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Abstract 

Background:  Radiotherapy is an important treatment for patients with stage III/IV non-small cell lung cancer 
(NSCLC), and due to its high incidence of radiation pneumonitis, it is essential to identify high-risk people as early as 
possible. The present work investigates the value of the application of different phase data throughout the radio-
therapy process in analyzing risk of grade ≥ 2 radiation pneumonitis in stage III/IV NSCLC. Furthermore, the phase data 
fusion was gradually performed with the radiotherapy timeline to develop a risk assessment model.

Methods:  This study retrospectively collected data from 91 stage III/IV NSCLC cases treated with Volumetric modu-
lated arc therapy (VMAT). Patient data were collected according to the radiotherapy timeline for four phases: clinical 
characteristics, radiomics features, radiation dosimetry parameters, and hematological indexes during treatment. 
Risk assessment models for single-phase and stepwise fusion phases were established according to logistic regres-
sion. In addition, a nomogram of the final fusion phase model and risk classification system was generated. Receiver 
operating characteristic (ROC), decision curve, and calibration curve analysis were conducted to internally validate the 
nomogram to analyze its discrimination.

Results:  Smoking status, PTV and lung radiomics feature, lung and esophageal dosimetry parameters, and platelets 
at the third week of radiotherapy were independent risk factors for the four single-phase models. The ROC result 
analysis of the risk assessment models created by stepwise phase fusion were: (area under curve [AUC]: 0.67,95% 
confidence interval [CI]: 0.52–0.81), (AUC: 0.82,95%CI: 0.70–0.94), (AUC: 0.90,95%CI: 0.80–1.00), and (AUC:0.90,95%CI: 
0.80–1.00), respectively. The nomogram based on the final fusion phase model was validated using calibration curve 
analysis and decision curve analysis, demonstrating good consistency and clinical utility. The nomogram-based risk 
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Background
Non-small-cell lung cancer (NSCLC) accounts for 85% 
of all lung cancer cases [1]. Many NSCLC cases were 
diagnosed as stage III/IV and lost the opportunity for 
surgery, making it a major cause of cancer-associated 
death globally [2]. Therefore, systemic therapy was the 
main therapeutic modality for stage III/IV NSCLC, with 
radiotherapy playing an important role. Radiation pneu-
monitis (RP) was the most common and potentially dev-
astating side effect of thoracic radiotherapy, occurring 
within 6 months post-RT. It caused chronic respiratory 
insufficiency, even severely affect patients’ life quality, 
caused the dismal prognostic outcome, and even death 
[3–5]. Patients with III/IV NSCLC have the highest risk 
of RP, with data from studies reporting up to 30 to 40% 
[6]. Therefore, it is essential among III/IV NSCLC cases 
to identify toxicity in RT as soon as possible. Moreover, 
it is necessary to accurately assess the RP risk, allowing 
for personalized RT dosing and maximized therapeutic 
benefits.

Numerous studies have been conducted to investigate 
clinical risk factors for RP, such as pulmonary function, 
performance status, smoking history, tumor location, an 
interstitial pulmonary disorder, pulmonary emphysema, 
and concurrent chemotherapy, all of which are strongly 
associated with the occurrence of RP [6–11]. Previously, 
RP has been reported to be related to dosimetric factors 
derived from dose-volume histograms, such as average 
lung dose, V5, V20, or dosiomics parameters [12–15]. 
As radiomics analytical techniques rapidly develop, 
research on RT therapeutic benefits and estimating its 
adverse reactions according to radiomics characteristics 
have become the research hotspots [16–19]. As per an 
article, changes in certain radiomics characteristics were 
dose-dependently related to RP grade ≥ 2 determined by 
obtaining local lung CT images post-RT [18]. In addition, 
a study constructed the model to differentiate patients 
with high-risk RP from low-risk RP by analyzing the 
region of interest (ROI) within the entire lung tissue prior 
to RT [19]. Briefly, radiomics characteristics can be used 
to obtain lung texture characteristics and aid in describ-
ing possible RP risk [20, 21]. However, the vast major-
ity of studies and analyses were based on one individual 
data type or a simple combination of several data types. 

In practice, the duration of the radiotherapy process can 
take up to 8–10 weeks and consists of four phases: admis-
sion examination, target delineation, plan design, and 
radiotherapy implementation. Different types of data can 
be available at different radiotherapy phases; therefore, 
a longitudinal analysis of radiotherapy data based on a 
timeline may be more meaningful.

The present work investigated the potential risk factors 
for RP at different phases of radiotherapy for stage III/IV 
NSCLC, then fused the data of different phases based on 
the radiotherapy timeline to improve the effectiveness of 
the model, and finally established the risk classification 
system and nomogram according to fusion model of all 
phases data. In the age of precision radiotherapy, these 
tools can help physicians identify patients with RP as 
early as possible, allowing them to customize follow-up 
treatment strategies and interventions.

Materials and methods
Patient cohort
The present retrospective study included 91 cases 
between June 2019 and June 2021. All patients were diag-
nosed with stage III/IV NSCLC according to the AJCC 
8th edition. Inclusion criteria: (1) No contraindication 
to RT and estimated survival greater than 6 months after 
RT. (2) No intolerance or interruption of RT for more 
than a week. (3) Absence of acute infectious or autoim-
mune disease. (4) Complete follow-up information. The 
gross tumor volume (GTV), planning target volume 
(PTV), and clinical target volume (CTV) as defined in 
ICRU 50 and 62 were measured in this study. Further-
more, this study described risky organs and target vol-
umes based on RT and oncologic group guidelines. The 
prescribed RT doses were 50–66 Gy at 1.8–2 Gy/fraction/
day for five fractions/week. Each RT plan was obtained 
from the Eclipse system (Varian Medical Systems, Palo 
Alto, CA, version 13.5.35), which was delivered with 
6 MV photon beams and 2-arc VMAT. Patients were 
given either simultaneous chemoradiation or sequential 
chemoradiation. The chemotherapy regimens contained 
Carboplatin-based doublet, Cisplatin-based doublet, 
Platinum-based triplet, Single agent and Other which 
were applied in a widespread manner inclinical set-
tings. Doses and regimens were modified according to 

classification system could correctly classify cases into three diverse risk groups: low-(ratio:3.6%; 0 < score < 135), 
intermediate-(ratio:30.7%, 135 < score < 160) and high-risk group (ratio:80.0%, score > 160).

Conclusions:  In our study, the risk assessment model makes it easy for physicians to assess the risk of grade ≥ 2 
radiation pneumonitis at various phases in the radiotherapy process, and the risk classification system and nomogram 
identify the patient’s risk level after completion of radiation therapy.

Keywords:  Radiation pneumonitis, Radiotherapy timeline, Nomogram, Risk classification system
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the National Comprehensive Cancer Network (NCCN) 
and the Chinese Society of Clinical Oncology (CSCO). 
Informed consent was not required as this is a retrospec-
tive, unicentric cohort study.

Evaluation of RP
All cases were assessed every week during the process 
of RT. Follow-up visits were made 1 month after RT and 
every 2–3 months for the next 6 months. RP was graded 
by one senior radiologist and two senior oncologists. RP 
severity was assessed by the National Cancer Institute 
Common Terminology Criteria for Adverse Events 4.03 
(CTCAE 4.03). A grade ≥ 2 was considered sympto-
matic RP, which required steroids or limiting instrumen-
tal activities of daily living. Therefore, the endpoint was 
Grade ≥ 2 RP (RP ≥ 2) in our study.

Four‑phase characterization based on radiotherapy 
timeline
This study was used to investigate RP ≥ 2 risk by collect-
ing data at four different phases, as shown in Fig.  1 (1) 
General clinical characteristics of patients at the admis-
sion examination phase (Phase I): age, BMI, sex, ECOG 
score, smoking status, diabetes, hypertension, emphy-
sema, chronic obstructive pulmonary disease (COPD), 
Clinical stages, surgical history, and chemoradiation. (2) 
Radiomics feature at target area delineation phase (Phase 
II): Radiomics feature of PTV and lungs. (3) radiation 
dosimetry parameters during the RT plan design phase 
(Phase III): lungs V5-V50 (by 5), mean lung dose, Heart 
V5-V50 (by 10), mean heart dose, esophagus V5-V50 (by 

10), mean esophagus dose, and maximum spinal cord 
dose. This study defined lung as (left+right lung)-GTV, 
whereas Vx as total lung volume that received xGy or 
higher level of radiation. (4) Hematological indexes of 
patients during the radiotherapy implementation phase 
(Phase IV): This study required neutrophils, lympho-
cytes, monocytes, erythrocytes, hemoglobin, and plate-
lets at three distinct time intervals with 1 week before 
RT (baseline), 3 weeks (3w) during RT, and 5 weeks (5w) 
during RT.

CT image acquisition and radiomics features extraction
All cases were subjected to free-breathing CT scans 
using a Philips Brilliance Big Bore CT scanner (Philips 
Medical Systems, Inc., Cleveland, OH) to develop treat-
ment plans. The following parameters were used in CT 
scans: tube current (200 mA), voltage (120 kVp), pixel 
size (0.911 mm), slice thickness (5 mm), and image matri-
ces (X: 768, Y: 768). This work utilized the Pyradiomics 
library in Python for extracting radiomic features. One 
hundred five Original features were extracted, includ-
ing 18 first-order features, 14 shape features, and 73 
texture analysis features (Gray Level Concurrence/Run 
Length/Size Zone/Dependence Matrix [GLCM/GLRLM/
GLSZM/GLDM features, Neighborhood gray-tone dif-
ference matrix [NGTDM] features) were extracted. A 
total of 1183 transformation features based on shape 
and first order were extracted. Eight wavelet filters (LHL, 
HLL, LLH, LHH, HHH, HLH, LLL, and HHL) and five 
Image algorithms (square root, square, gradient, expo-
nential, logarithm) were used. Prior to calculating 

Fig. 1  An overall workflow of risk analysis of RP ≥ 2
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radiomics features, each image was resampled (size: 
3 × 3 × 3) and normalized (normalize Scale:100). We 
obtained 2576 features in PTV and lungs by performing 
the above operations.

Statistical analysis
Univariate analysis was performed on Phase I/III/IV data. 
T-test and chi-square tests were used to calculate P-val-
ues for continuous and categorical variables, respectively. 
Subsequently, parameters of P < 0.05 were selected for 
multivariate analysis. This work utilized the least absolute 
shrinkage and selection operator (LASSO) algorithm for 
Phase II data for the sake of selecting significant features. 
Meanwhile, this work reduced coefficients of the unre-
lated radiomics feature to 0, while those (non-0) of the 
rest features closely associated with RP ≥ 2 were selected 
for multivariate analysis. The four Phases (I/II/III/IV) 
data were analyzed by multivariate analysis to estab-
lish the risk analysis model, and the significant risk fac-
tors of a single-phase model were included in the fusion 
phases (I ~ II/I ~ III/I ~ IV) model. The stepwise logistic 
regression was utilized in multivariate analysis. This work 
determined Spearman’s correlation coefficients in all 
models, with a result greater than 0.8 indicating potent 
correlation. For two closely related features, the feature 
with an larger univariate analysis p-value was removed 
[22, 23]. Variance Inflation Factor (VIF) is used to detect 
the presence of multicollinearity in model features. This 
work also plotted receiver operating characteristic (ROC) 
curves for evaluating model classification performance. 
Python and R software (version 3.5.3) was used for data 
analysis and visualization.

Nomogram and risk classification system establishment 
and verification
This study developed a visual nomogram based on the 
fusion model of all phases data. As revealed by calibra-
tion curves (resampling of 1000 bootstraps), for RP ≥ 2, 
the nomogram-predicted probability was consistent with 
the actual value. Moreover, this work utilized the deci-
sion curve analysis (DCA) for testing nomogram utility 
in the clinic. The total risk point was assessed using our 
nomogram; then, recursive partitioning analysis was per-
formed to develop the risk classification system for the 
accurate and effective classification of cases in diverse 
RP ≥ 2 risk levels.

Results
Univariate regression and radiomics feature selection
The general clinical characteristics (Phase I) are shown 
in Table 1. In general, the incidence of RP ≥ 2 is 19.8% 
(18/91), of which sex (P =  0.01), BMI (P =  0.03), 
and smoking status (P =  0.004) showed significant 

differences of RP ≥ 2 when compared with RP < 2 
groups. Lasso regression of Radiomics features (Phase 
II) is shown in Fig.  2. The feature selection results, 
which included PTV (2 shapes, 1 texture) and lung (5 
first-order, 2 textures), are represented in Table 2. Radi-
ation dosimetry parameters (Phase III) are shown in 
Table 3, where lungs v5–20 (by 5) and esophagus v10–
20(by 10) are significantly different (P < 0.05) between 
the RP ≥ 2 group and RP < 2 group. Hematological 
indexes (Phase IV) are shown in Table  4. With the 
increase of RT weeks, the values of lymphocytes, eryth-
rocytes, hemoglobin, and platelets show a decreas-
ing trend. Among them, platelet in the third week 

Table 1  Univariate analysis results of clinical characteristics in 
Phases I

1. Data are Mean (standard deviation) or number of patients (percentages); 
2.*P < 0.05, **P < 0.01

Clinical characteristics RP < 2 (n = 73) RP ≥ 2 (n = 18) p-value

Age (year) 58.9 (8.8) 60.0 (6.5) 0.619

BMI 23.0 (2.5) 24.6 (2.8) 0.030*

Sex 0.010*

  male 61 (85.92%) 10 (14.08%)

  female 12 (60.0%) 8 (40.0%)

ECOG 0.279

  0 19 (73.08%) 7 (26.92%)

  1 54 (83.08%) 11 (16.92%)

Smoking Status 0.004**

  yes 57 (87.69%) 8 (12.31%)

  No 16 (61.54%) 10 (38.46%)

Diabetes 0.588

  yes 7 (87.5%) 1 (12.5%)

  no 66 (79.52%) 17 (20.48%)

Hypertension 0.342

  yes 13 (72.22%) 5 (27.78%)

  no 60 (82.19%) 13 (17.81%)

Emphysema 0.285

  yes 11 (91.67%) 1 (8.33%)

  No 62 (78.48%) 17 (21.52%)

COPD 0.704

  yes 6 (85.71%) 1 (14.29%)

  no 67 (79.76%) 17 (20.24%)

Clinical Stages 0.704

  III 67 (79.76%) 17 (20.24%)

  IV 6 (85.71%) 1 (14.29%)

Surgical History 0.666

  yes 13 (76.47%) 4 (23.53%)

  no 60 (81.08%) 14 (18.92%)

Chemoradiotherapy 0.871

  concurrent 34 (80.95%) 8 (19.05%)

  sequential 39 (79.59%) 10 (20.41%)
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(PLT_3W) of RT was significantly different (P = 0.011) 
between the groups.

Multivariate analysis of single‑phase data and fusion 
phases data
The variable correlation coefficient after univariate 
analysis and feature selection is shown in Fig.  3. The 
multivariate analysis of single phases and fusion phases 
is depicted in Table  5. In the phase I model, smoking 
status is strongly correlated with sex (r > 0.8). Since 
smoking status (P =  0.004) was more significant than 
sex (P = 0.01) in the univariate analysis, sex was dis-
regarded. The stepwise logistic regression result illus-
trated that smoking status was an independent risk 
factor (odds ratio [OR] = 0.27; 95% confidence interval 

[CI]: 0.08–0.85; P = 0.025). Similarly, OSMAL_PTV 
(OR = 1.02, 95% CI: 1.00–1.03, p = 0.018), LFMin_lung 
(OR = 1.01, 95%CI: 1.00–1.02, P = 0.003), Lungs_V5 
(OR = 1.13, 95% CI: 1.03–1.23, P = 0.011), Esophagus_
V10 (OR = 1.05, 95% CI: 1.00–1.11, P = 0.025), PLT_3W 
(OR = 0.98, 95% CI: 0.97–1, P = 0.014) were significant 
risk factors in Phase II/III/IV model. The independ-
ent risk factors of the four single phase models were 
fused by the RT timeline. Stepwise logistic regression 
was then performed for Phase I ~ II/I ~ III/I ~ IV mod-
els. Notably, the independent risk factors in the Phase 
I ~ II model comprised only two radiomics features 
without smoking status (OR = 0.3, 95% CI: 0.09–1.07, 
P = 0.064). Factors independently predicting RP risk 
in Phase I ~ III model involved clinical, radiomics, and 

Fig. 2  a Regulatory weight lambda screening. The best lambda value was defined by the vertical black dotted line. b LASSO coefficients for 2576 
radiomics features. The best lambda value in (a) was defined by the vertical black dotted line, while ten features whose coefficients were non-0 
were chosen at last. Abbreviation: LASSO = least absolute shrinkage and selection operator

Table 2  Radiomics feature selection results of lasso regression in Phases II

Structure Transformation Type Feature Abbreviation

PTV original shape MajorAxisLength OSMAL_PTV

PTV original shape Sphericity OSS_PTV

PTV exponential glcm Correlation EGC_PTV

Lung original shape Maximum2DDiameterRow OSMax2DDR_Lung

Lung logarithm firstorder Minimum LFMin_lung

Lung logarithm firstorder TotalEnergy LFTE_Lung

Lung exponential firstorder Maximum EFMax_Lung

Lung exponential firstorder MeanAbsoluteDeviation EFMAD_Lung

Lung exponential glszm SmallAreaLowGrayLevelEmphasis EGSALG_Lung

Lung exponential ngtdm Contrast ENC_Lung
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dosimetry features. As PLT_3W (OR: 0.99, 95% CI: 
0.97–1.00, P = 0.248) was eliminated from the Phase 
I ~ IV model, the components of independent factors 
were consistent with Phase I ~ III. The discriminatory 
ability of all model-independent risk factors was ana-
lyzed using ROC. The model area under curve (AUC), 
specificity, and sensitivity can be obtained from Table 6, 
and ROC visualization and AUC trends from Fig.  4. 
Notably, the AUC of Phase II (radiomics feature) model 
is highest in the single phase (AUC: 0.82, 95%CI: 0.70–
0.94, Specificity: 0.82, Sensitivity: 0.72), followed by the 
Phase III (dosimetry parameters) model (AUC:0.80, 
95%CI: 0.67–0.92, Specificity: 0.74, Sensitivity: 0.77). 
The AUC of the fusion model steadily increased with 
the radiotherapy timeline, and the results of the ROC 
analysis for the Phase I ~ III and Phase I ~ IV models are 
observed to be the same.

Nomogram and risk classification system
Our nomogram based on Phase I ~ IV model is presented 
in Fig. 5. It included variables as follows: smoking status 
and LFMin_lung, lungs_V5, Esophagus_V10. The cali-
bration curve verified well calibration of our constructed 
nomogram (Fig. 6a). DCA suggested that the risk analy-
sis model might have good clinical benefits (Fig. 6b). The 
risk classification system, based on nomogram score, 
is shown in Fig.  7. The cases were classified as three 

Table 3  Univariate regression results for dosimetry parameters 
in Phases III

1. Data are Mean (standard deviation); 2.*P < 0.05, **P < 0.01;3. Vx = percentage 
of structure volume receiving xGy

Dosimetry parameters RP < 2 (n = 73) RP ≥ 2 (n = 18) p-value

Lung

  V5(%) 48.14 (7.44) 54.58 (6.91) 0.001**

  V10(%) 35.93 (5.96) 40.79 (5.25) 0.002**

  V15(%) 28.99 (5.31) 32.96 (4.66) 0.004**

  V20(%) 23.56 (4.74) 26.25 (3.81) 0.028*

  V25(%) 19.38 (4.68) 21.08 (3.69) 0.157

  V30(%) 16.07 (4.69) 17.17 (3.79) 0.355

  V35(%) 13.19 (4.61) 13.96 (3.75) 0.514

  V40(%) 10.69 (4.41) 11.1 (3.56) 0.718

  V45(%) 08.47 (4.06) 8.68 (3.18) 0.841

  V50(%) 6.43 (3.65) 6.39 (2.79) 0.957

  Mean (GY) 12.96 (2.57) 14.21 (1.94) 0.056

Heart

  V10(%) 31.74 (14.98) 36.7 (20.41) 0.246

  V20(%) 20.92 (11.12) 22.35 (16.36) 0.661

  V30(%) 13.87 (8.58) 12.62 (11.23) 0.605

  V40(%) 8.48 (6.28) 6.9 (7.81) 0.365

  V50(%) 4.52 (4.1) 3.34 (3.99) 0.126

  Mean (GY) 11.23 (5.18) 11.92 (6.62) 0.634

Esophagus

  V10(%) 49.2 (13.29) 60.39 (13.41) 0.002**

  V20(%) 41.3 (14.44) 49.81 (16.77) 0.032*

  V30(%) 35.09 (15.63) 39.72 (13.17) 0.250

  V40(%) 28.42 (16.36) 32.67 (11.35) 0.204

  V50(%) 20.84 (15.8) 24.24 (11.83) 0.395

  Mean (GY) 21.71 (8.19) 25.23 (6.33) 0.092

SpinalCord

  max (GY) 38.73 (3.90) 38.29 (3.17) 0.277

Table 4  Univariate regression results for Hematological indexes 
in Phases IV

1. Data are Mean (standard deviation); 2. *P < 0.05;3. △3 W = the ratio of change 
at 3 weeks;△5 W = the ratio of change at 5 weeks)

Hematological indexes RP < 2 (n = 73) RP ≥ 2 (n = 18) p-value

Neutrophils

  baseline (10^9/L) 3.94 (2.06) 3.76 (2.69) 0.202

  3 W (10^9/L) 4.05 (4.73) 3.09 (2.01) 0.405

  5 W (10^9/L) 5.23 (5.63) 4.81 (4.24) 0.881

  △3 W 1.12 (0.99) 1.16 (1.01) 0.738

  △5 W 2.15 (5.02) 2.01 (2.47) 0.488

Lymphocytes

  baseline (10^9/L) 1.79 (0.59) 1.93 (0.84) 0.393

  3 W (10^9/L) 0.78 (0.35) 0.84 (0.41) 0.521

  5 W (10^9/L) 0.57 (0.30) 0.56 (0.23) 0.914

  △3 W 0.46 (0.19) 0.58 (0.67) 0.701

  △5 W 0.34 (0.17) 0.38 (0.40) 0.621

Monocytes

  baseline (10^9/L) 0.60 (0.32) 0.59 (0.38) 0902

  3 W (10^9/L) 0.59 (0.35) 0.55 (0.28) 0.612

  5 W (10^9/L) 0.66 (0.38) 0.66 (0.30) 0.679

  △3 W 1.25 (1.19) 1.77 (2.26) 0.900

  △5 W 1.88 (4.03) 1.80 (1.49) 0.256

Erythrocytes

  baseline (10^12/L) 3.97 (0.63) 3.90 (0.75) 0.686

  3 W (10^12/L) 3.80 (0.55) 3.69 (0.78) 0.463

  5 W (10^12/L) 3.71 (0.66) 3.45 (0.84) 0.157

  △3 W 0.98 (0.22) 0.94 (0.09) 0.607

  △5 W 0.95 (0.24) 0.88 (0.15) 0.249

Hemoglobin

  baseline (g/L) 122.98 (15.49) 122.50 (18.19) 0.909

  3 W (g/L) 117.54 (15.91) 116.61 (19.88) 0.833

  5 W(g/L) 115.96 (19.99) 112.78 (22.69) 0.557

  △3 W 0.96 (0.11) 0.95 (0.095) 0.778

  △5 W 0.95 (0.14) 0.92 (0.14) 0.495

Platelets

  baseline (10^9/L) 213.36 (69.17) 209.61 (69.59) 0.837

  3 W (10^9/L) 184.18 (52.25) 148.67 (48.55) 0.011*

  5 W (10^9/L) 185.02 (69.93) 160.50 (88.12) 0.209

  △3 W 0.91 (0.28) 0.78 (0.34) 0.097

  △5 W 0.91 (0.32) 0.76 (0.27) 0.079
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diverse RP ≥ 2 risk levels: low-(score 0–135), intermedi-
ate-(135–160), or high-risk group (> 160), with the preva-
lence rates being 3.6% (2/55), 30.7% (8/26), and 80.0% 
(8/10), respectively. In this study, our established risk 
classification system was precise in differentiating cases 
having diverse RP ≥ 2 risk levels, therefore, facilitating 
decision-making in the clinic.

Discussion
Smoking status was an independent risk factor in Phase 
I/I ~ III/I ~ IV models, which was supposed to be the pro-
tective factor for RP ≥ 2 (OR < 0.3, P < 0.05). In this study, 
the percentage of smokers or non-smokers with RP ≥ 2 
was 12.31% (8/65) and 38.46% (10/26), respectively. 
These data suggested that smokers may be more toler-
ant to RT than non-smokers, which was in line with the 
related studies signifying the relation of smoking with a 
decreased hypersensitivity pneumonitis risk, possibly 
due to the immunosuppressive effect [24, 25]. However, 
that does not signify that patients are encouraged to 
smoke, as smoking affects lung cancer survival [26, 27]. It 
has been reported that there was no relationship between 
sex and RP ≥ 2 [8, 28]. The risk of RP ≥ 2 was 40% (8/20) 
in female and 14.08% (10/71) in male, depicting a higher 
risk in female when compared with male. Moreover, 
the difference was statistically significant (P < 0.05) and 

possibly associated with a much smaller female lung 
volume than the male lung volume (2055 ± 457 cm3 vs. 
3207 ± 745 cm3, P < 0.001). Under similar dose and radia-
tion field conditions, with the smaller lung volume and 
the larger the relative volume dose in female. However, 
sex was strongly correlated with smoking status (r > 0.8), 
with 0% (0/20) of women smoking and 91.5% (65/71) of 
men smoking. Sex was not involved in the multivariate 
analysis, therefore, further research was desired to deter-
mine the association of sex as an influential factor in 
RP ≥ 2.

The osmal_ptv, which was a PTV shape feature 
extracted from the target area by using the radiom-
ics method, was an independent risk factor (or > 1.00, 
P < 0.05) of Phase II/I ~ II models that directly reflected 
the length information of the target area in the princi-
pal axis direction. Under similar conditions, the longer 
the target area, the larger the lung volume involved in 
RT, and the higher the risk of RP ≥ 2. However, the sta-
tistical significance of osmal_ptv for Phase I ~ III/1 ~ IV 
models was not significant (P > 0.05), possibly due to 
the introduction of the dosimetry parameters, particu-
larly esophagus_V10 parameter. Presently, no literature 
has reported that esophagus dose was the direct influ-
encing factor of RP. According to the anatomical rela-
tionship between the esophagus and lung, we predict 
that Esophagus_V10 can indirectly reflect the length 

Fig. 3  Feature Correlation Heat Map of univariate analysis results and lasso selection results. Heat map presenting the relation of features
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information of the overlapping area of the target area 
and lung in the transverse position.

In many reports [29–31] that used radiomics to ana-
lyze RP risk, rad_signature was generally constructed 
based on the linear combination of non-zero coefficient 

parameters filtered by lasso regression. In this study, lasso 
selected ten features, but due to insufficient case data, 
especially the number of RP-positive patients (18), we 
avoided using the rad_signature method but used Spear-
man’s correlation coefficient and stepwise logistic regres-
sion to remove variables to avoid overfitting the model 
with too many variables. Currently, lung tissue radiosen-
sitivity is suggested [32, 33] to be a potential influenc-
ing factor for RP. According to our results, LFMin_lung 
served as an independent risk factor (or > 1.00, P < 0.05) 
of Phase II/I ~ II//I ~ III/I ~ IV models. Therefore, we sup-
posed that these radiomics feature extracted from lung 
CT images might express the RT sensitivity in lung tis-
sues and differentiate susceptible groups with RP ≥ 2 
that cannot be obtained from clinical characteristics or 
dosimetry parameters.

With the free-breathing mode used for the CT scan-
ning modality in this study, it has been suggested that 

Table 5  Multivariable analysis results of single Phase and fusion Phase

1. Data are Mean (standard deviation);2. *P < 0.05, **P < 0.01

Coef P-value OR VIF (max)

Phases I 1.06

  Smoking (compared to non-smoking) −1.2953 0.025* 0.27(0.08–0.85)

  BMI 0.1406 0.168 1.15(0.94–1.40)

Phases II 1.12

  OSMAL_PTV 0.0172 0.018* 1.02(1.00–1.03)

  LFMin_lung 0.0103 0.003** 1.01(1.00–1.02)

  EGC_PTV −2.5103 0.060 0.08(0.00–1.12)

Phases III 1.06

  Lungs_V5(per 1%) 0.1189 0.011* 1.13(1.03–1.23)

  Esophagus_V10(per 1%) 0.0565 0.025* 1.05(1.00–1.11)

Phases IV 1.00

  PLT_3W −0.0152 0.014* 0.98(0.97–1)

Phases I ~ II 1.08

  Smoking (compared to non-smoking) −1.1966 0.064 0.30(0.09–1.07)

  OSMAL_PTV 0.0195 0.007** 1.02(1.00–1.03)

  LFMin_lung 0.0096 0.007** 1.01(1.00–1.02)

Phases I ~ III 1.8

  Smoking (compared to non-smoking) −1.7608 0.021* 0.17(0.04–0.77)

  OSMAL_PTV 0.0031 0.741 1.00(0.98–1.02)

  LFMin_lung 0.0154 0.003** 1.01(1.00–1.02)

  Lungs_V5(per 1%) 0.1163 0.047* 1.12(1.00–1.26)

  Esophagus_V10(per 1%) 0.0977 0.009** 1.10(1.02–1.19)

Phases I ~ IV 1.9

  Smoking (compared to non-smoking) −1.7533 0.025* 0.17(0.04–0.79)

  OSMAL_PTV 0.0028 0.769 1.00(0.98–1.02)

  LFMin_lung 0.0142 0.008** 1.01(1.00–1.02)

  Lungs_V5(per 1%) 0.1252 0.042* 1.13(1.00–1.27)

  Esophagus_V10(per 1%) 0.0950 0.010* 1.10(1.02–1.18)

  PLT_3W −0.0091 0.248 0.99(0.97–1.00)

Table 6  ROC analysis results of single Phase and fusion Phase

Model AUC(95% 
confidence interval)

Sensitivity Specificity

Phase I 0.67(0.52–0.81) 0.56 0.78

Phase II 0.82(0.70–0.94) 0.72 0.82

Phase III 0.80(0.67–0.92) 0.77 0.74

Phase IV 0.70(0.55–0.84) 0.83 0.60

Phase I ~ II 0.82(0.70–0.94) 0.72 0.82

Phase I ~ III 0.90(0.80–1.00) 0.89 0.85

Phase I ~ IV 0.90(0.80–1.00) 0.89 0.85
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respiratory motion may simply be random noise that 
influences radiomic features and that features that pre-
dict symptomatic RP may be robust and reproducible 
features of the free-breathing protocol [34]. However, the 
effect of respiratory motion on radiomic features requires 
further study. In this paper the ROI of lung was obtained 
by semi-automatic way segmentation. The steps are as 
follows: first based on the Eclispe TPS automatic thresh-
old segment tool, then using a manual segmentation 
method to erase the redundant parts of the lung beyond 

the large organs and lung parenchyma for the ROI. Image 
segmentation is performed by an experienced radiothera-
pist and then validated by a senior radiotherapist. It has 
been reported in the literature that manual segmenta-
tion is not only time consuming and can cause inter- and 
intra-observer errors, but semi-automatic segmentation 
is thought to increase stability [35, 36].

Studies have reported a close relationship between 
whole lung_V5 and RP in NSCLC [37–42]. Notably, 
lung_V5 was certainly significant for the prediction 

Fig. 4  a Receiver operating characteristic curves (ROC) of single Phase and fusion Phase b Area Under Curve (AUC) trend curve of single Phase with 
timeline c AUC trend curve of fusion Phase with the timeline

Fig. 5  The nomogram incorporates Smoking status, LFMin_lungs, Lungs_V5, and Esophagus_V10 for analysing risk of RP ≥ 2
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of RP among cases having mediastinal lymphoma and 
esophageal cancer receiving RT [43–45]. Based on the 
above results, lung_V5 possibly had a major impact on 
RP occurrence. As discovered in this work, lung_V5 
was independent risk factor (or > 1, P < 0.05) in Phase 
III/I ~ III/1 ~ IV model. We also conducted a univari-
ate ROC analysis on lung_V5. The best cut-off value was 
52.7% (AUC = 0.74,95%CI:0.60–0.88, sensitivity = 0.78, 

specificity = 0.66). The reason why the cut-off value was 
only 52.7%, which was less than the dose parameter 
(v5 < 65%) of guidelines revealed by NCCN to reduce RP 
risk-limiting lung, might be that our institution has strict 
restrictions on lung_V5 in clinical practice (v5 < 60%).

PLT_3w was considered an independent risk fac-
tor (OR = 0.98, P = 0.01) in Phase IV model but not in 
Phase I ~ IV model (OR = 0.99, p = 0.248). However, 

Fig. 6  a Calibration curves for our constructed nomogram. An ideal assessment was represented by the diagonal dotted line, whereas our 
nomogram performance was indicated by the remaining two lines. b Decision curves for our constructed nomogram that analysed risk of 
RP ≥ 2. The y-axis stands for net benefit, whereas the red curve, horizontal black line, and oblique blue line stand for nomogram, valid and invalid 
assumption, separately

Fig.7  a The risk classification system. b Histogram of each patient’s nomogram point. All points were arranged in order. The red column represents 
RP ≥ 2 patients, the blue column represents RP < 2 patients, and the two dotted lines represent the threshold values of point for three different risk 
groups
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it does not signify that platelets are not important 
because the difference was significant in RP ≥ 2 com-
pared with RP < 2 groups upon univariate analy-
sis (184.18 ± 52.25 10^9/L vs 148.67 ± 48.56 10^9/L, 
P = 0.011), with PLT_3W being lower in the RP ≥ 2 
group. Similar results have also been reported in some 
studies [46] where platelets respond rapidly to resist 
pathogen invasion. Besides, they have an important 
effect on adaptive immunomodulation via T cells, B 
cells, and antigen-presenting cells (APCs). If the plate-
let number decreases compared to the normal level, 
patients will have poor immunity and will be more 
prone to RP. Some inflammatory biomarkers in serum, 
such as lactate dehydrogenase, C-reactive protein 
(CRP), tumor necrosis factor (TNF), interleukin, and 
transforming growth factor (TGF), are related to RP 
[47, 48]. However, in our study, based on ease of data 
acquisition, we collected only routine blood count 
data at different time points during the implementa-
tion of radiotherapy. Therefore, we might need further 
research in this area.

The lung cancer radiotherapy process typically includes 
admission examination, target area delineation, plan 
design, and radiotherapy implementation. The time 
required for the entire process slightly varied from hos-
pital to hospital. For example, it usually took 8–10 weeks 
in our institution. Thus, we collected data at different 
phases based on the radiotherapy timeline and con-
ducted a Longitudinal analysis of the risk of RP ≥ 2 with 
RT for NSCLC of stage III/IV. Nevertheless, data regard-
ing this topic remained missing. This work attempted to 
identify RP ≥ 2 risks as early as possible. With the intro-
duction of data at different phases, the AUC values of 
the model gradually increased, eventually gaining a high 
AUC value of 0.9 in Phase I ~ III/I ~ IV models, higher 
than any single-phase model. Furthermore, the nomo-
gram and risk classification system established based on 
the final model are helpful for individualized assessment 
of RP ≥ 2 risk and differentiation of RP ≥ 2 population. In 
the interpretation of our nomogram, we should consider 
internal validation from the statistical aspect. Apart from 
ROC survival analysis, this work performed DCA and 
calibration curves, and these were bootstrap validation 
approaches. As suggested by clinical statisticians, boot-
strap validation is advantageous when the sample size is 
relatively small [49]. The internal validation results sug-
gested that our nomogram had a satisfactory effect.

This study had several shortcomings, as follows. Firstly, 
it had a small sample size. More data are necessary for 
developing and validating our study. Moreover, this was a 
retrospective study, so there may be selection bias in our 
data. Third, at present, in our study, only common and 
important parameters in clinical practice were selected, 

including other valuable variables such as genomics and 
inflammatory markers that may be associated with RP. 
Therefore, we are also conducting studies in this area.

Conclusion
In conclusion, the RP ≥ 2 risk study based on the radio-
therapy timeline found that the RP ≥ 2 risk analysis 
model effect was more accurate as the radiotherapy pro-
cess had advanced. Finally, we developed a new nomo-
gram and risk classification system by including smoking 
status, radiomics feature of lungs, and lung and esopha-
geal dose. Our results showed that the model has good 
performance, which can help doctors recognize high-risk 
RP ≥ 2 NSCLC cases of III/IV stage and guide personal-
ized treatment and clinical decision-making.
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