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Introduction
Pain is an unpleasant sensation that 
occurs mainly due to tissue damage. 
It is influenced by behaviors, thinking, 
outlook, and community factors and causes 
emotional and psychological distress.[1] Pain 
management with safe medications with 
fewer side effects is very important, 
therefore, analgesics change rapidly to 
have fewer side effects, tolerance, and 
dependence and are especially important in 
the management of chronic pain.[2]

Opioids are one of the most widely used 
analgesics[1,2] that affect the central nervous 
system and cause addiction.[3] Tramadol is 
an opioid used to treat acute or relatively 
severe pain.[4] Tramadol has a long‑lasting 
analgesic effect and is a relatively ideal 
drug for the treatment of chronic pain.[5] 
It has ten times less analgesic power than 
morphine but is preferred because it has 
less respiratory depression, gastrointestinal 
disorders, and addiction. However, in 
therapeutic doses or overdose, dangerous 
side effects such as seizures, serotonin 
syndrome, and poisoning have been 
observed.[6] Although different mechanisms 
have been proposed for the effects of 
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Abstract
Background: Tramadol is an opioid analgesic with monoamine reuptake inhibitory effects. 
Although tramadol has been widely used to control pain, there is controversy about the risk of 
abuse. Therefore, in the present study, the acute effects of tramadol on neuronal activity in the 
medial prefrontal cortex  (mPFC), which is one of the important centers of the reward system, were 
investigated electrophysiologically. Materials and Methods: Tramadol was injected interperitoneally 
(12.5 and 25  mk/kg) or subcutaneously (40  mg/kg) and its effect on the firing of mPFC neurons 
was investigated, using in  vivo extracellular single unit recording. Results: Tramadol could not 
significantly affect neural activity in mPFC, suggesting no acute and rapid effect on mPFC. 
Conclusions: The present results showed that neural activity in mPFC was not rapidly affected by 
acute application of tramadol. Since the role of mPFC in tramadol addiction has been elucidated, it 
can be concluded that these effects may be due to delayed responses or chronic use of tramadol.
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tramadol, the exact mechanism of its effects, 
especially in relation to its addiction, 
needs further study. Tramadol can mimic 
the effects of opioid, but its complex side 
effects, as well as its addictive complexity, 
appear to be related to its opioid and 
nonopioid effects.[2] Tramadol appears to 
exert its analgesic effect by binding to the 
μ‑opioid receptor  (MOR) and modulating 
the noradrenergic, serotonergic activities 
as a serotonin‑norepinephrine reuptake 
inhibitor, and also, gamma‑aminobutyric 
acid  (GABA)  ‑ergic  system.[7,8] These 
multiple effects on different neurotransmitter 
systems can complicate the effects of 
tramadol and its addiction.

The medial prefrontal cortex  (mPFC) 
is a part of the reward system that 
has strong modulatory effects on the 
mesocorticolimbic dopaminergic system 
and its role in addiction and especially in 
tramadol addiction has been shown.[9,10] 
The mPFC receives input from other areas 
of the reward circuitry, same to ventral 
tegmental area and nucleus accumbens. 
Because these areas can be directly or 
indirectly affected by serotonergic and 
adrenergic neurotransmitter systems, they 
are likely to be affected by tramadol.[11,12]

It has been demonstrated that addiction to 
tramadol is accompanied to structural and 
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functional changes in mPFC.[3] However, it is not known 
whether these changes are due to the immediate effects 
of tramadol on mPFC; or it may be due to delayed direct 
responses or possibly indirectly due to chronic use and 
through affecting other areas of the brain. Therefore, our 
aim was to evaluate the acute and potential direct effects of 
tramadol on mPFC neuronal activity.

Materials and Methods
Animals

Experiments have been done on male Wistar rats, 
weighing 200–250  g  (School of Pharmacy, Isfahan 
University of Medical Sciences, Isfahan, Iran). Animals 
were maintained in an animal house, under controlled 
temperature and scheduled illumination conditions  (12‑h 
light/12‑h dark cycle, lights on at 07:00 am) with water and 
food available ad libitum. All experiments were approved 
by the Animal Ethics Committee of Isfahan University 
of Medical Sciences  (IR.MUI.MED.REC.1398.608) 
and performed in strict accordance with the directive, 
regarding care and use of animals for experimental 
procedures and the use of laboratory animals  (National 
Institutes of Health, Publication No. 85‑23), revised 2010. 
We tried to minimize animal suffering and the number of 
animals was minimized to achieve statistically significant 
results.

The animals were randomly divided into four 
groups  (n  =  6–8): the control, the tramadol 
12.5  mg/kg  (i. p.), 25  mg/kg  (i. p.), and 40  mg/kg  (s. c.), 
respectively (Alborz Darou CO. Iran).[13]

Single‑unit recordings and data collection

Rats were deeply anesthetized by injection of 
urethane  (1.6  g/kg, i.p)[14] and placed in a stereotaxic 
apparatus. Animal body temperature was continuously 
monitored and maintained at 37°C, using an electrically 
controlled heating pad. Surgery was performed and a 
hole  (roughly 3  mm in diameter) was made to permit 
positioning of a one‑barrel micropipette  (recording 
electrode) into the right mPFC  (AP = +3.5  mm; 
L = ±0.5 mm; DV = −3.5 mm).[15]

Single‑unit activities of neurons of mPFC were recorded 
extracellularly with fine tip  (1–3  µm) glass micropipettes, 
filled with 2 M sodium chloride solution. Micropipettes were 
gently pulled into the mPFC, using a manual microdrive. 
Recorded signals were presented as a rate histogram. We 
recorded the extracellular electrical activity of one to 
three neurons from each animal. Recorded extracellular 
signals were filtered  (300  Hz to 3  kHz bandpass), and 
single‑unit firings digitized, using a commercial analog 
to the digital data acquisition system. Data analysis was 
performed by the related software tools, eLab  (Science 
Beam Institute, Iran). The neurons were isolated based 
on the firing rate and waveform characteristics; neurons 

with a firing rate  <10  Hz, and spike duration more than 
500 μs were chosen, therefore, according to the previous 
studies,[16,17] we assumed that our target neurons were 
pyramidal neurons  [Figure 1]. When steady firing rate was 
identified, the baseline was recorded for 15 min, and then, 
tramadol/placebo was injected and the neuronal response 
was recorded for 30  min. Examinations were done on 12–
18 neurons in 6–8 rats, in each experimental group.

Histological verification

After each experiment, rats were kept anesthetized and 
perfused transcardially with normal saline, followed by 10% 
buffered formalin. Then, brains were removed and sectioned 
coronally at 55 µm thickness, and recording and injection 
sites were histologically verified under a microscope, and 
compared to the rat brain Atlas [Figure 1].[15]

Data analysis

Data were analyzed, using the SPSS version  23 for 
windows  (IBM Corporation). The spontaneous firing rate 
over  15  min was defined, as the baseline firing rate  (in 
spikes/second). An increase/decrease of firing rates beyond 
the mean ± two‑fold of the standard deviation of the baseline 
firing rate was considered as an excitatory/inhibitory 
response, respectively.[18] The percent changes of the firing 
rate concerning the baseline firing rate between the groups 
were analyzed, using the one‑way analysis of variance, 
followed by a post hoc Tukey test and unpaired Student’s 
t‑test, and the Chi‑squared test for comparing cells with 
excitatory or inhibitory responses, between different 
groups. Data are expressed as mean ± standard error of the 
mean (n = 6–10 rats). P < 0.05 were considered statistically 
significant.

Results
The results of statistical comparison of the number of 
neurons with the response of increase, decrease or no 
change, according to Table  1 shows that tramadol with 
different doses and also different method of injection  (ip 
or sc) was not significantly different from the control 
group.

Furthermore, according to Figure  2, although after the 
injection of tramadol, the overall neuronal activity in mPFC 
decreased in all doses; in none of them, this decrease was 
significant.

Discussion
The results of the present study showed that systemic 
injection of tramadol cannot acutely change the neuronal 
activity in the mPFC. According to the characteristics of 
the selected neurons,[16,17] this response was related to the 
pyramidal neurons in this area.

It has been demonstrated that the role of mPFC in reward 
is not uniform. The mPFC appears to be important for 
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cocaine‑rewarding actions, whereas it is not important for 
amphetamines.[19] The mPFC is made up of subregions 
and receives a variety of inputs from different areas of 
the brain[20] and appears to mediate different aspects 
of addiction.[21] One of the challenges of accurately 
understanding mPFC activity is the diversity of excitatory 
and inhibitory neurons[22] and the complex pharmacological 
and neurochemical aspect.[23] It has been suggested that 
some drugs may induce reward directly by affecting mPFC, 
while others, even if they do not directly stimulate reward 
in mPFC, require mPFC function for their rewarding 
effects.[9]

Tramadol is generally a weak μ‑receptor agonist and also 
exerts some of its effects through other neurotransmitter 
systems, such as serotonergic, noradrenergic, and 
gamma‑aminobutyric acid  (GABAergic) systems.[4,24] The 
exact mechanism of how tramadol affects each of these 
systems is unclear and few studies have been performed in 
this field.

Substances and drugs that are used systemically and can 
cross the blood–brain barrier and have receptors in any 
region of the brain can directly affect the activity of that 
region, and depending on the type of receptor, create rapid 
or delayed responses. In this study, we investigated the 
effects of tramadol on mPFC using doses and injection 
routes that have been shown to be effective in suppressing 
pain.[13] The results of this study showed that tramadol 
could not rapidly and acutely affect neuronal activity in 
mPFC until about 30 min after injection.

However, it has been demonstrated that addiction to 
tramadol is accompany to structural and functional changes 
in mPFC.[3,10,25] These changes can be caused by chronic 
effects and repeated use of tramadol.[3,26] However, some 
studies have compared the acute and chronic effects of 
tramadol on MOR, transcription factor ΔFosB and cAMP 
response element‑binding protein  (CREB) gene and 
protein expressions and showed that acute exposure to 

Table 1: Effects of tramadol on the neuronal activity in medial prefrontal cortex
Percentage of changes in neuronal firing Group

Control Tramadol 12.5 mg/kg (IP) Tramadol 25 mg/kg (IP) Tramadol 40 mg/kg (SC)
Increase 33.3 16.1 21.4 8.3
Decrease 25 6.5 3.6 16.67
Unchanged 41.7 77.4 75 75
Pearson χ2 5.423 5.769 3.143
P 0.066 0.056 0.208
SC: Subcutaneous, IP: Interperitoneal. The data show the percentage of changes in neuronal firing compared to baseline in each group after 
treatments. The criterion for increasing/decreasing activity was changes in firing rates beyond the mean ± two-fold of the SD of the baseline 
firing rate. The statistical results presented for each tramadol group are compared to the control group

Figure 2: Effects of tramadol systemic administration on the percentage 
difference of firing rate of neurons within the medial prefrontal cortex. Data 
are expressed as mean ± standard error of the mean

Figure 1: (a) A representative pattern of baseline neuronal electrical activity recorded from the medial prefrontal cortex. (b) An expanded waveform of 
a spike recorded from a medial prefrontal cortex neuron. (c) A representative image, displaying the microinjection site in the medial prefrontal cortex; 
prelimbic, (d) Schematic illustrations of coronal sections of the rat brain, adapted from an Atlas (15), show the approximate microinjection sites in the 
medial prefrontal cortex
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tramadol does not affect the level of ΔFOSB in PFC, but 
increases the levels of MOR and p‑CREB in mPFC in 
acute and chronic exposure to tramadol.[25] These effects 
were appeared at least 1  h after tramadol application.[25] 
Therefore, it can be concluded that tramadol cannot cause 
rapid reactions such as changes in membrane permeability 
and neuronal excitability in mPFC and affect neuronal 
activity in this region.

Conclusions
The present results showed that the rapid response of 
neuronal activity in mPFC, which can be due to direct or 
indirect effects on neuronal excitability in this area, is not 
affected by acute application of tramadol. Since the role of 
mPFC in tramadol addiction has been identified, it can be 
concluded that tramadol may cause functional and structural 
changes in mPFC, either directly or by affecting the areas 
projecting to mPFC. These effects are likely through the 
development of delayed responses that are associated with 
gene and protein expressions.
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