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Purpose: Atrial fibrillation (AF) is the most common heart rhythm disorder and causes considerable
morbidity and mortality, resulting in a large public health burden that is increasing as the population
ages. It is associated with atrial fibrosis, the amount and distribution of which can be used to stratify
patients and to guide subsequent electrophysiology ablation treatment. Atrial fibrosis may be
assessed noninvasively using late gadolinium-enhanced (LGE) magnetic resonance imaging (MRI)
where scar tissue is visualized as a region of signal enhancement. However, manual segmentation of
the heart chambers and of the atrial scar tissue is time consuming and subject to interoperator vari-
ability, particularly as image quality in AF is often poor. In this study, we propose a novel fully auto-
matic pipeline to achieve accurate and objective segmentation of the heart (from MRI Roadmap data)
and of scar tissue within the heart (from LGE MRI data) acquired in patients with AF.
Methods: Our fully automatic pipeline uniquely combines: (a) a multiatlas-based whole heart seg-
mentation (MA-WHS) to determine the cardiac anatomy from an MRI Roadmap acquisition which is
then mapped to LGE MRI, and (b) a super-pixel and supervised learning based approach to delineate
the distribution and extent of atrial scarring in LGE MRI. We compared the accuracy of the automatic
analysis to manual ground truth segmentations in 37 patients with persistent long-standing AF.
Results: Both our MA-WHS and atrial scarring segmentations showed accurate delineations of car-
diac anatomy (mean Dice = 89%) and atrial scarring (mean Dice = 79%), respectively, compared to
the established ground truth from manual segmentation. In addition, compared to the ground truth,
we obtained 88% segmentation accuracy, with 90% sensitivity and 79% specificity. Receiver operat-
ing characteristic analysis achieved an average area under the curve of 0.91.
Conclusion: Compared with previously studied methods with manual interventions, our innovative
pipeline demonstrated comparable results, but was computed fully automatically. The proposed seg-
mentation methods allow LGE MRI to be used as an objective assessment tool for localization, visu-
alization, and quantitation of atrial scarring and to guide ablation treatment. © 2018 The Authors.
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Abbreviation
AF atrial fibrillation
LA left atrium
PV pulmonary veins
SVM support vector machine
CV cross-validation
ROI region of interest
LGE-MRI

late gadolinium-enhanced magnetic
resonance imaging

1. INTRODUCTION

Atrial fibrillation (AF) is the most common arrhythmia of
clinical significance, resulting in a large public health burden
that is increasing as the population ages. It occurs when chao-
tic and disorganized electrical activity develops in the atria,
causing muscle cells to contract irregularly and rapidly. It is
associated with structural remodeling, including fibrotic
changes in the left atrium1 and can cause increased morbidity,
especially stroke and heart failure. It also results in poor men-
tal health, dementia, and increased mortality, costing the
NHS £2.2 billion per year.2

The electrical impulses that trigger AF frequently originate
in the pulmonary veins (PV). Radio frequency ablation treat-
ment aims to eliminate AF by electrically isolating the PV.
However, the success rate for a single catheter ablation proce-
dure is just 30–50% at 5-yr follow-up3,4 and multiple abla-
tions are frequently required. Accurate knowledge of native
and previous ablation scarring could be used to stratify
patients and guide ablation treatment, ultimately reducing the
need for repeat procedures.5

The current clinical gold standard for assessment of atrial
scarring is electro-anatomical mapping (EAM), performed
during an electrophysiological (EP) study.6 However, this is
an invasive technique which uses ionizing radiation and the
accuracy is suboptimal, with reported errors of up to 10 mm
in the localization of scar tissue.7,8

Late gadolinium enhancement (LGE) magnetic resonance
imaging (MRI) is an established noninvasive technique for
detecting myocardial scar tissue.9 With this technique,
healthy and scar tissues are differentiated by their altered
wash-in and wash-out contrast agent kinetics, which result in
scar tissue being seen as a region of enhanced or high signal
intensity while healthy tissue is “nulled.” Atrial 3D LGE
MRI has been used to assess patient suitability for AF abla-
tion by identifying potential nonresponders,10–16 and to
define the most appropriate ablation approach.12,13,17 In addi-
tion, visualization and quantitation of native and postablation
atrial scarring derived from LGE MRI has been used to guide

initial and follow-up ablation procedures.13,14,18–21

Histopathological studies in pigs have validated LGE MRI
for the characterization of AF ablation-induced wall injury.22

Visualization and quantification of atrial scarring requires
objective, robust, and accurate segmentation of the enhanced
scar regions from the LGE MRI images. Essentially, there are
two segmentations required: one showing the cardiac anatomy
(geometry), particularly the LA wall and PV, the other delin-
eating the enhanced scar regions. The former segmentation is
required to rule out confounding enhanced tissues from other
parts of the heart, for example, the mitral valve and aorta, or
the enhancement from nonheart structures while the latter is a
prerequisite for visualization and quantitation. Segmentation
of the atrial scarring from LGE MRI images is a very chal-
lenging problem. Firstly, the LAwall is very thin and scarring
is hard to distinguish even by experienced expert cardiologists
specialized in cardiac MRI. Secondly, residual respiratory
motion, heart rate variability, low signal-to-noise ratio (SNR),
and contrast agent wash-out during the long acquisition (cur-
rent scanning time �10 min) frequently result in image qual-
ity being poor. Artifactual enhanced signal from surrounding
tissues may also result in a large number of false positives.

A grand challenge for evaluation and benchmarking of vari-
ous atrial scarring segmentation methods has shown promising
results5 although most have relied on manual segmentation of
the LA wall and PV. This has several drawbacks: (a) it is a
time-consuming task; (b) there are intra- and interobserver vari-
ations; and (c) it is less reproducible for a multicenter and mul-
tiscanner study. Moreover, a number of studies have assumed a
fixed thickness of the LA wall although there is no evidence
that this is the case. Depending on the actual wall thickness,
subsequent reorientation and interpolation of the MR images
results in varying partial volume effects, which affect the appar-
ent thickness of the LA wall. Inaccurate manual segmentation
of the LA wall and PV can further complicate the delineation
of the atrial scarring and its quantitation can be error prone.

The LA and PV would ideally be segmented from the car-
diac and respiratory-gated LGE MRI dataset. However, this is
difficult as the inversion magnetization preparation used
reduces the blood pool signal and normal myocardium is
nulled. Other options are to segment them from a separately
acquired breath-hold magnetic resonance angiogram (MRA)
study15,23,24 or from a respiratory and cardiac gated 3D bal-
anced steady-state-free precession (b-SSFP) “Roadmap”
study.25 While breath-hold MRA shows the LA and PV with
high contrast, these acquisitions are generally ungated and
acquired in an inspiratory breath-hold. The anatomy extracted
can therefore be highly deformed compared to that in the
LGE MRI study. Although the gated 3D Roadmap acquisi-
tion takes longer to acquire, it is in the same respiratory phase
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as the LGE MRI and the extracted anatomy can be better
matched. Cardiac anatomy has previously been defined by
atlas-based segmentation of MRA24 and by using a statistical
shape model25 on 3D Roadmap data. Table I provides a sum-
mary of previously published methods on atrial scarring seg-
mentation using LGE MRI and our proposed method.

We propose a novel fully automatic segmentation and
objective assessment of atrial scarring for long-standing per-
sistent AF patients scanned by LGE MRI. The LA chamber
and PV are defined using a multiatlas-based whole heart seg-
mentation (MA-WHS) method on b-SSFP Roadmap MRI
images. LA and PVgeometry is resolved by mapping the seg-
mented Roadmap anatomy to LGE MRI using the DICOM
header data and is further refined by affine and nonrigid reg-
istration steps. LGE MRI images are segmented by a novel
Simple Linear Iterative Clustering (SLIC)-based super-pixels
method. A support vector machine (SVM)-based supervised
classification is then applied to segment the atrial scarring
within the segmented LA and PV geometry. In this study, two
validation steps have been performed — one for the LA
chamber and PV segmentation and one for the atrial scarring
segmentation — both against established ground truth from
manual segmentations by experienced expert cardiologists
specialized in cardiac MRI.

2. MATERIALS AND METHODS

2.A. Data acquisition

Cardiac MR data were acquired on a Siemens Magnetom
Avanto 1.5T scanner (Siemens Medical Systems, Erlangen,
Germany).

Transverse navigator-gated 3D LGE MRI10,26,27 was per-
formed using an inversion prepared segmented gradient echo

sequence (TE/TR 2.2 ms/5.2 ms) 15 min after gadolinium
(Gd) administration (Gadovist — gadobutrol, 0.1 mmol/kg
body weight, Bayer-Schering, Berlin, Germany).28 The inver-
sion time was set to null the signal from normal myocardium.
Detailed scanning parameters are: 30–34 slices at 1.5 9 1.5
9 4 mm3, reconstructed to 60–68 slices at 0.75 9

0.75 9 2 mm3, field-of-view 380 9 380 mm2, acceleration
factor of 2 using generalized autocalibrating partially parallel
acquisition (GRAPPA), acquisition window 125 ms positioned
within the subject-specific rest period, single R-wave gating,
chemical shift fat suppression, flip angle 20°. Data were
acquired during free-breathing using a crossed-pairs navigator
positioned over the dome of the right hemi-diaphragm with
navigator acceptance window size of 5 mm and CLAWS
respiratory motion control.29 The nominal acquisition duration
was 204–232 cardiac cycles assuming 100% respiratory effi-
ciency.

Prior to contrast agent administration, coronal navigator-
gated 3D b-SSFP (TE/TR 1/2.3 ms) Roadmap data were
acquired with the following parameters: 80 slices at 1.6 9 1.6
9 3.2 mm3, reconstructed to 160 slices at 0.8 9 0.8
9 1.6 mm3, field-of-view 380 9 380 mm2, acceleration fac-
tor of 2 using GRAPPA, partial Fourier 6/8, acquisition win-
dow 125 ms positioned within the subject-specific rest
period, chemical shift fat suppression, flip angle 70°. Off res-
onant blood from the lungs arriving in the LA and PV can
result in signal loss,30 which in our application, is minimized
by using the shortest TE/TR possible. This was achieved by
using nonselective RF excitation.31 Data were acquired dur-
ing free-breathing using a crossed-pairs navigator positioned
over the dome of the right hemi-diaphragm with navigator
acceptance window size of 5 mm and CLAWS respiratory
motion control.29 The nominal acquisition duration was 241
cardiac cycles assuming 100% respiratory efficiency.

TABLE I. Summary of the previously published methods for atrial scarring segmentation and our proposed method.

References
Subjects
(number) Cardiac anatomy segmentation (modality)

Atrial scarring
segmentation

Evaluation of atrial scarring
segmentation (results: mean � std)

Oakes et al.10 Human (81) Manual segmentation of LAwall (LGE MRI) 2–4 SD Atrial scarring percentage
(8 � 4, 21 � 6, 50 � 15)a

Knowles et al.23 Human (7) Semi-automatic thresholding and region
growing (MRA)

Maximum intensity
projection

Atrial scarring percentage (31 � 10)b

Perry et al. (2012)68 Human (34) Manual segmentation of LAwall (LGE MRI) k-means Clustering Dice (81 � 11, ground truth by manually
selected thresholds)

Ravanelli et al.15 Human (10) Manual segmentation of LA and PV in 3D (MRA) 4 SD Dice (60 � 21 ground truth by a
semi-automatic approach)c

Karim et al.25 Human (15) Statistical shape model with manual
correction (b-SSFP)

Graph cuts Dice, ROC, and total scar volumed

Tao et al.24 Human (46) Automatic atlas-based method with level
set refinement (MRA)

Maximum intensity
projection

Qualitative visualization (N/A)

Proposed method Human (37) Fully automated multiatlas whole heart
segmentation (b-SSFP)

Super-pixel and SVM Multiple quantitative metrics (Dice: 79 � 5)

aResults (%) for mild (n = 43), moderate (n = 30), and extensive (n = 8) enhancement cases.
bModerate and extensive enhancement cases.
cThe Dice score was calculated for an automated atrial scarring segmentation. The method was also evaluated using Bland–Altman analysis of the atrial scarring percentage
(after skeletonization) obtained from LGE MRI and EAM.
dMultiple Dice scores were calculated for various experimental settings, and they were reported by plotting the median Dice scores (around 80) with the minimum and the
maximum.
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2.B. Patients

In agreement with the local regional ethics committee, car-
diac MRI was performed in long-standing persistent AF
patients between 2011 and 2013. Gadolinium administration
is contraindicated in patients with severe kidney disease due
to an increased, but still rare, risk of developing nephrogenic
systemic fibrosis. Consequently, LGE MRI was not per-
formed in any patient with 30 ml/min/1.73 m2.

The image quality of each dataset was scored by a
senior cardiac MRI physicist on a Likert-type scale — 0
(non-diagnostic), 1 (poor), 2 (fair), 3 (good), and 4 (very
good) — depending on the level of SNR, appropriate TI, and
the existence of navigator beam and ghost artifacts. Thirty-
seven cases with image quality greater or equal to 2 were ret-
rospectively entered into this study including 11 preablation
(included ~65% of preablation cases) and 26 postablation
scans (included ~92% of post-ablation cases).

2.C. Multiatlas whole heart segmentation (MA-WHS)

A multiatlas approach32,33 was developed to derive the
whole heart segmentation of the Roadmap acquisition, which
was then mapped to LGE MRI [Fig. 1(a)]. This segmentation
consists of two major steps: (a) atlas propagation based on
image registration algorithms and (b) label fusion from multi-
atlas-propagated segmentation results.

First we obtained 30 MRI Roadmap studies from the Left
Atrium Segmentation Grand Challenge organized by King’s
College London34 together with manual segmentations of the
left atrium, pulmonary veins, and appendages. In these, we
further labeled the right and left ventricles, the right atrium,
the aorta and the pulmonary artery, to generate 30 whole

heart atlases. These 30 MRI Roadmap studies were employed
only for building an independent multiatlas dataset, which is
then used for segmenting our Roadmap studies that are linked
with the LGE MRI scans for the AF patients.

Let I be the target image to be segmented,
fðAa;LaÞja ¼ 1; . . .Ng be the set of atlases, where N ¼ 30,
Aa and La are, respectively, the intensity image and corre-
sponding segmentation label image of the ath atlas. For each
atlas, MA-WHS performs an atlas-to-target registration, by
maximizing the similarity between the images, to derive the
set of warped atlases,

Ta ¼ argminTa ImageSmilarityðI;AaÞ; and Aa ¼ TaðAaÞ
La ¼ TaðLaÞ

�
;

(1)

in which Ta is the resulting transformation of the registration
and fðAa; LaÞja ¼ 1; . . .Ng are, respectively, the warped atlas
intensity image and corresponding segmentation result. Here,
we employ the hierarchical registration for segmentation
propagation, which was specifically designed for the whole
heart MRI images and consists of three steps, namely the glo-
bal affine registration for localization of the whole heart, the
local affine registration for the initialization of the substruc-
tures, and the fully deformable registration for local detail
refinement.35 Image similarity metrics evaluate how similar
the atlas and target image are. In this work, we propose to use
the spatially encoded mutual information (SEMI) method,
which has been shown to be robust against intensity nonuni-
formity and different intensity contrast,36 that is

ImageSimilarityðI;AaÞ ¼ fS1; . . .; Snsg (2)

where fS1; . . .; Snsg are the SEMI and computed based on the
spatially encoded joint histogram,

FIG. 1. (a) Flowchart of the LA + PV segmentation via MA-WHS and its validation. (b) Flowchart of the fully automatic atrial scarring segmentation including
atrial scarring ground truth construction, super-pixel and SVM classification-based segmentation and leave-one-patient-out cross-validation. Abbreviations:
LA + PV, left atrium and pulmonary veins; MAS, multiatlas propagation-based segmentation; MSP-LF, multiscale patch-based label fusion; WHS, whole heart
segmentation. [Color figure can be viewed at wileyonlinelibrary.com]
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HsðI;AaÞ ¼
X
x2X

w1ðIðxÞÞw2ðAaðxÞÞWsðxÞ: (3)

Here, w1ðIðxÞÞ and w2ðAaðxÞÞ are Parzen window estima-
tion and WsðxÞ is a weighting function to encode the spatial
information.36

After the multiatlas propagation, a label fusion algorithm
is required to generate one final segmentation of the LA from
the 30 propagated results,

LI ¼ LabelFusionðfðA1; L1Þ. . .ðAN ; LNÞgÞ: (4)

The label fusion decides how to combine the multiple
classification results into one labeling result. Since the atlases
can produce segmentations with dramatically different accu-
racy at different locations, it should evaluate the performance
of each atlas locally and assigns different weights for the
atlases at each pixel of the target image in decision fusion.

The recent literatures have many new methods37–44 on
improving multiatlas segmentation using sophisticatedly
designed algorithms, which generally need to evaluate local
similarity between patches from the atlases and the target
image for local weighted label fusion,

LIðxÞ¼ argmaxl2flbk ;llag
X

a
waðSðI;Aa;xÞÞdðLaðxÞ; lÞ; (5)

in which lbk and lla indicate the labels of the background and
left atrium, respectively, and the local weight wað�Þ / Sð�Þ is
determined by the local similarity Sð�Þ between the target
image and the atlas. dða; bÞ is the Kronecker delta function
which returns 1 when a ¼ b and returns 0 otherwise.

For the LA segmentation, we propose to use the multiscale
patch-based label fusion (MSP-LF). This is because the inten-
sity distribution of the blood pool in the LA is almost identi-
cal to that of the blood pool in the other chambers and great
vessels. The multiscale space theory can handle different
level information within a small patch and has been applied
to feature extraction/detection and image matching.33,44–50

The patches we compute from different scale spaces can rep-
resent the different levels of structural information, with low
scale capturing local fine structure and high scale suppressing
fine structure but providing global structural information of
the image. This is different from the conventional
patch-based methods, which only compute the local structural
information within the patch. To avoid increasing the compu-
tational complexity, we adopt the multiresolution implemen-
tation and couple it with the MSP where the high-scale patch
can be efficiently computed using a low-resolution image
space. The local similarity between two images using the
MSP measure is computed, as follows,

SmspðI;Aa; xÞ ¼
X

s
S IðsÞ;AðsÞ

a ; x
� �

(6)

where IðsÞ ¼ I � Gaussianð0; rsÞ is the target image from s
scale space which is computed from the convolution of the
target image with Gaussian kernel function with scale s. Here,
we compute the local similarity in multiscale image using the
conditional probability of the images,

S IðsÞ;AðsÞ
a ; x

� �
¼ pðixjjxÞ ¼ pðix; jxÞ

pðjxÞ : (7)

where ix ¼ IðsÞðxÞ and jx ¼ AðsÞ
a ðxÞ and the conditional image

probability is obtained from the joint and marginal image
probability which can be calculated using the Parzen window
estimation.51

For each patient, the Roadmap dataset was then registered
to the LGE MRI dataset using the DICOM header data, and
then refined by affine and nonrigid registration steps.36 The
resulting transformation was applied to the MA-WHS-derived
cardiac anatomy to define the endocardial LA boundary and
PV on the LGE MRI dataset for each patient. It is of note that
both our Roadmap and LGE MRI data were cardiac gated
and acquired in end expiration, which minimizes significant
shape deformation between the two.

2.D. Atrial scarring segmentation

2.D.1. Oversegmentation by simple linear iterative
clustering (SLIC)-based super-pixels

We used a simple linear iterative clustering (SLIC)-based
super-pixel method52 to oversegment LGE MRI images in
order to separate potential enhanced atrial scarring regions
from other tissues [Fig. 1(b)]. Super-pixel algorithms group
pixels into perceptually meaningful patches with similar size,
which can be used to replace the regular pixel grid. Conse-
quently, the derived super-pixel patches can capture and miti-
gate image redundancy, and therefore provide a significant
primitive from which image features can be calculated effec-
tively and efficiently. In summary, super-pixel methods have
been proven to have following benefits: (a) super-pixels can
adhere well to perceptually meaningful object boundaries in
images; (b) super-pixels can reduce computational complex-
ity of extracting image features; (c) for segmentation applica-
tions, super-pixels can improve the performance while
reducing the computation time.53 In this study, we proposed
to use a SLIC-based super-pixel method, which has been suc-
cessfully applied to solve various medical image analysis
problems.54,55 It has also demonstrated better segmentation
accuracy and superior adherence to object boundaries, and it
is faster and more memory efficient compared to other state-
of-the-art super-pixels methods.52 Based on local k-means
clustering, the SLIC method iteratively groups pixels into
super-pixels. The clustering proximity is estimated in both
intensity and spatial domains that is

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2c þ

ds
S

� �2

m2

s
; (8)

in which dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIj � IiÞ2

q
measures the pixel intensity differ-

ence of a gray scale image and ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj � xiÞ2 þ ðyj � yiÞ2

q
describes the spatial distance between each pixel and the geo-
metric center of the super-pixel. SLIC is initialized by sam-
pling the target slice of the LGE MRI image into a regular grid
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space with grid interval of S pixels. To speed up the iteration,
SLIC limits the size of search region of similar pixels to
2S 9 2S around the super-pixel center (namely local k-means
clustering). In addition, parameter m balances the weighting
between intensity similarity dc and spatial proximity ds. In this
study, we initialized S to 4 pixels that is 2.8 9 2.8 mm2 con-
sidering the LA wall thickness is approximately 3 mm,56,57

and also take into account that the super-pixel size is still large
enough to extract statistics of the grouped pixel intensities. In
addition, m was chosen by visual inspection of the overseg-
mented results, and it was fixed when the super-pixel results
adhered well with the LAwall boundary.

2.D.2. Support vector machines (svm) based
classification

After SLIC segmentation, we use Support Vector Machi-
nes (SVM) to classify the oversegmented super-pixels into
enhanced atrial scarring regions and nonenhanced tissues.
SVM provide a powerful technique for supervised binary
classification58 (refer to Supporting Material Appendix S1).

In order to train the SVM classifier, we built a training
dataset containing enhanced and nonenhanced super-pixel
patches. This has been done by (a) an experienced expert car-
diologist specialized in cardiac MRI performing manual
mouse clicks to select the enhanced scar regions; (b) combin-
ing the mouse clicks and SLIC segmentation to label the
enhanced super-pixels; (c) applying morphological dilation
(3 mm) to the segmented endocardial LA boundary and PV
from MA-WHS to extract the LAwall and PV; (d) finding the
overlapped regions of the LA wall and PV and the labeled
enhanced super-pixels, and (e) labeling the other super-pixels
overlapped with LA wall and PV as nonenhancement. Details
of each step are given as following:

(1) Manual mouse clicks: Instead of manually drawing
the boundaries of the enhanced atrial scarring regions,
we asked an experienced cardiologist specialized in
cardiac MRI to perform manual mouse clicks on the
LGE MRI images to label the regions that they
believed to be enhanced (i.e., atrial scarring tissue).
This is because manual boundary drawing of enhance-
ment on the thin LA wall is a very challenging task
and subject to large inter- and intraobserver variances.
Mouse clicks on the enhancement regions are much
easier and much more efficient. The manual mouse
clicks were done on the original LGE MRI images
without the super-pixel grid overlaid. This is because:
(a) the mouse clicks will not be biased by super-pixel
patches and (b) the super-pixel grid may reduce the
visibility of the enhancement on LGE MRI images.

(2) The coordinates of the mouse clicks were used to select
the enhanced super-pixels. Because the cardiologist
performed the mouse clicks on the original LGE MRI
images without having prior knowledge about the
super-pixels, we asked the cardiologist to have rela-
tively dense mouse clicks. These mouse clicks will

ensure all the enhanced regions can be included, but
only one mouse click will be taken into account if mul-
tiple clicks dwell in the same super-pixel.

(3) The endocardial LA boundary and PV were extracted
using our MA-WHS method. We then applied a mor-
phological dilation to extract the LA wall and PV
assuming that the thickness of LA wall is 3 mm. The
blood pool regions were extracted by a morphological
erosion (5 mm) from the endocardial LA boundary,
and the pixel intensities were normalized according to
the mean and standard deviation of the blood pool
intensities.5

(4) We masked the selected enhanced super-pixels
[derived from step (2)] using the LAwall and PV seg-
mentation. Only the super-pixels having a defined
overlap with the LA wall and PV segmentation were
selected as enhancement for building the training data
(overlapping ratio was set to � 20%). Other super-
pixels (overlapping ratio <20%) were discarded as
they were considered as enhancement from other sub-
structures of the heart (such as the mitral valve and
aorta) but not enhancement of the LA wall and PV. It
is of note that although we assumed that the LA wall
thickness is 3 mm, our enhanced super-pixels are not
restricted to this wall thickness.

(5) The other super-pixels overlapped with the LA wall
and PV but not selected as enhancement were consid-
ered as nonenhancement (overlapping ratio was set to
� 20%).

By performing the five steps described above, we con-
structed a training dataset that contains super-pixels labeled
either enhancement or nonenhancement within the LA wall
and PV.

Instead of extracting texture or shape features of these
labeled super-pixels, we computed the pixel intensity-based
features to feed to the SVM classifier. This is because the size
of our super-pixels is too small to catch enough information
about texture and shape. In this study, we extracted 16 fea-
tures for each super-pixel: minimum, maximum, mean, med-
ian, standard deviation, variance, mean of the absolute
deviation, median absolute deviation, coefficient of variance,
skewness, kurtosis, mode, central moments, range, interquar-
tile range, and entropy. Feature selection was done using min-
imum redundancy and maximum relevance method.59 In this
study, we applied the mutual information quotient scheme.59

The selected features will be presented in Section 3 and will
be used for the further SVM-based classification procedure.
The parameters of the SVM with a RBF kernel were opti-
mized using cross-validation with a grid search scheme.60

2.E. Results evaluation and validation

2.E.1. Evaluation and validation of the MA-WHS

One experienced cardiologist (>5 yr of experience and
specialized in cardiac MRI) manually segmented the
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endocardial LA boundary and labeled the PV slice-by-slice
in the LGE MRI images for all the patients. A second
senior cardiologist (>25 yr of experience and specialized
in cardiac MRI) confirmed the manual segmentation. The
evaluation and validation of our MA-WHS has been done
against this manual segmentation, which is assumed to be
the ground truth. We used six metrics: Dice score, Jaccard
index,61 Precision, Negative Predictive Value (NPV), Haus-
dorff distance62, and Average Surface Distance (ASD) (de-
fined in Table II for the delineated LA and PV ROIs).
DICE, JACCARD, PRECISION, and Negative Predictive
Value (NPV) measure the overlap (in percentage) between
the manual and automatic segmentations. JACCARD is
numerically more sensitive to mismatch when there is rea-
sonably strong overlap than DICE or PRECISION. The
higher the values of DICE, JACCARD, NPV, and PRECI-
SION, the better the overall performance of the segmenta-
tion. HAUSDORFF and ASD measure the boundary
distance (in mm) between two contours of segmentation.
The lower the values of HAUSDORFF and ASD the bet-
ter the agreement between manual delineation and fully
automatic segmentation.

2.E.2. Ground truth definition of the atrial scarring

We formed the ground truth of the enhanced atrial scarring
on the LGE MRI images using the following steps:

(1) Steps (1)–(4) as listed in the “SVM Based Classifica-
tion” section.

(2) Once the enhanced super-pixels were extracted, they
were combined to create a binary image for each slice,
that is, 1 for enhanced super-pixels and 0 for unen-
hanced.

(3) The binary image was overlaid on the original LGE
MRI images and our cardiologist performed manual
corrections to create the final boundaries (ground
truth) of the enhanced atrial scarring. It should be
stressed here that the cardiologist used the binary
image only as an initial starting point for the manual
segmentation in order to reduce an otherwise very
lengthy process. While this could potentially intro-
duce a bias toward the initial binary image, the cardi-
ologist was free to make as many edits as needed and
this bias would expected to be small.

TABLE II. Summary of the quantitative evaluation methods. FManual: ground truth segmentation; FAuto: automatic segmentation; |•|: the number of pixels assigned
to the segmentation; T: the total number of pixels; PManual = {pm1, ���, pmn} and PAuto = {pa1, ���, pan}: two finite point sets of the two segmented contours (using
the ground truth segmentation and automatic segmentation); ||•||: L2 norm; sup: supremum and inf: infimum. For the MA-WHS method we used all the six evalu-
ation metrics and for the final atrial scarring segmentation we employed DICE, JACCARD, PRECISION, and NPV.

Evaluation metrics Definition MA-WHS
Atrial scarring
segmentation

Dice score
DICE ¼ 2� jFManual\FAutoj

jFManualj þ jFAutoj
• •

Jaccard index JACCARD ¼ jFManual\FAutoj
jFManual[FAutoj

• •

Precision
PRECISION ¼ jFManual\FAutoj

jFAutoj
• •

Negative Predictive
Value NPV ¼ T� jFManual [ FAutoj

T� jFAutoj
• •

Hausdorff distance HAUSDORFFðPManual; PAutoÞ ¼ maxðdðPManual; PAutoÞ; dðPAuto; PManualÞÞ
where dðPManual; PAutoÞ ¼ suppm2PManual

infpa2PAuto jjpm � pajj
dðPAuto; PManualÞ ¼ suppa2PAuto infpm2PManual jjpm � pajj

•

Average Surface
Distance ASD ¼ 1

2

P
pm2PManual

minpa2PAutokpm � pakP
pm2PManual

1
þ
P

pa2PAuto minpm2PManual kpm � pakP
pa2PAuto 1

 !
•

Medical Physics, 45 (4), April 2018

1568 Yang et al.: Fully automatic scar segmentation for long-standing AF patients 1568



2.E.3. Intra- and interobserver variances of the
manual atrial scarring segmentation

Two cardiologists performed the manual mouse clicks
based ground truth construction procedures in 8 randomly
selected patients (four pre- and four postablation cases; 235
2D images in total) in order to determine interobserver vari-
ance. In addition, one cardiologist performed the manual
mouse clicks twice at two different time points (1 month in
between) to estimate the intraobserver variance. The DICE
metric was used to measure the intra- and interobserver vari-
ances of the ground truth construction.

2.E.4. Evaluation and validation of the fully
automated atrial scarring segmentation

The SVM-based classification was evaluated by: (a) leave-
one-patient-out cross-validation (LOO CV), which provides
an unbiased predictor and is capable of creating sufficient
training data for studies with small sample size;63 (b) the
cross-validated classification accuracy, sensitivity, specificity,
and average area under the receiver operating characteristic
(ROC) curve (AUC), and (c) the balanced error rate (BER).64

We also applied 10-fold CV to evaluate the robustness of our
method when there are fewer manual labeled training data-
sets. Lastly, we divided our data into (a) a training/CV dataset
(25 patients) and (b) an independent testing dataset (12
patients). In this case, we optimized SVM parameters in the
training/CV dataset and then validated our method using
these parameters in the independent testing dataset. This vali-
dation demonstrates the robustness of our method on an “un-
seen” independent testing dataset after the SVM parameters
have been optimized and fixed.

For the final atrial scarring segmentation, we also per-
formed result evaluation using DICE, JACCARD, PRECI-
SION, and NPV measurements (Table II). HAUSDORFF
and ASD metrics were not applied because we have multiple
discrete regions of enhanced atrial scarring for each LGE
MRI volume.

In addition, the fibrosis extent percentage (FEP) was deter-
mined for ground truth and automatic segmentations and
compared using two-sample Wilcoxon analysis. The FEP of
the atrial scarring is an important imaging biomarker for pre-
dicting the outcome of the AF treatment. FEP is defined as
the volume of scar tissue as a percentage of the atrial wall
volume.15

2.E.5. Comparison study

In order to demonstrate the efficacy of our method, we
also compared it with two standard methods published in pre-
vious studies:

(a) Simple thresholding-based method (Thr).26 The thresh-
old value for each LGE MRI volume was chosen via
empirical evaluation.

(b) Conventional standard deviation (SD)10 based method
(2, 4, and 6 SDs were tested).

These methods were selected as they have minimum
parameter tuning and could be most accurately reproduced,
and also because they are the most frequently used.

In addition, we also compared our method with state-
of-the-art unsupervised learning-based clustering and graph
cuts-based methods5 including k-means clustering-based
method (KM), graph cuts with k-means clustering-
based method (KM + GC), fuzzy c-means clustering-based
method (FC), and graph cuts with fuzzy c-means cluster-
ing-based method (FCM + GC). In each case, we have
reproduced the method as best possible, and where tuning
parameters have not been clearly defined, we have used
values based on those in the original methodology publi-
cations.

We compared the atrial scarring segmentation from each
method against the ground truth using the LA and PV bound-
aries derived from our fully automatic MA-WHS segmenta-
tion. This was then repeated using the manually delineated
LA and PV boundaries. The image intensities were normal-
ized with respect to the mean and standard deviation of the
intensities in the LA blood pool cavity,5 which were extracted
by a morphological erosion (5 mm) from the endocardial LA
boundary.

For comparison studies, statistical significances were
given by two-sample Wilcoxon rank-sum test.

3. RESULTS

3.A. Whole heart segmentation results

Figure 2(a) shows the comparison results of the Dice
scores using the different label fusion schemes, for exam-
ple, by majority vote (MV), by local weighted voting
(LWV),37 by joint label fusion (JLF),43 by patch fusion
one scale (PF), and by our proposed MSP. The MSP
was significantly better than the other label fusion
schemes (P < 0.05). Figure 2(b) shows the quantitative
results of this MA-WHS method compared to the ground
truth.

3.B. Fully automated atrial scarring segmentation
results

3.B.1. Intra- and interobserver variances of the
ground truth construction

Figure 3 demonstrates the intra- and interobserver vari-
ances of the manual atrial scarring delineation. Both intra-
and interobserver agreement are very good (mean DICE
scores ranging from 86% to 92% and from 83% to 91%,
respectively) and confirm the suitability of the ground truth
reconstructions for evaluation of the atrial scarring segmenta-
tion algorithms.
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3.B.2. Evaluation and validation results of the fully
automated atrial scarring segmentation

After minimum redundancy and maximum relevance
based feature selection, 3 of 16 features (minimum, mean and
standard deviation) were selected and used in building the
SVM model. Table III tabulates the SVM classification
results of distinguishing enhanced atrial scarring regions
from nonenhanced tissues. Using LOO CV, we obtained 88%
accuracy and 0.16 BER. ROC analysis shows an AUC of
0.91. In terms of the final segmentation accuracy, we
achieved mean DICE of 79%. Compared to manual ground
truth construction that took 25–50 min per patient case, the
SVM-based prediction only took 5.1 � 0.7 s to segment one

patient case, while for a single loop of the LOO CV the train-
ing on 36 patients took 64.2 � 4.6 min (~1.8 min per patient
case). All experiments were performed using a Windows 7
workstation with six-core 1.9 GHz Intel� Xeon� E5-2609v3/
64 GB RAM.

Ten-fold cross-validation obtained similar accuracy. For
the validation on the separated independent testing datasets,
the fixed SVM model was blindly built. Compared to LOO
CV on 37 datasets we achieved similar accuracy (86%) and
sensitivity (92%), but lower specificity (64%) and mean
DICE (71%). This validation using separate testing datasets
showed that our method can still perform well while fixing
the classification model and using it to segment the new input
data.

Using our fully automatic pipeline, the measured native
(preablation) fibrosis associated with AF was 26.9 � 11.2%
compared to 32.8 � 6.4% for the postablation cases
[Fig. 4(a)]. There was no significant difference found for the
fibrosis extent derived using the ground truth segmentation
of the atrial scarring (23.4 � 7.3% for the preablation cases
and 30.9 � 6.1% for the postablation cases). The high fibro-
sis extent measured by both techniques in the preablation
patients reflects the extensive native fibrosis due to atrial
remodeling in this patient cohort with long-standing persis-
tent AF. Both our fully automatic pipeline and the ground
truth segmentation found significant differences in fibrosis
extent between pre- and postablation cases [Fig. 4(a)].
Bland–Altman analyses are shown in Figs. 4(b) and 4(c).

Figure 5 shows the results of the comparison study in pre-
ablation [Figs. 5(a) and 5(c)] and postablation [Figs. 5(b)
and 5(d)] cases with our method (red bars) working equally
well in both (median DICE score 80% for the postablation
cases vs. median DICE score 76% for the pre-ablation cases,
P = 0.087). Overall, the atrial scarring segmentation results
obtained using our method outperformed the simple

FIG. 3. Comparison of the manual delineations (ground truth) of the
enhanced atrial scarring to demonstrate the inter- and intraobserver variances
for eight randomly selected patient cases (235 2D slices in total). The mean
and standard deviation (error bars) are shown. Abbreviations: GT_OP1_1:
ground truth/operator 1/time point 1; GT_OP1_2: ground truth/operator
1/time point 2; GT_OP2_1: ground truth/operator 2/time point 1.

FIG. 2. (a) Comparison results (Dice scores of the WHS) of using different label fusion algorithms. (“*” = P < 0.05 and “***” = P < 0.0005; statistical signifi-
cances were given by two-sample Wilcoxon rank-sum test). Abbreviations: MV, majority vote; LWV, local weighted voting; JLF, joint label fusion; PF, patch
fusion one scale; MSP, multiscale patch. (b) quantitative comparison of MA-WHS compared to manually determined ground truth. [Color figure can be viewed
at wileyonlinelibrary.com]
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thresholding and conventional standard deviation methods
significantly [Figs. 5(a) and 5(b)]. While, as expected, DICE
scores for the state-of-the-art unsupervised learning based
clustering and graph-cuts based methods were better than
thresholding and standard deviation based methods
[Figs. 5(c) and 5(d)], our method again showed superior
results.

Figure 6 shows our final atrial scarring segmentation
results compared to the ground truth in two preablation and
two postablation patients. In each case, the figure shows a
single slice of a 3D LGE dataset (typically 64 slices) while
the FEP values quoted are for the full 3D study. The seg-
mentation results have been derived from the LOO CV (i.e.,
training on 36 datasets and making prediction on the one

TABLE III. Quantitative evaluation of the atrial scarring segmentation using LOO CV, 10-fold CV, and training/CV with separate testing. The SVM based classifi-
cation was evaluated using accuracy, sensitivity, specificity, BER, and AUC. The final segmentation was evaluated against the ground truth using Precision,
NPV, Jaccard index and Dice score. Abbreviations: LOO, leave-one-patient-out; CV, cross-validation; BER, balanced error rate; AUC, area under curve; NPV,
negative predictive value.

Validation method
Accuracy

(%)
Sensitivity

(%)
Specificity

(%) BER AUC
Precision

(%)
NPV
(%)

Jaccard
Index (%)

Dice
Score (%)

LOO CV (37 patients) 88 90 79 0.16 0.91 81 � 9 99 � 1 65 � 6 79 � 5

10-fold CV (37 patients) 88 96 62 0.21 0.91 86 � 4 99 � 2 56 � 3 72 � 2

Training/CV + separate
testing

LOO CV (25 patients) 87 89 79 0.16 0.91 80 � 10 99 � 1 66 � 6 79 � 5

Separate testing (12 patients) 86 92 64 0.22 0.88 77 � 7 99 � 1 56 � 7 71 � 7

FIG. 4. (a) The percentage of fibrosis extent calculated using the ground truth segmentation (GT in blue boxplots) and using our fully automatic segmentation
pipeline (SEG in purple boxplots) for both the preablation cases and the postablation cases, respectively. (“*” = P < 0.05 and “n.s.” means no significant differ-
ence between two groups; statistical significances were given by two-sample Wilcoxon rank-sum test). Abbreviations: GT, ground truth segmentation; SEG, seg-
mentation using our fully automatic pipeline. (b)–(c) Bland–Altman analysis of the measurements of fibrosis extent derived by using the ground truth
segmentation (FEPGT) and our fully automatic segmentation pipeline (FEPSEG). Abbreviations: GT, ground truth segmentation; SEG, segmentation using our
fully automatic pipeline; FEP, fibrosis extent percentage. [Color figure can be viewed at wileyonlinelibrary.com]
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dataset that has been left). For the first preablation case
[Figs. 6(a)–6(c)], the automatic segmentation slightly under-
estimates the enhancement (FEP 9.2% compared to 12.8%).
Segmentation of the second preablation case [Figs. 6(d)–
6(f)] shows clear accordance compared to the ground truth
despite some slight overestimation near the right inferior
pulmonary vein. Segmentation of both postablation cases
exhibit good agreement with the ground truth [Figs. 6(i) vs.
6(h) and 6(l) vs. 6(k)].

4. DISCUSSION

We have developed a novel fully automatic segmentation
pipeline to detect atrial scarring in LGE MRI images and

validated it against manual ground truth segmentation by
experienced cardiologists.

Accurate knowledge of native and previous ablation scar-
ring using LGE MRI may be used to stratify patients and
guide ablation treatment, ultimately reducing the need for
repeat procedures.5 Gadolinium-based contrast agent is con-
traindicated in patients with severe renal impairment due to
an increased risk of developing nephrogenic systemic fibro-
sis, a rare but serious disease. In addition, there have been
recent reports describing the retention of gadolinium in the
body for up to several months after administration, even in
patients with normal kidney function. This has led to the Fed-
eral Drugs Administration (FDA) issuing a safety communi-
cation and while no direct association has been found

FIG. 5. Comparison results with conventional atrial scarring segmentation methods using DICE for (a) and (c) preablation and (b) and (d) postablation cases.
(“*” = P < 0.05, “**” = P < 0.005, “***” = P < 0.0005, and “n.s.” means no significant difference between two groups; statistical significances were given
by two-sample Wilcoxon rank-sum test). Abbreviations: Thr, simple thresholding-based method with MA-WHS-derived LA + PV; SD(x), conventional standard
deviation method (x = 2, 4 and 6 SDs were tested) with MA-WHS-derived LA + PV; KM, k-means clustering-based method with MA-WHS-derived LA + PV;
FC, fuzzy C-means clustering-based method with MA-WHS-derived LA + PV; KM + GC, graph cuts and k-means clustering with MA-WHS-derived LA + PV;
FCM + GC, graph cuts and fuzzy C-means clustering with MA-WHS-derived LA + PV; (x) + M, different methods with manual delineated LA + PV; MA-
WHS, multiatlas whole heart segmentation; LA + PV, left atrium and pulmonary veins. [Color figure can be viewed at wileyonlinelibrary.com]
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between these deposits and adverse health effects in patients
with normal kidney function, it has announced that a new
class warning and safety measures will be required to appear
in the labeling for gadolinium contrast agents used in MRI.
Consideration should be given to the use of macrocyclic
gadolinium agents, such as gadobutrol (used in this study),
rather than linear agents as they have reduced and shorter
retention properties. The FDA concludes that the benefit of
all approved gadolinium contrast agents continues to out-
weigh potential risks and that healthcare professionals should
not avoid or defer necessary examinations.65

Segmentation of the atrial scarring from LGE MRI images
is very challenging. This is not only because the atrial scar-
ring is difficult to distinguish in the thin LA wall but also

because the image quality can be poor due to motion artifacts,
noise contamination and contrast agent wash-out during the
long acquisition. Moreover, the enhancement from the sur-
rounding tissues and enhanced blood flow can result in
increased false positives. However, most of these confound-
ing enhancement regions can be distinguished subject to
accurate heart anatomy delineation using our MA-WHS
[Figs. 6(c), 6(f), 6(i), and 6(l)].

The minimum redundancy and maximum relevance
method has selected three simple but effective features for
our further SVM classification on SLIC segmented super-
pixels, that is, the mean, the standard deviation, and the min
of the super-pixels. The feature “mean” corresponded to a
simple thresholding on the super-pixel intensity values and

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 6. Final atrial scarring segmentation results of two preablation cases (a–c) and (d–f) and two postablation cases (g–i) and (j–l). (a), (d), (g), and (j) Original
LGE MRI images; (b), (e), (h), and (k) Ground truth of the atrial scarring segmentation; (c), (f), (i), and (l) Results of our fully automatic atrial scarring segmenta-
tion. Single red arrows in (a) and (d) show the enhancement of the AO wall. Double red arrows in (d), (g), and (j) show enhanced regions outside the heart, in
other substructures inside the heart or in surrounding fat tissue. Single green arrow in (d) shows the enhanced artifacts of the mitral valve. Double green arrows
in (g) show some enhancement that, in retrospect, our cardiology experts agreed should have been included in the ground truth labeling procedure, but was found
using our fully automatic segmentation. And double green arrows in (j) show the enhancement due to the navigator beam and blood flow. Abbreviations: LA, left
atrium; AO, aorta; L, left; R, right. [Color figure can be viewed at wileyonlinelibrary.com]
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the feature “standard deviation” quantified local intensity
variations in the scar and healthy regions. The feature “min”
was selected as a strong discriminator due to the fact that in
the enhanced atrial scarring regions the “min” intensity val-
ues are much higher than the “min” intensity values of the
normal regions. However, the feature “max” was not selected
as a discriminator as for some labeled normal regions, there
may be relatively high pixel intensities that could be false
positives.

There are limitations of the current work. The fast and
irregular heart rate in patients prior to ablation resulted in
only 11 (65%) preablation studies having good enough qual-
ity to be included in this study. Together with 26 (92%)
postablation studies, our total number of datasets was limited
to 37. The low number of preablation studies included is an
indication of how difficult it is to scan patients in AF. How-
ever, developments in MRI acquisition strategies (beat-to-
beat changes in inversion time and intelligent arrhythmia
rejection schemes) are likely to improve this. To tackle the
problem of having limited patient data, LOO CV was
performed to achieve an unbiased predictor for limited
datasets.66,67

As in other studies,5 we have validated our technique
against a manually segmented ground truth. In our case, to
reduce a very lengthy process, the starting point for this was
an automatically derived binary image which the cardiologist
was free to edit as much as possible. While this could intro-
duce some bias into the ground truth, this is expected to be
small and the methodology had both low inter- and intraoper-
ator variance. However, even with experienced cardiologists
and consensus agreement, this is subjective, and regions of
enhancement can be missed [Fig. 6(g)], but they can still be
found using our fully automatic segmentation pipeline. EAM
may provide a more objective ground truth but is not straight-
forward due to issues relating to sampling point density and
distribution, contact force which affects the measured voltage,
voltage thresholds for delineating scar tissue, and registration
and deformation of the mapped space in the EP lab to the
LGE MRI study.

In this study, we compared with the simple thresholding
and conventional standard deviation based methods and also a
number of advanced unsupervised learning based clustering
and graph cuts-based methods.5 Although superior perfor-
mance has been achieved using our propose method, it is of
note that our patient cohort is different from that in which
these comparison algorithms were optimized and tested. When
compared to manual segmentation (ground truth) in postabla-
tion scans, these standard techniques gave median DICE of
38%–48% while our fully automatic technique achieved a
median DICE of 80%. The results that we obtained here with
the standard techniques are similar to those reported with these
same techniques in the benchmarking study described in Ref.
[5] while the latter score is similar to the best-performing
methods reported in that same study. Moreover, performance
of the state-of-the-art unsupervised learning based methods
were better than thresholding and standard deviation-based
methods [Figs. 5(c) and 5(d)], but our method again showed

superior results that might be attributed to the fact that our pro-
posed method is supervised, and therefore have obtained more
useful information from the manually labeled data. Of note is
that in the benchmarking study, the variances of all of the tech-
niques tested are large while in our manuscript, the results are
more consistent with a relatively small variance (boxplot in red
as seen in Fig. 5). This may be due to our patient cohort being
more tightly defined while in the previous study, datasets were
analyzed from patients at multiple institutions using a variety
of imaging protocols.

5. CONCLUSIONS

To the best of our knowledge, this is the first study that
developed a fully automatic segmentation pipeline for atrial
scarring segmentation with quantitative validation for LGE
MRI scans. The proposed pipeline has demonstrated an effec-
tive and efficient way to objectively segment and assess the
atrial scarring. Our validation results have shown that both
our MA-WHS and super-pixel classification-based atrial scar-
ring segmentation have obtained satisfactory accuracy. The
current study was performed using real clinical data, and we
can envisage an integration of our pipeline to clinical rou-
tines. In so doing, a patient-specific LA and PV geometry
model and an objective atrial scarring segmentation can be
obtained rapidly for individual AF patients without manual
processing.
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