the univariate model 
of the long-term scaling exponent of DBP (DBP α2), motivating the inclusion of this pre-processing step for the 
subsequent analyses. The histograms of mean DBP and DBP α1 are also shown in Fig. 1.

Univariate Predictors of IVH.  We fitted univariate logistic regression models using various linear and DFA 
features, taking the mean across all qualifying time windows of data for each subject. We evaluated the AUC, the 
95% confidence interval (5th, 95th percentile) according to the Delong method for determining standard error14, 
as well as the positive likelihood ratio and threshold corresponding to a specificity of 75%. These results are sum-
marised in Table 3. Overall, the short-term fractal exponents (α1) derived from the MAP, SBP and DBP signals as 
well as the mean DBP yielded the highest AUCs. Respiratory variables were not found to be strongly predictive.

Multivariable Predictors of IVH.  It was also observed that model performance could also be improved 
through combination of the predictors extracted for the univariate models, as shown in Table 4. Predictor com-
binations that were significantly correlated were excluded to mitigate effects of collinearity. Many of the multi-
variable models exhibited higher AUC scores than univariate models, with the highest being the combination of 
mean DBP and PI α2.

Variable IVH (n = 7) Non-IVH (n = 20) p

Gestational age (weeks) 26.8 ±​ 1.2 26.9 ±​ 1.8 0.781

Birthweight (g) 1120 ±​ 282 1029 ±​ 293 0.580

Sex (% male) 57.1 ±​ 49.5 65.0 ±​ 47.7 0.741

CRIBII 9 ±​ 1 9 ±​ 2 1.000

PDA (%) 85.7 ±​ 35.0 80.0 ±​ 40.0 0.774

RDS 1.0 ±​ 0.0 1.0 ±​ 0.0 1.000

Apgar 1-min 6 ±​ 1 6 ±​ 2 0.696

Apgar 5-min 7 ±​ 1 7 ±​ 1 0.421

MAP (mmHg) 32.5 ±​ 6.1 35.2 ±​ 4.7 0.422

DBP (mmHg) 25.0 ±​ 3.9 29.0 ±​ 4.6 0.050

MAPc (mmHg) 32.1 ±​ 5.6 35.5 ±​ 4.2 0.234

DBPc (mmHg) 24.6 ±​ 3.5 29.4 ±​ 4.1 0.019

Table 1.   Comparison of physiological variables between infants who later developed intraventricular 
haemorrhage (IVH) and those who did not (non-IVH). Values are reported as mean ±​ SD. cDenotes 
detrended features, CRIBII is the Clinical Risk Index for Babies score II, PDA is Patent Ductus Arteriosus and 
RDS is Respiratory Distress Syndrome. p values are derived from a two-sided Mann-Whitney U-test where 
significance is defined as p <​ 0.05.
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Similar results were obtained when evaluating all qualifying windows and with the inclusion of gestational age. 
Note however that the comparisons with the best performing univariate model (i.e. mean DBP, Table 3) were not 
statistically significant (p >​ 0.05) due to high degree of overlap. The ROC curves for a number of these models are 
displayed in Fig. 2, where the non-linear detrending process to obtain the DBPc μ feature is illustrated in Fig. 3.

Leave-One-Out Cross-Validation.  The models were further evaluated using LOOCV, where the proba-
bility estimates of each testing sample were used to construct a receiver-operator characteristic (ROC) curve15,16, 
as summarised in the latter column of Table 4. Delong comparison of these LOOCV ROC curves with the corre-
sponding LOOCV mean DBP model did not exhibit statistically-significant results (p >​ 0.05), with the exception 
of the mean DBP and SBP α1 combination.

Sensitivity Analysis.  The models used to obtain these results were based on the mean feature(s) calcu-
lated from all qualifying 10 min windows for each subject, with a 30 sec overlap. To evaluate how robust these 
results were, we examined the effect of including all individual windows rather than the mean feature per sub-
ject, of using non-overlapping windows and of including gestational age. The first two cases involved use of a 
mixed-model allowing for repeated measures while the latter involved the addition of gestational age as a predic-
tor in the existing multivariable models. In all three cases, we found that mean DBP and PI α2 remained the most 
predictive combination for IVH (where AUC =​ 0.88, 0.86 and 0.85 for the three cases, respectively, compared to 
the AUC =​ 0.92 reported in Table 4).

Discussion
Summary of findings.  This study evaluated the blood pressure and respiratory features in discerning infants 
with IVH from those without. The highest AUC achieved was 0.921 (95% CI 0.82, 1.00) by the model fitted with 
PI α2 and mean DBP. The results of cross-validation also supported this, with an AUCLOOCV of 0.821 (0.66, 0.99). 
This model exhibited a sensitivity of >​90% at a specificity of 75% which is greater than that reported for the heart 
rate variability-based model from Tuzcu et al. (70% sensitivity, 79% specificity)8. This latter cohort was of a similar 

Variable IVH Non-IVH AUC AUCc p pc

MAP

  μ 32.5 ±​ 6.1 mmHg 35.2 ±​ 4.7 mmHg 0.607 0.657 0.422 0.234

  α1 0.96 ±​ 0.17 0.78 ±​ 0.19 0.779 0.779 0.033 0.033

  α2 1.10 ±​ 0.06 1.00 ±​ 0.18 0.671 0.65 0.194 0.257

SBP

  μ 41.9 ±​ 9.7 mmHg 42.7 ±​ 5.4 mmHg 0.564 0.55 0.638 0.719

  α1 0.83 ±​ 0.11 0.69 ±​ 0.15 0.764 0.771 0.043 0.038

  α2 1.04 ±​ 0.08 0.97 ±​ 0.16 0.643 0.664 0.281 0.213

DBP

  μ 25.0 ±​ 3.9 mmHg 29.0 ±​ 4.6 mmHg 0.757 0.807 0.05 0.019

  α1 0.85 ±​ 0.12 0.68 ±​ 0.20 0.786 0.807 0.029 0.019

  α2 1.05 ±​ 0.06 0.93 ±​ 0.16 0.757 0.771 0.05 0.038

Table 2.   Effect of Detrending. Values are reported as mean ±​ SD, p values are from Mann-Whitney U-tests 
from the non-detrended data. AUC is the area under the ROC curve for prediction of IVH. Note that AUCc and 
pc are obtained from the detrended data.

Figure 1.  Normalised histograms of (a) mean DBP and (b) DBP α1 for IVH and non-IVH groups. The 
distributions for each group were based on features extracted from all individual windows which met the quality 
criteria.
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size (n =​ 24), though it was limited to very low birthweight infants (<​1000 g) as opposed to our low birthweight 
cohort, potentially contributing to the difference in IVH representation observed (41.7% compared to 29.6%). 
Although the univariate model fitted with mean DBP exhibited an AUC of 0.807 in the initial analysis, results 
from LOOCV cautioned its use as a sole predictor, with an AUC of 0.607 and a non-significant 95% confidence 
interval of (0.38, 0.88).

Effect of detrending.  Out of all the factors we examined, detrending as part of the pre-processing phase 
of analysis resulted in the greatest improvement in prediction of IVH. It rendered both mean DBP and DBP α2 
significantly different (p <​ 0.05) between the IVH and non-IVH groups, where the AUC scores for two univariate 
models fitted with these features increased from 0.757 to 0.807 and 0.771, respectively (Tables 2 and 3). These 
improvements suggest that long-term drift and/or baseline wander of the blood pressure signals, among other 
aspects of signal quality, may confound the results from DFA as well as linear parameters. The significant contri-
bution of mean DBP is of particular importance, given previous assertions that linear features alone were not an 
informative proxy of cerebral perfusion pressure17 and reports that such features were not significantly different 
between the IVH and non-IVH groups9. This relationship to DBP may also have been a reflection of a widened 
pulse pressure, seen in symptomatic patent ductus arteriosus. It is necessary to note however that this feature was 
not explicitly evaluated in the previous studies. Aside from the detrending, this analysis differed in other aspects 
including the quality control measures for window selection and the evaluation process; the features extracted 
represent the mean of all qualifying 10 min windows across the recording, rather than a single segment. In the 
clinical application of DFA to monitored signals, we strongly recommend examination of signal data to determine 
whether overall detrending is necessary prior to analysis.

Use of bivariate models.  Subsequent to detrending, a further increase in AUC achieved through fitting of 
bivariate models, where the combination of mean DBP with MAP α1 and PI α2, for example, exhibited respec-
tive scores of 0.871 and 0.921. This would suggest that relevant, non-redundant information may be captured 
using linear and DFA-based approaches in the prediction of IVH. The short-term scaling exponents for the 
beat-to-beat MAP and SBP, along with mean DBP were shown to be relatively robust markers in prediction 
of IVH for the studied cohort. Although all of the studied infants had triggered ventilation modes (synchro-
nised intermittent positive pressure ventilation), breathing termination was not employed and so the potential 
for adverse patient ventilator interaction was possible. Previous work examining the impact of patient-ventilator 
asynchrony indicates the significant potential for IVH with this phenomenon18,19. These results align with those 
previously reported9 and the altered vagal nerve activity in infants with IVH20. From further evaluation of the 
bivariate models, it was clear that the initial analysis did not necessarily translate to robust and consistent per-
formance in leave-one-out cross-validation. The model with the highest AUC in the initial analysis achieved an 
AUCLOOCV of 0.821 (0.66, 0.99), though it did not exhibit a statistically significant improvement on the univariate 

Model AUC (95% CI) p Threshold LR

MAP

  μ 0.657 (0.37, 0.95) 0.218 31.72 mmHg 2.29

  α1 0.779 (0.60, 0.96) 0.359 0.92 2.86

  α2 0.650 (0.44, 0.86) 0.839 1.08 2.40

SBP

  μ 0.550 (0.20, 0.90) 0.389 37.96 mmHg 2.29

  α1 0.771 (0.58, 0.96) 0.382 0.81 2.86

  α2 0.664 (0.43, 0.90) 0.792 0.94 1.60

DBP

  μ 0.807 (0.62, 0.99) 0.022 26.34 mmHg 2.86

  α1 0.807 (0.64, 0.97) 0.278 0.79 3.43

  α2 0.771 (0.59, 0.95) 0.415 1.02 2.80

PI

  μ 0.543 (0.25, 0.83) 0.759 50.10 ms 1.40

  α1 0.607 (0.38, 0.84) 1.000 0.42 1.40

  α2 0.707 (0.45, 0.97) 0.709 1.08 2.29

IBI

  μ 0.707 (0.46, 0.96) 0.643 115.88 ms 2.40

  α1 0.500 (0.25, 0.75) 0.568 0.52 1.14

  α2 0.557 (0.26, 0.85) 0.813 0.45 0.40

Table 3.   Univariate Logistic Regression models. Models were fitted with mean (μ), short- and long-term 
scaling exponents (α1 and α2, respectively) for five time series: mean arterial (MAP), systolic (SBP) and diastolic 
(DBP) blood pressure, as well as pulse (PI) and interbreath (IBI) intervals. Positive likelihood ratios (LR) and 
corresponding thresholds are reported at a specificity of 75%. 95% confidence intervals (CI) and p values 
reported for the AUC are derived from the Delong approach14 for determining standard error and comparison 
with the reference ROC of the non-detrended mean MAP model.
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reference model (mean DBP)14. It was interesting to note the inclusion of pulse interval-based features in the 
highest-scoring model in both the initial analysis and cross-validation, given its use as an estimate of heart rate 
variability and the reported high correlation between the two21,22. The accuracy of this estimation however, has 
not been clarified, particularly in the neonatal context, though electrocardiogram-based heart rate variability has 
been found to offer useful information in distinguishing infants with and without IVH8.

Addition of respiratory signals.  In this study, we found that the addition of respiratory signals did not 
considerably improve model performance. The fractal dynamics of respiration have been applied in the context 
of preterm infants23,24, though not with respect to IVH. As for the models fitted with interbreath interval (IBI) 
features, mechanical ventilation may have contributed to their observed lack of prediction capacity (p >​ 0.05), 
despite the relevance of respiration mechanics in the development of IVH18. It is also possible that the IBI-based 
features were not suited to characterising patient-ventilator asynchrony.

Clinical significance and application.  Hypercarbia, high ventilator pressure and patency of the ductus 
arteriosus are among the factors and events that may influence the fluctuation of blood pressure of preterm 
infants in the neonatal intensive care unit25. Infants who later developed IVH exhibited lower mean DBP and a 
higher DBP α2 (p <​ 0.05) across the entire recording in this study. Recent studies have reported a range of obser-
vations pertaining to blood pressure and IVH, with the main focus on characterising cerebral perfusion. These 
include reports of IVH being associated with the elevated diastolic closing margin17 and significant deviation 
above a defined optimal MAP value in infants who later developed IVH26.

This approach may be applied to a clinical context in a manner similar to that shown in Fig. 4, offering exam-
ples of both correct and incorrect classification of IVH from the studied cohort. A threshold may be defined 
according to the dashed line in each of the cases (a) to (d), where calculated probabilities exceeding this threshold 

Feature 1 Feature 2 AUC (95% CI) p LR AUCLOOCV

SBP α1 DBP μ 0.843 (0.68, 1.01) 0.009 2.86 0.721 (0.50, 0.94)*

PI α1 DBP μ 0.843 (0.69, 1.00) 0.014 2.86 0.643 (0.40, 0.89)

DBP α1 DBP μ 0.864 (0.72, 1.00) 0.022 2.86 0.750 (0.56, 0.94)

PI α2 MAP μ 0.864 (0.72, 1.01) 0.068 3.43 0.679 (0.46, 0.89)

MAP α1 DBP μ 0.871 (0.74, 1.01) 0.027 3.43 0.743 (0.55, 0.94)

PI α2 DBP μ 0.921 (0.82, 1.02) 0.035 4.00 0.821 (0.66, 0.99)

Table 4.   Multivariable logistic regression models. Features included mean (μ), short- and long-term scaling 
exponents (α1 and α2, respectively) for mean arterial (MAP), systolic (SBP) and diastolic (DBP) blood pressure, 
as well as pulse interval (PI) time series. LR denotes the positive likelihood ratios, the 95% confidence intervals 
(CI) are reported for the AUC. p values are derived from the Delong comparison14 with the non-detrended 
mean MAP model. The corresponding AUCs from leave-one-out cross-validation (AUCLOOCV) are also 
reported, where *denotes a statistically-significant (p <​ 0.05) difference from the Delong comparison of the 
LOOCV mean DBP model14.

Figure 2.  Receiver-Operator Characteristic Curves. These show the ROC curves for the non-detrended 
univariate mean DBP (DBP μ) model, the impact of detrending this feature (DBPc μ), the addition of a 
respiratory feature (IBI α2) as well as two of the highest-scoring models (DBP μ combined with MAP α1 and PI 
α2, respectively).
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could flag infants at high-risk of developing IVH. Further model evaluation requires validation on a larger and 
more balanced cohort to estimate the prediction error and support its potential application in a clinical context.

Limitations.  We acknowledge that this study was limited by the size of the dataset (n =​ 27) as well as rep-
resentation of IVH (29.6%), slightly lower than the referenced 35–45% of incidence reported in neonatal care 
facilities27. Model evaluation was also limited by the low number of IVH cases (n =​ 8), though our LOOCV and 
sensitivity analyses showed the main findings to be consistent. Another limiting factor was the signal quality of 
the recordings which was managed by implementing quality control measures as part of the feature extraction 
process.

Conclusion
In conclusion, this study found mean DBP and short-term scaling exponents from beat-to-beat MAP, DBP and 
SBP to be useful markers in the prediction of IVH in preterm infants. Non-linear trend removal and the inclu-
sion of additional features such as the short-term scaling exponent (α1) of MAP was able to improve model 
performance. Of the models evaluated, the one that performed consistently in both the initial analysis and 
cross-validation was fitted with mean DBP and PI α2. In a clinical context, such an approach to signal processing 
and predictive monitoring could be applied, where a running 10 min window could continuously evaluate the 
relevant features from qualifying segments of data. Following evaluation in a larger population, these features may 
be helpful in identifying infants at high-risk of developing IVH, offering caregivers more time to adjust intensive 
care treatment.

Methods
Data Collection.  Physiological data was collected from the infants within 1–3 hours of birth as part of a pro-
spective clinical investigation at a large tertiary neonatal intensive care unit in Sydney, Australia. The study was 
approved by the Sydney West Area Health Service Human Research and Ethics and conducted according to the 
World Medical Association Declaration of Helsinki. Informed parental consent was obtained in all cases.

Inclusion criteria for the cohort comprised low birthweight (<​1500 g), gestational age (<​30 weeks) and an 
absence of significant congenital anomalies. Of the 46 infants enrolled, 27 infants had arterial blood pressure 
and air flow wave recordings with sufficiently long, artefact-free segments. The average (SD) length of recording 
was 156 (34) mins. Intra-arterial blood pressure was measured using an umbilical or peripheral arterial catheter, 
following single-point calibration to atmospheric pressure, collected using a bedside patient monitor (Philips 
Agilent Systems, Philip Healthcare, North Ryde, Australia), while the raw air flow wave was acquired from a 
ventilator (Babylog 8000, Drägerwerk, Lübeck, Germany). Both signals were sampled at 1 kHz and recorded by 
an analog data acquisition system (ADInstruments, Sydney, Australia). Cranial ultrasounds were performed at 
2, 12, 24 and 36 hours then daily for the first week. The presence and grade of IVH was determined according to 
the Papile system27.

Signal Processing and Data Analysis.  Signal processing and feature extraction was completed in Python 
(Python Software Foundation, version 2.7. https://www.python.org/). Each of the arterial blood pressure and 
air flow signals were down-sampled to 125 Hz prior to analysis for computational efficiency. This frequency was 
sufficient for peak detection in both respiratory and blood pressure signals. From the downsampled signals, the 
following time series were extracted; the beat-to-beat MAP, SBP, DBP and PI, as derived from arterial blood pres-
sure, as well as IBIs derived from air flow data. The signal quality constraints of the air flow data limited extraction 
of other respiratory features such as peak flow.

Only the arterial blood pressure signal was found to exhibit significant drift, defined by non-linear trends 
in the diastolic and systolic blood pressure ranges. Thus, the detrending was applied solely to this signal, as 

Figure 3.  Detrending of overall segment. (a) shows the original signal and the corresponding non-linear 
trend, while (b) displays the signal after removal of this trend.

https://www.python.org/
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shown in Fig. 3. Such a correction would also minimally impact the derivation of the IBI-based features from 
the air flow signal. The overall trend of each signal was determined using a large-window median filter (window 
width =​ 1000 ms) on a further downsampled signal and the mean-centred trend was subsequently removed from 
the original arterial blood pressure signal. This approach was similar to the baseline wander removal that has been 
applied widely prior to feature extraction from the electrocardiogram signal28. An example of this detrending 
process is shown in Fig. 3.

The features used in IVH prediction were extracted from a running 10 min window of arterial blood pressure 
and air flow data, shifted in 30 sec increments across the total recording length. This approach was adopted to 
simulate the application of these techniques in a clinical setting, where windows which fulfilled the quality criteria 
were included for feature extraction. This criteria comprised defined ranges for the allowable number of beats 
and breaths in a given window (40–250 beats per minute and >​20 breaths per minute), a maximum limit for an 
absence of detected beats (15 sec) as well as an absence of large spikes in the arterial blood pressure signal (range 

Figure 4.  Arterial blood pressure data and the predicted probability for IVH using the highest scoring model, 
mean DBP and PI α2 for correct classification of (a) IVH and (b) non-IVH, as well as incorrect classification of 
(c) IVH and (d) non-IVH. The threshold for classifying IVH, designated by the dashed line was defined at 90% 
specificity and 85% sensitivity. Red and blue markers represent windows that exceeded and did not exceed the 
threshold, respectively.
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of beat-to-beat SBP <​30 mmHg). For each respective time series, outliers were removed by imposing a maximum 
change of 150% from the previous data point and also a maximum loss of 30% for each window. Features includ-
ing the mean (μ), short- and long-term scaling exponents (α1, α2, respectively) from DFA of the five time series 
(MAP, SBP, DBP, PI and IBI) were subsequently extracted.

Developed by Peng and co-workers10, DFA is able to quantify long-range power law correlations and accom-
modate for confounding non-stationarities often seen in real-world signals. It does this through the detrending, 
that is, linear trend removal, step prior to calculating the root-mean squared fluctuation as defined in equation 1.

∑= −
=

F n
N

y k y( ) 1 [ ( ) ]
(1)k

N

n
1

2

where y(k) is any given time series, yn(k) the local linear trend for a given segment, and N the number of data 
points in the series for a given round of analysis. The application of DFA is further explained by Thamrin et al.11.

The scaling exponent α is calculated from the gradient of the line fitted to the Log-Log relationship between n 
and F(n). In this case, the short-term scaling exponent was defined over 4–15 beats, as aligned with similar obser-
vations of this data9 and similarly defined for heart rate variability analysis of preterm infants8. The long-term 
scaling exponent was determined across 15–50 beats.

Model Fitting and Evaluation.  Statistical analysis was completed using R 3.3.1 software29. Logistic regres-
sion models were used to fit the mean of extracted predictors across all qualifying 10 min windows, while the AUC 
was used to assess accuracy in predicting IVH. Fitted models were evaluated using leave-one-out cross-validation, 
where the predicted probability of each test sample was subsequently compiled and used to generate a ROC curve 
for performance comparison.
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