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Abstract
Neurodegenerative diseases are a devastating group of conditions that cause
progressive loss of neuronal integrity, affecting cognitive and motor functioning
in an ever-increasing number of older individuals. Attempts to slow
neurodegenerative disease advancement have met with little success in the
clinic; however, a new therapeutic approach may stem from classic
interventions, such as caloric restriction, exercise, and parabiosis. For
decades, researchers have reported that these systemic-level manipulations
can promote major functional changes that extend organismal lifespan and
healthspan. Only recently, however, have the functional effects of these
interventions on the brain begun to be appreciated at a molecular and cellular
level. The potential to counteract the effects of aging in the brain, in effect
rejuvenating the aged brain, could offer broad therapeutic potential to combat
dementia-related neurodegenerative disease in the elderly. In particular, results
from heterochronic parabiosis and young plasma administration studies
indicate that pro-aging and rejuvenating factors exist in the circulation that can
independently promote or reverse age-related phenotypes. The recent
demonstration that human umbilical cord blood similarly functions to rejuvenate
the aged brain further advances this work to clinical translation. In this review,
we focus on these blood-based rejuvenation strategies and their capacity to
delay age-related molecular and functional decline in the aging brain. We
discuss new findings that extend the beneficial effects of young blood to
neurodegenerative disease models. Lastly, we explore the translational
potential of blood-based interventions, highlighting current clinical trials aimed
at addressing therapeutic applications for the treatment of dementia-related
neurodegenerative disease in humans.
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Introduction
Aging is the major risk factor for dementia-related neurodegenera-
tive disease in the elderly. In the brain, aging is accompanied by a 
series of cellular and functional impairments that collectively drive 
vulnerability to neurodegenerative disease (Figure 1). It is impor-
tant to take into account that, along with cellular and functional 
decline in the aged brain, organismal aging is broadly associated 
with global “hallmarks of aging” across all tissues in the body, 
such as stem cell dysfunction, genomic and protein instability, and 
altered intracellular communication, to name a few1. Consequently, 
age-related vulnerability to neurodegenerative disease occurs on 
a background of organismal-level functional decline, and as such 

interventions to counteract this vulnerability in the aged brain will 
benefit from a more systemic approach.

In the United States, approximately 15% of the population, 46 million  
people, are over the age of 65. The number of older adults is pre-
dicted to increase to 24% of the population, about 98 million peo-
ple, by 20602. Unfortunately, this increase in lifespan has been  
accompanied by a drastic rise in age-associated disease. For example, 
Alzheimer’s disease, one of multiple dementia-related neurodegen-
erative diseases primarily seen in adults over the age of 65, affected 
5 million people in 2013 and is predicted to affect 14 million by 
20503 in the United States. Beyond the personal cost of living with 
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Figure 1. Systemic brain rejuvenation strategies. Hallmarks of brain aging amenable to rejuvenation (middle panel) include decreased 
regenerative capacity (neurogenesis), impaired synaptic plasticity, increased inflammation, vascular remodeling, increased protein 
aggregation, and impaired cognitive function. Systemic interventions (top panel), such as caloric restriction, exercise, and blood plasma 
administration, have been shown to rejuvenate hallmarks of brain aging (left panel) and ameliorate exacerbated pathology in models of 
neurodegenerative disease (right panel). Cellular or functional rejuvenation elicited by systemic interventions is denoted by a check (✔), lack 
of rejuvenation is denoted by a dash (–), and yet-to-be-determined effects are denoted by a question mark (?).
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dementia-related neurodegenerative diseases, the monetary cost to 
society is in the billions. Thus, while longer lifespan indicates suc-
cessful scientific and medical progress, it requires a corresponding 
increase in healthspan, the years lived free from disease, to prove 
truly transformative for human quality of life. The capacity to reju-
venate the aged brain is emerging as a tantalizing prospect for the 
treatment of dementia-related neurodegenerative diseases of aging4. 
Results from animal studies involving systemic interventions that 
promote healthspan—including a decrease in caloric intake without 
malnutrition also referred to as caloric restriction (CR), exercise, 
and exposure to a young systemic environment—demonstrate the 
rejuvenation of regenerative and functional capacity in aged tissues 
(Figure 1). It is now evident that such rejuvenation even extends to 
the aged brain at the regenerative, functional, and cognitive level. 
Therefore, the application of proven systemic interventions that 
extend healthspan may prove key in our ability to restore cellular 
and functional decline in the aging brain to prevent onset, or even 
counteract the progression, of dementia-related neurodegenerative 
disease in the elderly.

In this review, we will focus on blood-based brain rejuvenation 
strategies and their application to animal models of normal aging 
and neurodegenerative disease. We will discuss future therapeutic 
applications to brain rejuvenation and highlight ongoing clinical  
trials applying these findings to human disease.

Cellular and functional hallmarks of brain aging
Major hallmarks of brain aging include decreased regenerative 
capacity, altered vasculature, increased neuroinflammation, and 
impairments in synaptic plasticity that culminate in cognitive  
dysfunction (Figure 1)5–7. Neurodegenerative disease exacerbates 
these aging-associated cellular and functional hallmarks and intro-
duces gross cellular loss, archetypal of neurodegeneration8. Here 
we provide a brief overview of key hallmarks of brain aging.

Regenerative capacity in the brain is mediated by the generation 
of new neurons from neural stem cells, a process known as neu-
rogenesis, which precipitously declines with age9–11. Neurogenesis 
predominantly occurs in two neurogenic zones: the dentate gyrus 
of the hippocampus12, a region involved in spatial and episodic  
learning and memory, and the subventricular zone lining the lateral 
ventricles13. Owing to known associations between adult neurogen-
esis and cognitive function, age-related loss in regenerative capac-
ity has been proposed to contribute to cognitive decline, although 
the direct link between the two processes in the context of aging  
has yet to be resolved14,15. Neurogenesis is tightly linked to  
nutritive sources provided by the cerebrovasculature through 
the blood–brain barrier, an anatomical separation between the  
central nervous system and the periphery consisting of the vascu-
lar cells and glia. With age, cerebral blood flow and blood–brain 
barrier integrity also decline, compromising metabolic support for  
neurogenesis and proper neuronal signaling and promoting inflam-
matory responses by resident immune cells16,17. Correspondingly, 
increased activation of astrocytes and microglia underlies the neu-
roinflammatory hallmark of brain aging, accompanied by increased 
pro-inflammatory cytokine production8. Such pro-inflammatory 
changes have now been shown to contribute to vulnerability and 

advancement of neurodegenerative disease through processes such 
as accumulation of complement factors (a component of innate 
immunity) in microglia8,18. At a functional level, synaptic plastic-
ity also declines with age19. For example, electrophysiology studies 
reveal an age-related decline in long-term potentiation (LTP), an 
electrophysiological measure correlated with learning and memory. 
Functional impairments are also accompanied by corresponding 
molecular changes in the expression of plasticity-related factors 
such as immediate early genes. In the context of neurodegenera-
tive disease, an exacerbated decline in synaptic plasticity occurs20. 
Consistent with synaptic dysfunction, cognitive processes such as 
learning and memory also decline with age. Neurodegenerative  
disease magnifies all hallmarks of brain aging while also promoting 
the accumulation of damaged or misfolded protein aggregates and 
gross neurodegeneration8, which collectively exacerbate cognitive 
impairment21.

Systemic interventions: caloric restriction, exercise, 
parabiosis, and healthspan
Multiple lines of evidence in animal models point to the malle-
ability of lifespan22–31. The initiation of rejuvenating interventions 
functioning at the systemic level, for example CR, in later stages 
of life was first demonstrated to improve the overall lifespan of 
an aged organism over 30 years ago32–34. More recently, systemi-
cally mediated rejuvenating interventions such as CR, exercise, and  
heterochronic parabiosis (in which the circulatory systems of a 
young and old animal are joined) have succeeded in rejuvenating 
aged tissues—including muscle, liver, heart, pancreas, bone, spinal 
cord, and brain—to improve organismal healthspan35–42.

Caloric restriction
The most robust and reliably replicated systemic intervention to 
improve lifespan and/or healthspan in rodents and non-human 
primates is CR43,44. In primates, CR has proved to be protective 
against the development of neoplasia, cardiovascular disease, and 
glucoregulatory impairment as well as gray matter loss in the 
brain45. In rodent models, CR leads to beneficial metabolic changes,  
protection from oxidative stress, neurotrophic factor production, 
increased autophagy, and neurogenesis46–49. CR also promotes the 
maintenance of cerebral blood flow and white matter integrity with 
age50,51. While CR has been demonstrated to improve spatial learn-
ing and memory in aged mice51, global effects on cognition remain 
unresolved, as CR failed to improve other hippocampal-dependent 
cognitive processes52–54. It is suggested that such inconsistent results 
could be due to the varied macronutrient ratios in CR regimes, the 
age of CR onset, and the metabolic heterogeneity of the diverse cell 
types in the hippocampus55–57. Nevertheless, CR reliably improves 
overall organismal healthspan and likewise improves behavio-
ral and cognitive metrics in animal models of neurodegenerative  
disease58,59. While the potential benefits of CR for human health-
span are evident, limitations of feasibility, adequate health moni-
toring, and adherence remain. Indeed, in a long-term CR study  
conducted by the CALERIE Research Group, low adherence decreased 
the average caloric deficit from the anticipated 25% to 11.7% over 
a 2-year period, offsetting major expected beneficial metabolic  
outcomes60. Consequently, limits to the application of CR need to 
be further addressed before widespread therapeutic application.
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Exercise
Robust benefits of exercise have also been consistently observed 
to increase healthspan, although its role in extending lifespan in 
mice remains obfuscated61–63. Exercise has been shown to improve 
a wide range of age-related cellular and functional impairments 
throughout the body. For example, frailty, which refers to a global 
decline in function that encompasses grip strength, activity, overall 
energy, and unintentional weight loss, is amenable to the effects 
of exercise17,63,64. In rodent models, exercise reduces age-associated 
frailty through increasing skeletal muscle function63 and has been 
shown to improve grip strength and nesting and burrowing behav-
iors even when initiated at middle age17. In the normal aged brain, 
exercise has been shown to enhance regenerative capacity in aged 
mice by promoting hippocampal neurogenesis, effects that corre-
lated with improved learning and memory65. Furthermore, exercise 
also improved broad cellular hallmarks of brain aging in aged mice, 
including increased synaptic plasticity, improved neurovascular 
integrity, and decreased microglia activation17,66,67. In the context of 
neurodegenerative disease, researchers have utilized mouse models 
of Alzheimer’s disease to demonstrate that exercise is able to sup-
press inflammatory cytokines, increase the expression of antioxi-
dant enzymes, improve synaptic function in the hippocampus, and 
enhance hippocampal-dependent learning and memory68. Researchers  
have further explored the relationship between physical exercise, 
healthspan, and cognitive function in human populations. Epide-
miological studies demonstrate that physical activity is associated 
with better overall survival and function in older adults compared to 
their sedentary counterparts69,70. It has been proposed that such ben-
efits in elderly humans may be the result of counteracting muscle 
weakness and frailty as well as reducing circulating inflammatory  
markers71,72, consistent with animal studies. Exercise is also reported 
to reduce risk factors for cardiovascular disease, such as hyperten-
sion and metabolic syndrome71, as well as reduce the risk of mild 
cognitive impairment later in life73–76. From a neurodegenerative dis-
ease perspective, a 6-month program of physical exercise in adults 
over the age of 50 years who are at risk for Alzheimer’s disease also 
showed significantly improved cognition over an 18-month follow-up  
period77. While the potential for human application exists, limita-
tions should be noted, with evidence in humans indicating that the 
perception of physical frailty or poor health alone can decrease 
adherence in the elderly78. Notwithstanding, these studies point to 
the capacity of exercise to extend healthspan and rejuvenate cellular 
and functional hallmarks of brain aging, with direct relevance to 
neurodegenerative diseases, such as Alzheimer’s disease.

Parabiosis
Recently, the classical model of heterochronic parabiosis has  
re-emerged as an experimental platform to explore the intricate 
interplay between the systemic environment and organismal aging. 
To date, heterochronic parabiosis experiments have been used to 
explore the effects of aging throughout the body in tissues including 
muscle, pancreas, bone, heart, and brain35–38,40,42,79,80. Consistent with 
beneficial effects observed with exercise, the exposure of an aged 
mouse to a youthful systemic environment through heterochronic 
parabiosis likewise rejuvenates muscle function through decreased 
fibrogenic potential and improved regenerative capacity36–38.  
Moreover, heterochronic parabiosis also reversed cardiac hypertrophy  
and restored bone healing capacity in aged mice35,42. Excitingly, 

rejuvenating effects of heterochronic parabiosis are observed in 
the aged brain, indicating blood-borne mechanisms can counteract  
cellular and functional age-related neuronal decline39,79–81.

Systemic interventions: old blood and brain aging
Heterochronic parabiosis studies have also pointed to a role for 
old blood in driving brain aging79. Regenerative capacity in young  
heterochronic parabionts is impaired, with neurogenesis decreasing 
in both the hippocampus and the subventricular zone neurogenic 
niches after exposure to old blood79,80. Interestingly, the detrimen-
tal effects of old blood observed in young heterochronic parabi-
onts are specific to blood derived from old, but not middle-aged,  
animals80. These data begin to tease apart the kinetics of circulat-
ing factors in old blood, defining ages at which to target pro-aging  
factors as a therapeutic approach. An independent approach to inves-
tigate the effects of blood exchange was recently developed using a  
microfluidic-based blood exchange device in rodents82. With the use 
of this device, mice received a single heterochronic blood transfu-
sion with whole blood derived from young or old mice, equivalent 
to 50% of total blood volume. Short-term exposure to old blood 
corroborated previous observations in the heterochronic parabiosis 
model that show an aged systemic environment negatively affects 
hippocampal adult neurogenesis. Further evidence of the pro-aging 
effects of old blood come from direct systemic interventions with 
old blood plasma injections. Short-term systemic administration of 
old plasma recapitulates the effects of heterochronic parabiosis on 
adult neurogenesis, implicating circulating factors in the effects of 
old blood82. Moreover, long-term administration of old plasma over 
one month also resulted in impaired hippocampal-dependent learn-
ing and memory79.

Thus far, only a few isolated circulating factors have been  
identified to mediate the effects of old blood. For example, the 
pleiotropic cytokine transforming growth factor beta (TGF-β) 
was identified to increase with age in both the circulation and the 
brain83. Inhibition of TGF-β signaling systemically and locally 
by RNA interference or by pharmacological inhibition with  
TGF-β receptor kinase Alk5 inhibitor enhanced neurogenesis in 
the aged hippocampus83. Using a proteomics-based approach in  
combination with heterochronic parabiosis, additional immune-
related systemic pro-aging factors have been identified79. In particu-
lar, the C-C motif chemokine 11 (CCL11) and beta-2 microglobulin 
(B2M) have been shown to negatively regulate neurogenesis and  
cognitive function in the hippocampus79,81. Moreover, using genetic 
knockout studies, researchers have shown that the loss of B2M 
prevents, in part, the aging-associated decline in neurogenesis and 
cognitive function at old age81. Altogether, these results open up 
the possibility that functional rejuvenation in the aged brain may 
be possible by targeting specific circulating factors in old blood, 
potentially through interventions such as small-molecule-mediated 
pharmacological inhibition or the administration of neutralizing 
antibodies.

Systemic interventions: young blood and brain 
rejuvenation
Evaluation of brain aging hallmarks in old heterochronic parabi-
onts has further bolstered our appreciation for the inherent plastic-
ity of the aged brain. Notably, regenerative capacity in the aged  
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hippocampus and subventricular zone of heterochronic parabionts 
was enhanced after exposure to a young systemic environment39,80. 
This rejuvenating potential was maintained at a cell autonomous 
level with neural stem cells from old heterochronic parabionts 
showing enhanced self-renewal potential in vitro80. Vasculariza-
tion of the neurogenic niche is known to influence neural stem cell 
function84,85, and correspondingly heterochronic parabiosis also 
restored blood vessel volume in the aged subventricular zone neu-
rogenic niche to youthful levels80. Beyond regenerative function, 
exposure to a young systemic environment also enhanced synap-
tic plasticity, eliciting an increase in the expression of immediate 
early genes and the density of dendritic spines as well as enhance-
ments in LTP39. At a cognitive level, long-term administration of 
young plasma over one month was sufficient to reverse cognitive  
impairments in hippocampal-dependent learning and memory 
in old mice through increased activation of the transcription  
factor cAMP response element binding protein (CREB)39. Consist-
ently, old heterochronic parabionts that were separated from their 
young partner also demonstrated improvements in their olfac-
tory discrimination ability compared to separated old isochronic  
controls. In a pre-clinical experiment, human umbilical  
cord-blood-derived plasma was demonstrated to similarly enhance 
immediate early gene expression, increase LTP, and improve  
cognitive function in aged mice86. This demonstration of the  
rejuvenating potential of human umbilical cord blood in mice 
strengthens the possibility that human blood can also be used to 
elicit brain rejuvenation in humans.

Thus far, growth differentiation factor 11 (GDF11), colony- 
stimulating factor 2 (CSF2), and tissue inhibitor of metalloprotei-
nases 2 (TIMP2) have been identified as rejuvenating factors in 
young adult and/or juvenile blood35,86. While its role in cardiac and 
skeletal muscle rejuvenation is currently under discussion35,38,87, 
GDF11 was demonstrated to enhance neurogenesis and cerebral 
blood flow in aged mice when systemically administered80. Hinting  
at the multifactorial nature of young plasma, TIMP2 or CSF2 
administration was also shown to enhance immediate early gene 
expression, LTP, and cognitive performance in aged mice86. Despite 
their shared rejuvenating effects, GDF11 was identified in young 
adult mouse plasma, while TIMP2 and CSF2 were identified in 
human umbilical cord blood, a comparatively early developmental 
stage. These distinctions again point to the importance of kinetics 
in determining circulating factor changes35,86. As more insight into 
the rejuvenating potential of young blood is obtained, it becomes 
evident that research is necessary to identify a breadth of factors 
by which to reverse global hallmarks of brain aging. While the  
burgeoning field of rejuvenation research is fast growing, and 
mounting evidence supports the translation of these interventions 
to humans, fundamental questions pertinent to therapeutic applica-
tions remain unexplored—in particular, how long lasting are the 
rejuvenating effects of young blood in the aged brain?

Systemic interventions: young blood and 
neurodegenerative disease
Current neurodegenerative disease animal models recapitulate many 
pathologies observed in humans, including amyloid plaque depo-
sition, tau phosphorylation, increased neuroinflammation, altered 

synaptic plasticity, and cognitive impairments88. Despite their  
success in dissecting cellular and molecular changes involved in  
disease progression, current models are limited by the increasing 
array of transgenes they rely on, complicating interpretations and 
translation to human disease88. Additionally, such brain-centric  
models have also precluded the possibility of investigating the sys-
temic contribution to neurodegenerative disease. This is especially 
limiting when one considers the number of systemic diseases, such as 
diabetes and atherosclerosis, for which neurodegeneration is a com-
mon co-morbidity89. Nevertheless, combining neurodegenerative  
disease animal models with systemic interventions, such as  
heterochronic parabiosis, has yielded promising results indicating 
the potential of young blood to counteract a number of neurodegen-
erative pathologies (Figure 1).

To date, young blood studies have focused on animal models of 
Alzheimer’s disease. Changes in Alzheimer’s disease-related  
pathology were first investigated in parabiosis studies in which 
young transgenic mice carrying the human amyloid precursor 
protein (APP) gene containing Swedish mutations and the human 
presenilin (PS1) gene encoding the deleted exon 9 mutation 
(APPswe/PS1dE9) were joined with age-matched young wild-type 
animals90. Exposure to a young wild-type systemic environment 
resulted in decreased plaque accumulation in APPswe/PS1dE9 
transgenic mice after six months of parabiosis90. Additionally, pro-
inflammatory cytokines, levels of tau phosphorylation, and gliosis 
were reduced in transgenic mice following exposure to a young 
wild-type circulatory system90. While this was not a direct effect of 
rejuvenation, as all parabionts were age-matched isochronic pairs, 
it does suggest a significant role for the systemic environment in 
the progression of neurodegenerative disease. Correspondingly, the 
use of peritoneal dialysis to filter amyloid-beta from the blood of 
APPswe/PS1dE9 transgenic mice also ameliorated Alzheimer’s-
associated phenotypes, further demonstrating a role for the systemic 
environment in disease pathogenesis91. More recently, the effect of 
young blood in the context of aging was investigated using hetero-
chronic parabiosis in a complementary transgenic mouse model of 
Alzheimer’s disease carrying the human APP gene harboring human 
familial London and Swedish mutations92. This study demonstrated 
increased expression of the synaptic marker synaptophysin and the 
pro-survival calcium binding protein calbindin in aged APP hetero-
chronic parabionts exposed to a young systemic environment92. No 
changes in amyloid plaque deposition or microglia activation were 
observed92. Failure of heterochronic parabiosis to reverse plaque 
deposition and neuroinflammation after significant disease progres-
sion at old age suggests that it may be necessary to initiate systemic 
interventions prior to significant disease progression. Additionally, 
the duration of parabiosis used in the two studies above differed 
greatly from a more long-term six-month duration90 to a shorter 
five-week duration92, indicating that different disease patholo-
gies may also prove amenable to improvements at vastly different 
timeframes. Lastly, at a cognitive level, injections of young wild-
type plasma into aged APP transgenic mice also elicited improve-
ments in hippocampal-dependent learning and memory92. Of 
note, the benefits of administering specific pro-youthful factors in  
neurodegenerative disease models have yet to be tested. How-
ever, treatment with neurotrophic compounds has previously been  
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demonstrated to attenuate neurodegenerative disease pathology in 
a triple-transgenic Alzheimer’s disease mouse model harboring 
human APPswe, PS1, and tau mutations93,94. These emerging studies 
raise significant translational potential for blood-based therapeutic 
approaches to counter neurodegenerative disease progression at a 
functional and cognitive level.

Blood-based clinical trials for dementia-related 
neurodegenerative disease
Systemic interventions, including CR and exercise, have been  
previously evaluated in clinical trials, demonstrating beneficial 
effects on human healthspan and cognition (reviewed above).  
Notwithstanding, physical and technical barriers to adherence 
remain in the therapeutic application of exercise and CR. Coupled 
with promising results from young blood studies in animal models, 
particularly the recent demonstration of the rejuvenating effects of 
human umbilical cord plasma, researchers are now working to trans-
late alternative blood-based systemic interventions to the clinic.  
Currently, a handful of ongoing clinical trials are seeking to identify 
biomarkers of healthspan and cognitive decline as well as explor-
ing the potential of blood-based therapeutic interventions for the  
treatment of dementia-related neurodegenerative disease.

The Genetic and Epigenetic Signatures of Translational Aging 
Laboratory Testing (GESTALT) trial has taken a holistic approach 
to identifying biomarkers of healthspan95. The researchers aim to 
correlate biomarkers from blood, muscle, and skin with perform-
ance in a range of physical and cognitive exams for a 10-year period 
in healthy adults over the age of 20. They will assess peripheral 
blood mononuclear cells compared to muscle and skin biomarker 
data to assess systemic versus tissue-derived age-related changes 
and investigate relationships between changes in biomarker levels 
and hallmarks of aging, such as cognitive decline and increased 
inflammation. A second trial run by the Stanford Memory and 
Aging Study aims to identify proteins in blood and cerebro-
spinal fluid (CSF) of healthy older adults (60–90 years old) that  
correlate with changes from magnetic resonance imaging (MRI), 
neuropsychological and neurological testing, and memory  
performance96. Stanford University is also conducting a longi-
tudinal study, the Healthy Brain Aging Study, that seeks to iden-
tify blood and CSF biomarkers associated with MRI and cogni-
tive testing in patients with dementia-related neurodegenerative  
diseases97. Uniquely, this study aims to follow enrollees over 
time, ending in eventual brain donation to obtain a more complete  
assessment of disease progression. Collectively, these biomarker 
studies will be crucial in identifying potential indicators of human 
aging and early development of neurodegenerative disease-related 
cognitive decline.

To explore the translational potential of young plasma as a treat-
ment for neurodegenerative disease-related cognitive decline, 
two major studies were independently initiated. The first study, 
PLasma for Alzheimer SymptoM Amelioration (PLASMA), was 
initiated in 2014 by Stanford University in collaboration with 
Alkahest, a company based in San Carlos, California98. This study 
enrolled patients with mild-to-moderate Alzheimer’s disease for  

infusions of one unit of plasma derived from males aged 30 
years or younger once weekly for four weeks. While the primary  
outcome is to determine the feasibility and safety of young plasma 
administration, the researchers will assess memory perform-
ance, psychological status, and MRI analysis. Concurrently, they 
will analyze plasma levels of factors previously associated with  
neurodegenerative disease. The second study, Young Donor Plasma 
Transfusion of Age-Related Biomarkers, is being conducted by 
the company Ambrosia, a startup based in Monterey, California99. 
In contrast to the PLASMA study, enrollees in the Ambrosia trial 
can be healthy or disease-affected individuals over 35 years of age. 
Enrollees will receive a single infusion of plasma from young donors 
aged 16–25. Researchers will then assess a specific panel of plasma 
factors previously associated with aging and neurodegenerative 
hallmarks, such as inflammation, neurogenesis, and amyloid plaque 
deposition. Of note, a number of concerns have been raised with 
the design of the Ambrosia-led study, including the omission of an 
independent placebo control group100. Lastly, the potential of using 
young plasma interventions is also being explored in a broader con-
text of neurodegenerative disease, including Parkinson’s disease101, 
progressive supranuclear palsy102, and acute stroke103. While any of 
these studies has yet to yield results, the outcomes from the young 
plasma administration trials, coupled with the perspective gained 
from the extensive biomarker studies, will provide a more complete 
picture of potential pro-aging and rejuvenating circulating factors 
that can be targeted to increase healthspan and ameliorate neurode-
generative disease in the elderly.

Conclusion
Systemic interventions, such as CR, exercise, and young blood 
administration, have reliably ameliorated many facets of functional 
and cognitive decline in rodent models of aging and neurodegen-
erative disease by targeting molecular and cellular pathways con-
served across species (Figure 1). Collectively, the rejuvenating 
power of these systemic interventions has peaked interest in the 
public at large for their potential therapeutic translation to humans.  
Coupled with the most recent reports that human cord-blood-derived  
plasma proteins can also counteract age-related cognitive impair-
ments in aged mice, the possibility for brain rejuvenation strate-
gies in humans is increasingly strengthened. To that end, mul-
tiple clinical trials are now underway to test the safety and  
efficacy of systemic brain rejuvenation strategies in the elderly 
under normal aging and neurodegenerative disease conditions. 
While current clinical trials have limitations, they are based on a 
strong foundation of animal research, with much reason for excite-
ment in the potential to develop effective systemic strategies for 
the treatment of dementia-related neurodegenerative disease.  
Looking toward the future, barriers posed by the idiopathic nature 
of many neurodegenerative diseases, unknown mechanisms  
driving the rejuvenating effects of blood, and added inter-individ-
ual variability introduced by human subjects must now be over-
come in the pursuit to fully tap into the therapeutic potential of 
systemic brain rejuvenation strategies. Additionally, remaining 
questions as to how pro-aging and rejuvenating factors in blood can 
be manipulated in concert to maximize the potential therapeutic  
benefit to patients affected by neurodegenerative disease must  
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also be addressed, providing a rich scientific field of inquiry to 
explore. Broadly, future research investigating the potential for 
brain rejuvenation may not only impact human health but also 
yield fundamental understanding of the biological mechanisms  
governing the aging process itself.
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