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Abstract

Epigenomic analysis efforts have so far focused on the multiple layers of epigenomic information 

within individual cell types. With the rapidly increasing diversity of epigenomically mapped cell 

types, unprecedented opportunities for comparative analysis of epigenomes are opening up. One 

such opportunity is to map the bifurcating tree of cellular differentiation. Another is to understand 

the epigenomically mediated effects of mutations, environmental influences, and disease 

processes. Comparative analysis of epigenomes therefore has the potential to provide wide-

ranging fresh insights into basic biology and human disease. The realization of this potential will 

critically depend on availability of a cyberinfrastructure that will scale with the volume of data and 

diversity of applications and a number of other computational challenges.

Introduction

Multiple layers of epigenomic information are being mapped at rapidly decreasing cost 

using ChIP-seq, MeDIP-seq, RRBS-seq, bisulfite-seq, RNA-seq, small-RNA-seq, DNAse-

hypersensitivity-seq, 3C-seq, 5C and other “*-seq” assays and their “*-chip” cousins. 

Integrative analysis of epigenomic information has so far focused on multiple layers of 

epigenomic information within individual sample types1 2 3 4. The most recent achievement 

in this regard is computational inference of a code-book of chromatin states5 defined by 

combinations of histone marks.

Until recently, epigenomic information was only available from a few samples, but the 

situation is about to change. The systematic sampling of a diversity of cell types by the NIH 

Epigenomics Roadmap Intitiative6 and by the increasing applications of “*-seq” assays by 

the wider research community is likely to produce on the order of hundred epigenomes 

within a year. The DNA sequencing cost, which is still limiting for the adoption of “*-seq” 

assays is halving every six months. This strong and steady trend is enabling mapping of 

epigenomes in the context of smaller, frequently disease-focused projects. The ever denser 

sampling of the space of epigenomic variation by large and small projects alike is opening 

unprecedented opportunities for discovery through comparative analysis of epigenomes.

Comparative analysis of epigenomes has two clear precedents – analysis of genomic 

variation and evolutionary conservation and analysis of perturbations of gene expression 

patterns. Methodological achievements such as Gene Set Enrichment analysis7, and the 

Connectivity Map8 point to analogous opportunities in the analysis of epigenomic 

perturbations. Yet the unique character and diversity of epigenomic variation calls for fresh 

approaches. Epigenomes come mostly in the form of quantitative measurements at various 
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levels of resolution, from the basepair-level resolution of methylation levels detected by 

whole-genome bisulfite sequencing, to the >100bp level resolution maps of MeDIP-seq 

methylation maps or histone marks 9. Unlike the gene-centric measurements expression 

levels, epigenomic signals are spread throughout the genome and not uniquely attached to 

any specific genomic element.

Epigenomic variation spans unusually wide physical and time scales and cuts across a 

variety of biological processes (Fig. 1). Many molecular processes, including transcriptional 

regulation, splicing, DNA recombination, replication, and repair10 leave footprints within 

multiple layers of epigenomic information. Epigenomic diversity spans multiple time scales, 

ranging from short-term physiological processes such as memory formation11 and cell 

differentiation12, to long term processes such as aging13 and evolutionary variation14. 

Additional dimensions of epigenomic variation are influenced by genetic, environmental, 

disease-associated and experimental perturbations.

In the following we first review prospects for two specific applications of comparative 

analysis of epigenomes and then consider relevant computational and cyberinfrastructure 

challenges.

Mapping the bifurcating tree of cell differentiation

Waddington's iconic epigenetic landscape (Fig 1) provides a visual analogy for 

understanding cell differentiation in systems biology terms. The ball on the top is a cell at a 

particular point in a multi-dimensional phase space (“state space” in modern systems 

biology terms). Each dimension in the state space represents a quantitative measurement of a 

molecular state such as the expression level of a gene, degree of methylation of a particular 

enhancer, promoter, or other chemical modification such as acetylation of a histone tail in a 

particular nucleosome. Waddington's trick was to reduce the state space that has billions of 

dimensions into a three-dimensional representation that still captures the two key aspects of 

the dynamics of the system – the bifurcating branching pattern and canalisation (the degree 

of stabilizing constraint acting along particular trajectories, referred to as “creodes” by 

Waddington). Deep valleys indicate a high degree of “canalisation” while shallow valleys 

indicate a low degree of canalisation, and therefore an elevated sensitivity to perturbations 

due to environmental influences or mutations.

An interesting question is whether the epigenomes from a diversity of related cell types will 

provide sufficient information to infer the bifurcating branching patterns of the epigenetic 

landscape, as illustrated in Fig 1. While the question is far from being settled, recent studies 

of differentiation mediated by the Polycomb-Trithorax system provide hints that this will be 

possible. It is now recognized that many CpG island genes developmentally regulated by the 

Polycomb-Trithorax system in embryonic stem cells reside in the “bivalent” or “poised” 

state defined by the presence of both activating H3K4me3 and inactivating H3K27me3 

marks15. The marks are resolved into an active or inactive state upon differentiation. The 

understanding of the epigenomic footprint of the Polycomb-Trithorax system was recently 

applied to identify an extensive H3K27me3 program shared by pancreatic beta cells and 

acinar cells, reflecting their common developmental history16. In sharp contrast to the 
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extensive H3K27me3 program indicating endodermal pancreatic origin of beta cells, their 

gene expression signature largely resembles that of ectoderm-derived neural tissues. The 

study provided a definitive example of an epigenomic signature of cell lineage control by 

showing that the neural expression program was co-opted during late pancreatic cell 

differentiation through selective activation of a small number of transcriptional regulators 

involving removal of inactivating H3K27me3 marks. Interestingly, in this case not only was 

the reconstruction of the lineage informative but so was the deviation from the bifurcating 

pattern.

Assuming that epigenomes contain sufficient information to reconstruct the presumably 

bifurcating patterns, the question of methodology arises. One candidate is the cladistic 

method17. This method was fruitful in recovering evolutionary branching patterns of 

speciation based on genomic sequence, and with some adaptations to epigenomic data, may 

prove useful for inferring epigenetic branching patterns of cellular differentiation.

Detecting and comparing epigenomic perturbations

Epigenome comparisons will deepen our understanding of consequences of genetic, 

environmental, and disease-related perturbations (Fig 1). Comparisons of epigenomes 

following such perturbations are likely to provide insights into the mechanistic basis of their 

phenotypic expressions. For example, a sequence variant mimicking the epigenomic effect 

of a drug may point to the drug target or drug's mechanism of action.

The pervasiveness and nature of effects of human genomic variation on the epigenome are 

currently just beginning to be understood18, with the exception of relatively well understood 

genomic variants causing human diseases. Two types of such variants are known to exist – 

those acting in trans via changes in epigenome maintenance such as the Rett and ICF 

syndromes, and those acting in cis such as the Fragile X and Facioscapulohumeral Muscular 

Dystrophy (FSHMD). A key question is how frequently do sequence variants cause changes 

in the epigenome? Even subtle mutations in trans may affect the whole epigenome and 

therefore be detectable. The detection of epigenomic phenotypes of mutations in cis will be 

aided by the proximity of the mutations and their phenotypes, as is the case in the analogous 

context of eQTL mapping.

The information about DNA sequence variation provided as a “side-benefit” of *-seq assays 

provides an exceptional opportunity to understand the effects of genomic variation on the 

epigenome. In heterozygous SNP loci, the “*-seq” assays provide allele-specific information 

about epigenomic states. The epigenomic differences between two alleles (homologous 

chromosomes) may be “sequence dependent”, i.e. may associate with a sequence variant on 

the same chromosome. The sequence variant may in this case even be the cause of the allele-

specific epigenomic change. An opposite situation, due to imprinting, may be recognized by 

an “allelic flip” – a situation where two alleles at a specific locus display reverse biases in 

two samples due to reversed parents of origin.

The first high-resolution genome-wide survey of sequence-dependent and allele-specific 

methylation in humans was reported earlier this year19. The study found that sequence 

variants have pervasive effects on the epigenome. A large degree of allelic variation 
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between epigenomes was observed. A large fraction of this variation was not attributable to 

imprinting or X inactivation, and is therefore likely due to sequence variants acting in cis. 

This indicates that epigenome comparisons may shed light of the functional consequences of 

an increasing catalogue of sequence variants within the >98% non-protein-coding fraction of 

the human genome. In this regard, a specific plan has been proposed20 to utilize the 

epigenomic allelic imbalance data to identify SNPs of functional significance within critical 

regions detected by GWAS studies.

Epigenome comparisons may also help identify functional consequences of structural 

variants. A recent study21 provides indirect evidence that the effects of copy number 

variants on the epigenome may be widespread. The study reports that the effects of copy 

number variants on gene expression are not limited to the genes within copy-altered loci, as 

commonly assumed. In fact, most of the genes affected reside far away from the structural 

alteration, leading the authors to hypothesize that the effects of structural variants may be 

mediated by local changes in chromatin structure. Epigenome comparisons will likely be 

employed to test this hypothesis.

Computational and engineering challenges ahead

An inherent challenge for epigenome comparison comes from the fact that epigenomic 

signals are not as structured as is the sequence of letters of genomic DNA or the set of 

quantitative measurements of gene expression obtained by a gene chip experiment. The level 

of resolution of epigenomic signals varies either due to the nature of the assay – from the 

basepair level of resolution of methylation levels of specific cytosines determined by 

bisulfite sequencing to the at most hundred basepair level of resolution of MeDIP assays – 

or is inherent as is the case for modifications of histone tails which do not correspond to any 

specific basepair of genomic DNA. There are a number of different solutions to this 

problem. One is as averaging signals over specific window sizes or over genomic features 

such as exons, introns or enhancer elements. Another alternative is the natural parsing of 

epigenomic signals into discrete peaks – a solution suitable for punctate peaks such as 

trimethylation of H3K4 but not suitable for the broad peaks associated with many other 

signals such as trimethylation of H3K36. There will likely be numerous ways in which the 

genome-wide signals will be transformed into a set of numbers for epigenome comparison, 

each transformation being suitable for specific set of purposes.

One can envision two aspects of comparison – similarity search and detection of specific 

differences. Regarding the similarity search, using whole-genome comparison as an analogy, 

we may hypothesize that a combination of global and local methods may emerge. Unlike 

genomic sequence, which provides a convenient concept of “locality” in the one-

dimensional basepair coordinate system, epigenomes may benefit from being compared 

through a prism of non-contiguous loci such as those containing binding sites of specific 

master regulators, sets of genes related to a particular differentiation pathway or gene 

elements such as promoters.

Interpretation of specific differences detected between two epigenomes will depend on our 

understanding of the natural variation in the signal. In analogy to DNA sequence 
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comparisons, we need to understand which loci are “conserved” and which are under looser 

constraint. The differences of the same magnitude in constrained loci would then be 

interpreted to be of potentially higher functional significance than those at inherently 

variable loci. Of course, the immediate problem is that we do not have such knowledge. 

Gradual accumulation of data will solve this problem but probably not in a definitive way 

since variation may be highly context-dependent – variation during development in a 

particular cell lineage may for example have very different meaning than physiological 

variation in a different lineage or variation due to aging. One consequence is that the 

differences detected at a certain level of analysis will be open to context-dependent 

reinterpretation with accumulating data.

The issue of standards for representing, visualizing and sharing the results of comparisons 

will inevitably arise (denoted as Data Level 4 in Box 1). Like genomic sequence, 

epigenomic signal differences may be projected in the one-dimensional basepair coordinate 

system. On the other hand, like the results of a gene expression array experiment, they may 

also be meaningfully summarized as a set of numbers obtained by one or the other 

transformation of the genome-wide epigenomic signal.

The comparative interpretation of epigenomic signals will also pose a number of technical 

and engineering challenges that are often grouped under the term “cyberinfrastructure”. This 

includes the standards, resources, and tools for computer-aided discovery, data sharing and 

collaboration over the web. The problems of high-volume data capture, visualization, 

interpretation and reuse are currently recognized as key limiting factors across scientific 

disciplines22 . A comprehensive review of specific bioinformatic cyberinfrastructures23 

summarizes the state of the art as an “archipelago” of isolated systems.

One practical cyberinfrastructure challenge is to enable effective data exchange and reuse. 

The first step in this direction is to develop a unifying framework for the multiple layers of 

heterogeneous information generated by the “*-seq” and *-chip” assays. Data standards – 

see Data Levels in Box 1 -- are emerging in coordination between the pilot TCGA, 1000 

Genomes, ENCODE, and the NIH Epigenomics Roadmap projects. The abstract Data 

Levels codify commonalities across the diversity of assays and technologies.

Another important element of cyberinfrastructure are metadata standards. One example is 

the SRA XML schema developed by the NCBI and adapted by the NIH Epigenomics 

Roadmap Initiative for epigenomic data. The metadata is a key requirement for reuse of 

epigenomic data in the public domain for comparative analyses because it provides the 

biological and experimental context in which the data was generated (Box 1).

Another practical challenge is to ensure reproducibility of reported analysis results24. This 

problem may be tackled by encapsulating all aspects of in-silico analyses in the form of 

workflow descriptions (Box 1) and distributing them in conjunction with analysis results as 

metadata (Box 1).

Epigenome comparisons and higher-level interpretations will be intensive in terms of data 

storage and computing power. The use of multiple data and computing resources that are 

geographically distributed over the web and of cloud computing and programming 
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frameworks such as GATK25 will be required. As the diversity of derived data and 

knowledge increases, advanced knowledge representation and exchange methods such as the 

RDF derived in the context of the Semantic Web will be increasingly applied26. For a more 

complete list of infrastructure requirements and concepts relevant (but not necessarily 

specific) to epigenome research we refer the interested reader to Box 1.

How will a cyberinfrastructure be used to specifically facilitate epigenome comparison? Fig. 

2 illustrates a hypothetical scenario where a number of projects, possibly involving clinical 

researchers utilize a hosted (Web 2.0) service to process epigenomic data to perform 

comparative analysis. Software-as-service is appealing because a minimum of local 

resources may be required. This is particularly important for adoption of epigenomics in the 

context of translational and disease-focused studies where local bioinformatic resources and 

expertise may be limited. In this scenario, many projects utilize shared remote compute 

hardware (cloud computing) and well-tested pipelines with built-in quality characterization 

steps that take in sequencing data (Data Level 0) as it is delivered from the sequencers and 

generate epigenomic signals at the level of individual samples (Data Levels 1-3). Tools for 

comparison against the Human Epigenome Atlas and possibly other types of visualization 

and analysis are provided. Upon publication, the data is deposited to NCBI GEO or SRA 

archives but also included in more specialized data- and knowledge-bases such as the 

Human Epigenome Atlas. The data is re-usable because of attached metadata which 

provides the record of the original experiment, including valuable details about the sample 

and assay performed. The results of higher level analyses are also attached to the data. The 

higher-level analyses, typically reported in journal publications, are reproducible using 

workflows attached to analysis results.

One open issue is to identify the best way of involving the research community in the 

continued development and maintenance of data- and knowledge-bases such as the Human 

Epigenome Atlas. Such resources will provide essential context for interpretation of newly 

obtained epigenomes. To stimulate the contribution of smaller projects to this data- and 

knowledge commons, in close collaboration with the NCBI, the NIH Epigenomics Roadmap 

Consortium is developing standards for epigenomic metadata and defining reference 

pipelines for uniform processing and characterization of quality of a variety of epigenomic 

assays.

Conclusion

The mapping of epigenomes is likely to provide many novel insights through comparative 

analysis. The mapping of the bifurcating tree of cellular differentiation will provide a new 

key reference for understanding organismal development. Precise and comprehensive 

mapping of epigenomic perturbations will reveal consequences of genomic mutations and 

environmental influences on human development and disease.

A number of challenges lie ahead. One more specific set of challenges is to develop 

conceptual and computational approaches for comparative analysis of epigenomes. Another, 

more general set relates to the engineering of a cyberinfrastructure, including shared data- 
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and knowledge-bases that will scale with the unprecedented volume of data and diversity of 

applications.

Box 1
Cyberinfrastructure for epigenome research: key 

concepts

The components of the emerging cyberinfrastructure 

are organized around six general requirements listed 

in the first column.
Requirement Concept Description and examples of relevance for

epigenomics

1. Data reuse
and
integration

Data Level This abstraction captures commonalities and
facilitates development of data formats and tools
for a diversity of genomic and epigenomic assays.
Examples below focus on “dash-seq” assays.

Data Level 0 Refers to the DNA sequence
reads, typically in SRF or fastq
formats.

Data Level 1 Refers to reads mapped to a
reference assembly, typically in
SAM/BAM or BED formats. Level
1 data can be used to identify both
genomic and epigenomic variation.
It also includes unmapped
(repetitive) fraction of reads.

Data Level 2 “Raw epigenomic signal” such as
read density plots, CpG
methylation counts28 or other
statistics, frequently in the bigWig
UCSC Genome Browser format29.

Data Level 3 Typically discrete data such as
ChIP-seq peak calls or HMM
segmentations of the genome into
chromatin states. Obtained by
analyzing individual or multiple
marks from a single sample.
Depending on data volume, stored
either in high-density or in simple
tab delimited (GFF, LFF) formats.

Data Level 4 Results of epigenome
comparisons. Syntax and
semantics for this data level is still
under development.

Syntax Data formats to meet the often conflicting
requirements of storage efficiency for high-volume
data (bigWig), simplicity (tab delimited,) and
machine readability (JASON, XML).

Semantics Theory of meaning. This term is commonly used in
connection with controlled vocabularies and
ontologies such as the widely used Gene
Ontologies and other ontologies produced by the
OBO Foundry and other projects.

Semantic
Web
(Web 3.0)

Set of technologies including RDF for knowledge
representation developed by the World Wide Web
Consortium (W3C) allowing programmatic
communication and automated reasoning about
the information shared across the web.

Metadata Data about data. Key requirement for data reuse.
Various minimal standards have been
recommended by groups such as the MIBBI
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Requirement Concept Description and examples of relevance for
epigenomics

Project. In coordination with EBI and DDBJ, and
based on the feedback from the NIH Epigenomics
Roadmap Initiative and other users, NCBI has
now developed Version 1.2 of an SRA-XML
metadata format for assays with sequencing
readouts. Shared metadata formats will be
essential for a successful coordination of
international epigenome projects.

2. Tool
integration

Pipeline Set of analysis tools that are invoked sequentially
to perform a data analysis task. Galaxy30 is a
software suite with an interactive interface and an
online service for pipeline design. One example is
integration of the EpiGRAPH software for
epigenome analysis using Galaxy31 to identify
epigenetic modifications that are characteristics of
highly polymorphic (SNP-rich) promoters.

Workflow Formal, portable, programmatically executable
description of a data analysis process. May be
used as metadata to document and ensure
reproducibility of data analysis. Projects
developing workflow systems include Galaxy,
GenePattern, and Taverna.

Workbench An environment for integration of data analysis
and visualization tools and data sets (e.g., CLC
Genomics Workbench and Genboree
Workbench).

3. Web services
and
programatic
interoperability

URI and URL Address system of the Web. Used to uniquely
identify objects such as web pages and
epigenome maps for access by web browsers and
other computer programs via the HTTP and other
protocols.

REST API Representational State Transfer Application
Programming Interface. A programming interface,
typically implemented using the HTTP protocol
that is developed using a set of design principles
to ensure efficient communication of computer
programs over the web. Provides access to data
and computing resources over the web using
scripts written in a programming language such as
Pearl, Python, Ruby, or JavaScript.

4. Access to
computing
resources and
services

Cloud
Computing

Access to “elastic”, on-demand computing and
storage services over the web (e.g., Amazon and
Rackspace cloud computing services)

Software-as-
a-Service
(SaaS)

Access to software applications over the web such
as those for epigenomic data processing and
comparison (Fig. 2). This is a key aspect of Web
2.0 (see below).

5. Collaboration
and
publication

Authentication
protocol

Protocol (e.g., OpenID) allowing users or
computer programs acting as their agents to be
recognized by multiple web servers.

Web 2.0 Web hosting of collaborative processes such as
grant review at the NIH or epigenomic data
processing and comparison (Fig. 2).

6. Databases knowledge-bases
and archival sites.

Examples include NCBI GEO and SRA archives,
Ensembl, UCSC Genome Browser, and the more
specialized Human Epigenome Atlas.
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Figure 1. The Scope of Epigenomic Variation
The spectrum of epigenomic variation is wide, spanning biological processes on all time 

scales, from rapid physiological homeostatic processes that may occur at the scale of 

minutes to the diversity across species separated by tens of millions of years of evolution. 

Waddington's epigenetic landscape27 and the bifurcating tree of cellular differentiation 

corresponding to the landscape are on the right, highlighted by the light blue background.
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Figure 2. A Cyberinfrastructure for Epigenome Analysis and Comparison
The cyberinfrastructure seamlessly connects users and resources that are geographically 

distributed over the network. A clinical researcher conducting a study of disease-related 

epigenomic perturbations may rely almost completely on remote resources distributed over 

the web for primary processing of the data (Data Levels 0-3) and comparative analysis using 

the Human Epigenome Atlas. Upon publication of results, individual projects contribute data 

to the Human Epigenome Atlas, thus enhancing the utility of this shared resource for future 

users.
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