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Abstract

For over a century, mice have been used to model human disease, leading to many funda-

mental discoveries about mammalian biology and the development of new therapies.

Mouse genetics research has been further catalysed by a plethora of genomic resources

developed in the last 20 years, including the genome sequence of C57BL/6J and more

recently the first draft reference genomes for 16 additional laboratory strains. Collectively,

the comparison of these genomes highlights the extreme diversity that exists at loci associ-

ated with the immune system, pathogen response, and key sensory functions, which form

the foundation for dissecting phenotypic traits in vivo. We review the current status of the

mouse genome across the diversity of the mouse lineage and discuss the value of mice to

understanding human disease.

Author summary

For decades, the laboratory mouse has been widely used to make fundamental discoveries

about human biology, model human disease, and develop new treatments. The mouse ref-

erence genome is based on the C57BL/6J; however, researchers use a variety of strains to

model human disease. Recent genome analysis has identified that the most highly variable

regions of the mouse genome are enriched with genes relevant to disease and infection

response. In this review, we discuss what is currently known about these regions, why

they are important for human disease modelling, and what is known about their ancestral

origins.

Introduction

Although mice and humans have coexisted for many millennia, modern mouse genetics was

initiated in the early 20th century [1]. The first genetically homozygous mouse strain was DBA

[2], developed to study coat color inheritance and cancer susceptibility. Subsequently, hun-

dreds of genetically defined strains for modelling human diseases and biological processes

(e.g., behaviour, carcinogenesis, and immune response against pathogens) were developed. As

one of the most important model organisms in biomedical research, the mouse was the second
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mammalian genome to be sequenced after the human genome [3]. The C57BL/6J reference

genome has enabled the creation of detailed molecular maps of mouse diversity [4,5], genera-

tion of null alleles, and phenotyping across thousands of genes; and enabled genetic screens at

an unprecedented rate [6].

Modern-day laboratory mouse strains are comprised of classical and wild-derived strains.

The classical inbred strains have ‘fancy mice’ as their founding ancestors and are largely Mus
musculus domesticus derived. Other subspecies—M. musculus musculus and M. musculus cas-
taneus—contribute approximately 4%–14% to the classical strains [7]. A genome-wide haplo-

type map of 100 classical mouse strains showed that over 97% of their genome is a mosaic of

less than 10 haplotypes [8]. Nevertheless, there are many loci in classical mouse strains, like the

major histocompatibility complex (MHC), which have extensive haplotypic diversity [9,10].

Wild-derived inbred mouse strains are recent progenies of wild-caught individuals of M. mus-
culus musculus, M. musculus castaneus, and M. spretus origin and therefore contain many

divergent haplotypes not shared with classical inbred strains. Wild-derived strains are increas-

ingly employed as mouse models to study phenotypes—such as resistance against Orthomyxo-
virus [11], virulent Toxoplasma gondii strains (CIM, CAST/EiJ, and PWK/PhJ) [12,13],

resistance to anticoagulant rodenticides (SPRET/EiJ) [14], and resistance to cerebral Plasmo-
dium berghei (WLA/Pas) [15].

Limitations of a single mouse reference genome

Wild-derived mouse strains have hundreds of thousands of structural differences and novel

haplotypes compared to C57BL/6J [4,5]. Most SNP discoveries, if not all, are based on high-

density genotyping or short-read sequencing. Paired-end reads are aligned to the C57BL/6J

reference genome to identify SNPs, indels, and structure variations (SVs) [16,17]. This means

that using the C57BL/6J reference genome to study these strains is blind to many nonreference

loci [16]. In these strain-specific diverse regions (SSDRs), next-generation sequencing (NGS)

reads are forced to map incorrectly to other paralogous loci in the reference and are often rep-

resented as dense regions of heterozygous SNPs (hSNPs) that disrupt the collinearity between

the genome of a mouse strain and the reference [13,16]. SSDRs are enriched for genes associ-

ated with immunity, sensory, sexual reproduction, and behaviour [16]. In this review, we will

introduce the SSDRs among 16 mouse strains and their potential importance in human bio-

medical research.

Individual SSDRs associated with phenotypes in mouse inbred strains have long been stud-

ied (Fig 1). In 2004, a high resolution whole genome Bacterial Artificial Chromosome (BAC)

array analysis reported ‘segmental polymorphisms’ between mouse strains C57BL/6J and 129/

Sv [18]. Subsequent work found similar patterns by comparative genomic hybridization analy-

sis and reported 2,094 ‘copy number variations’ (CNVs) in 41 inbred strains [19]. In 2015, an

analysis of 351 high-density microarray data for mouse tail samples highlighted 9,634 putative

autosomal CNVs affecting 6.87% of the mouse genome [20]. In 2016, Morgan and colleagues

performed a genome-wide subsequence diversity test in seven mouse strains and two wild

mice samples and reported at least 0.8% of the mouse genome is a ‘genomic revolving door’

with high mutation and recombination rates [21]. In 2018, the first draft de novo assemblies of

16 mouse strains successfully assembled some of these regions, reporting a total of 2,567

SSDRs that encompass 0.5%–2.8% of the mouse genome (Fig 2A and S1 Data), encoding 1,828

coding genes. These genes can be classified into 468 gene families (S1 Table), and 318 (67.7%)

have previously been studied in detail. Only 3.1% of gene families have complete sequences

(introns and intergenic regions) for multiple mouse strains, 9.8% have coding regions from

multiple mouse strains, and most (87.1%) studies draw scientific conclusions based on a single
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laboratory mouse strain, typically C57BL/6J or a 129 substrain (Fig 2B). SSDRs are enriched

for recently transposed long interspersed nuclear elements (LINEs) and long-terminal repeat

(LTR) elements, posing a challenge for genome assembly [16] and consequently are often

incomplete in the current mouse reference genome.

Immune-related genes in SSDRs

SSDRs are highly enriched for immunity and infection response related genes (Fig 2C). Exam-

ples include MHC, natural killer gene complex [22,23], T-cell receptors [24], and immuno-

globulin variable regions [25], which play central roles in non-self-recognition and adaptive

immunity. Other loci include oligoadenylate-synthetase 1 (Oas1) complex [26], AIM2-like

receptors [27], and Schlafen gene family [28] for virus innate immune response; NOD-like

receptors—Nlrp1—for anthrax lethal toxin resistance [29]; immunity-related GTPases (IRGs)

for intracellular pathogen resistance [13]; and α and β defensins for immunomodulatory and

antimicrobial function in intestinal crypts [30]. An interesting example is the Intelectin (Itln)

members encoded on chromosome 1. Intelectin is known to be highly up-regulated in the

immune response to parasitic infections, e.g., Trichinella spiralis. In the C57BL/6J reference

genome, only one Itln allele can be found; however, BALB/cJ has two (Itln1 and Itlnb) [31],

and strain 129S7 has up to 6 Itln alleles (Itln1 to Itln6) [32]. Similarly, the adjacent gene Natural

Killer Cell Receptor 2B4 (Cd244) shows similar patterns of CNVs in recent de novo assemblies

[16].

Recent de novo assemblies have also highlighted many loci with polymorphisms previously

unreported in mice. Apolipoprotein L (APOL) members encoded on chromosome 15 show

high levels of CNVs in classical and wild-derived mouse strains [16]. There are very few studies

in murine ApoL members; however, their orthologues in humans (APOL1) are polymorphic

[33]. Some alleles confer resistance to Trypanosoma brucei brucei in humans but at the same

time lead to chronic kidney disease [33]. Skint gene family members, named after ‘skin

Fig 1. Discovery of SSDRs in the mouse genome. Loci for chromosome 1 and 6J are shown. Li and colleagues [18]

defined segmental polymorphisms between 129 and C57BL/6J (blue). Cutler and colleagues [19] cataloged copy

number variations in 41 inbred strains (green). Locke and colleagues [20] identified genome regions with high copy

number variation calls in 351 different mouse strains and wild-caught mice (yellow). Morgan and colleagues [21] used

a combination of wild and inbred mouse strains to define copy number variable regions (orange). Lilue and colleagues

[16] used de novo assembly of 16 mouse strains (red). The gene families supported by multiple studies are named

above. N/A indicates no protein coding genes in the region. SSDR, strain-specific diversity region.

https://doi.org/10.1371/journal.pgen.1008446.g001
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thickness’ because they regulate epidermal γδ T cells, are associated with chronic wound heal-

ing deficiencies in humans [34,35]. A single SNP was reported in mouse strain FVBTac, which

causes selective deficiency for epidermal Vγ5+Vδ1+ T cells [35]. However, the polymorphism

of the Skint family appears to be much more complex than previously reported among mouse

strains. Eosinophil-Associated RNases (Ears) encoded on chromosome 14 are orthologues of

human eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), which

are highly charged cytotoxic proteins released from activated eosinophil granules [34]. Mouse

Ears can promote virus clearance [36] and play a role in the Schistosoma resistance [37].

Although evidence of positive selection has been found for Ears members in the reference

genome, their diversity between inbred strains is poorly documented. At least three haplotypes

can be found in classical inbred mouse strains (haplotype1: C57BL/6J, C57BL/6NJ, 129S1,

AKR/J, BALB/cJ, A/J, CBA/J, DBA/2J, C3H/HeJ; haplotype2: NZO/HILtJ,LP/J; haplotype3:

FVB/NJ, NOD/ShiLtJ), and four wild-derived strains all carry divergent sequences [16]. Sig-

nal-regulatory protein beta 1 members (SIRPB1) are cell surface glycoproteins expressed in

leukocytes, which positively regulate neutrophil transepithelial migration [38]. A CNV in

SIRPB1 has been reported in humans to be associated with autoimmune thyroid diseases [39]

Fig 2. A summary of SSDRs in 16 mouse strains. (A) Proportion of sequence and coding genes in SSDRs for the

classical and wild-derived inbred mouse strains. (B) Summary of annotated genes encoded in SSDRs. For gene

(families) with known function, only 3.1% have complete sequences (introns and intergenic regions) for multiple

mouse strains (green), 9.8% have coding regions from multiple mouse strains (yellow), and all others are based on a

single mouse strain (red). (C) Top 10 PANTHER protein classes overrepresented in mouse SSDRs. X-axis indicates

times underrepresentation or overrepresentation. Numbers after each protein class indicate corrected FDR(log10

value). CDS, coding sequence; FDR, false discovery rate; SSDR, strain-specific diversity region.

https://doi.org/10.1371/journal.pgen.1008446.g002
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and impulsive-disinhibited personality [40]. In the GRCm38 reference genome, the Sirpb1
locus remains incomplete [16]. However, the de novo assembly of other inbred mouse strains,

especially C57BL/6NJ, has partially improved the reference genome and confirmed significant

conservation and high diversity across the strains compared to the C57BL/6J haplotype at the

Sirpb1 locus [16]. Thus, the newly published draft genomes of multiple mouse strains will fur-

ther facilitate the use of the house mouse for studying human disease.

Both mice and humans carry very large interferon inducible GTPases (GVIN). Their open

reading frame is almost 8,000 base pair in length, encoded by a single colossal exon. They are

highly expressed in lymph nodes and whole blood in humans [41] and are inducible by both

type I and type II interferons (IFNs) in mice [42]. Although the function of GVIN members

remains unknown, they are thought to play a role in pathogen immunity [42]. Alpha-1 anti-

trypsin (AAT) encoded by gene serine protease inhibitor A1 (SERPINA1) is the most abun-

dant antiprotease in humans. It inhibits neutrophil elastase and regulates serine proteases

during acute inflammatory responses, especially in the lungs where it protects the fragile alveo-

lar tissues from proteolytic degradation [43]. Human SERPIN family members are highly poly-

morphic with 1/2,500 newborns in Western Europe carrying the PiZ or PiS allele that causes

acute or chronic lung and liver disease [44]. The trade-off of these adverse alleles is still

unclear; however, pathogens are reported to manipulate immunity regulation of host as eva-

sion strategies, and SERPINA is a potential target [45]. Among mouse strains, both the SerpinA
and SerpinB gene families are highly polymorphic, and mouse strains with different Serpin
haplotype may confer a good model for human AAT diversity.

Many more immune-related genes or gene families are encoded in the SSDRs in mice, e.g.,

IFNs, guanylate-binding proteins (GBP), Ly6 members, orosomucoids (Orm), paired-Ig-like

receptor (Pira/Pirb), interferon-induced proteins with tetratricopeptide repeats (IFIT), and

CD200 receptors. A summary of these loci can be found in S1 Table.

Sensory and kin selection

Key to rodent survival is the ability to detect and avoid potentially harmful compounds by

smell and taste. The polymorphisms of Tas2r members are believed to match the profiles of

bitter chemicals that the mouse population encounter in their diets. Signatures of positive

selection have been detected for the human bitter-taste receptor TAS2R16 [46]. The majority

of bitter-taste receptors encoded on mouse chromosome 6 are lineage-specific [47]. Indeed,

variations in aversion to chemical substances were observed in BXD mice [48] and between

mouse strains C3HeB/FeJ and SWR/J [49]. Both phenotypes were mapped to mouse Tas2r loci

on chromosome 6 [50].

Olfactory receptors (ORs) are the largest gene superfamily in house mice and most verte-

brates [51]. There are 1,296 OR genes distributed in 27 clusters on the Celera mouse genome

except chromosome 12 and Y [51]. As one of the most ancient animal senses, olfaction is

important to recognise food, identify mates and offspring, and avoid predators or chemical

dangers. Polymorphism in ORs in inbred mouse strains is well studied. Multiple OR members

from strains 129S1/SvI, 129X1/SvI, 129S6/SvEvTac, A/J, AKR/J, BALB/c, C57BL/6, and DBA/

2J were amplified from genomic DNA [51,52] and sequences available [53]. The de novo

genome assemblies, especially of wild-derived inbred strains, have greatly boosted the abun-

dance of novel OR genes. Taking strain CAST/EiJ as an example, 1,249 OR candidates have

been annotated, 37 of which are not present in the reference mouse genome. In addition, mul-

tiple OR pseudogenes in GRCm38 are conserved with CAST/EiJ and vice versa [16]. Strain-

specific polymorphisms can be found in 23 OR clusters among 16 mouse strains sequenced.

Similar polymorphisms can be found in Taar7d, Taar7e, Taar8a, Taar8b and Taar8c in wild-
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derived mouse strains. These members are reported as ORs to recognise ethological odors

[54]. The human genome encodes 950 OR genes with high diversity, comparable to the mouse

genome [55].

The mouse genome contains many other lineage-specific gene family expansions compared

to humans. Many of these genes are associated with reproduction, possibly caused by mating

competition and kin selection [56]. One remarkable example is of vomeronasal receptors

(VRs) that are mainly expressed in the vomeronasal organ and believed to detect pheromones

for sexual recognition. Based on structural differences, VRs are classified into two superfami-

lies, Vmn1r and Vmn2r, and sum to more than 360 members encoded as clusters on multiple

chromosomes in GRCm38 reference genome [57]. The dynamic evolution of VRs and the

driving force behind it have been largely discussed in the last decades [58–62]. Wynn and col-

leagues [57] interrogated around 50% VR genes/alleles from 17 inbred mouse strains and

found a significantly higher coding sequence variation with nonrandom distribution in the

VRs, especially among three house mouse subspecies and between M. Musculus and M. Spre-
tus. These results suggest that VRs may contribute to reproductive isolation between closely

related subspecies [57].

As ligands for VRs [63], the major urinary proteins (Mups) are a set of 18–19 kDa communi-

cation proteins abundant in mouse urine and other secretions, including lacrimal, parotid, sub-

maxillary, sublingual, preputial, and mammary glands [64,65]. Mups may either directly behave

as pheromones or bind small molecule pheromones to stabilize them by a slow-release pattern

[66,67]. In the house mouse, Mups are encoded by a gene-dense cluster on chromosome 4 with

at least 19 Mup members per haplotype. Wild mice are reported to express complex ‘barcode’

patterns of Mups, which may provide gender, social dominance, and kinship information to

other individuals, facilitating inbreeding avoidance and aiding pup identification. However,

wild type individual variation on Mup locus is thought to have been lost during derivation of

the classical laboratory strains [68]. It was proposed Mup alleles are also highly conserved

between individual wild mice [69]. However, previous research based on PCR amplification

could not assay novel haplotypes with highly diverse Mup members. De novo assemblies of 16

mouse strains have confirmed the sequence diversity in all four wild-derived strains [16].

Another important group of pheromone proteins are exocrine gland secreting peptides

(ESPs). They may regulate mouse social behaviours via VR activation. Esp1 is reported to

mediate Bruce effect in mice [70], and Esp22 secreted by juvenile mice may inhibit adult male

mating behaviour[71]. ESPs are encoded by a gene cluster close to the class I MHC. In the

GRCm38 reference genome, 38 Esp members are annotated, in which 14 appear to be pseudo-

genes [72,73]. Although most members in Esp family have high sequence diversity between

mouse strains, their polymorphisms have not been widely reported. In the human genome,

Mups and ESPs are not present, and all except five V1R genes are disrupted by deleterious

mutations [74].

Behaviour and neuron development

Sensory receptors may affect the behaviour of the house mouse directly or indirectly, similar

to VRs and ORs [75,76]. The modification of behaviour may also be achieved by regulating the

development and connection of neuron cells. For example, protocadherin gamma (Pcdhg)

members are encoded in a mouse SSDR on chromosome 18. Many Pcdhg members show high

polymorphism among mouse strains. Pcdhga genes are found exclusively in vertebrates and

predominantly expressed in the nervous system [77]. They may provide a synaptic address

code for neuronal connectivity or a single cell barcode for self-recognition and self-avoidance,

and their isoform diversity is necessary for postnatal development of neurons [77].
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In humans, male and female specific brain function dimorphisms causing mental

impairment have been linked to the X chromosome [78]. This is partially related to X-linked

lymphocyte-regulated (Xlr) members [79]. Xlr3b and 4b are paternally imprinted in the cortex

and other brain regions, which regulate the expression of other genes[79]. Xlr genes are

encoded on rapidly evolving gene clusters. Among 16 mouse strains, very few SSDRs can be

found on the X chromosome, but the two Xlr loci give strong signatures of CNVs and novel

loci in the wild-derived strains.

One of the most remarkable SSDRs is on chromosome 12 (17–25 mega base pairs [mbp]).

This 7 Mbp region encodes hippocalcin-like 1 (Hpcal1) and their homologues that belong to

the neuronal calcium sensors. Humans have only single copy of HPCAL1, which is mainly

expressed in retinal photoreceptors, neurons, and neuroendocrine cells [80]. Knockdown of

HPCAL1 in neuroblastoma cells led to impaired neurite outgrowth and inhibited sympathetic

neuronal differentiation [81]. In house mice, this gene has been duplicated into 50–100 copies.

The mouse Hpcal1 complex is extremely repetitive containing several recent duplications of

hundreds of kilobases. Current draft de novo assemblies do not accurately represent the

Hpcal1 locus in any mouse strain, although it appears that in 12 classical strains at least eight

different haplotypes can be observed, and four wild-derived strains contain a further four [16].

To date, the function of Hpcal1 homologs and the purpose of the rapid expansion of the loci

remains unknown. Further candidate genes that potentially have functions in neuron develop-

ment and regulation include Mas and related G Protein-Coupled Receptors (Mrgpra), Angio-

poietins (Ang), and Neuronal apoptosis inhibitory proteins (Naip) [82–84].

Sexual reproduction and other biology processes

Sexual reproduction is a complex process from gamete recognition to maternal-fetal interac-

tion. Many genes related to sperm-egg interaction show positive selection and polymorphism,

which may reflect the evolutionary pressure from species recognition or inbreeding avoidance

[85]. The a disintegrin and metalloprotease (Adam) gene family are important sperm surface

proteins. Rapid evolution can be found within their sperm-egg adhesion domains [86]. Three

Adam members are found in a SSDR, namely Adam20, Adam25, and Adam26a. The diver-

gence can be only observed in M. Spretus, which indicates a potential role in hybridization

avoidance [16]. Other sperm specific gene families, however, are polymorphic among classical

laboratory mice. Sperm-associated glutamate (E)-rich protein (Speer) members are encoded in

a gene-dense cluster on chromosome 5. At least three of them are expressed solely in the adult

mouse testis. Speer homologs are not present in most other mammal species including humans

[87], and their function remains unclear. Female specific genes can be also found in the

SSDRs. Pregnancy-specific glycoproteins (Psg) are members of immunoglobulin superfamily.

In humans, PSGs may be the most abundant trophoblastic proteins in maternal blood during

pregnancy [88]. Human PSGs play an essential role in the regulation of maternal immunity, by

protecting a fetus from immune responses in case of infection, inflammation, and trauma [89].

The polymorphism of Psg members in mice is possibly caused by a combination of immune

tolerance and host–pathogen coevolution. Four haplotypes of the Psg complex can be found in

classical inbred strains, and all wild-derived mouse strains have novel haplotypes.

Many other candidates in the list of mouse strain-specific diversity genes have various

function or unknown function (see S1 Table). Variations in keratins and keratin associated

proteins (Krtap) may affect the hair content characteristics of mouse individuals [90]. Poly-

morphisms of Hydroxysteroid sulfotransferase enzymes (Sult) may reflect challenge from

chemical Metabolism. Variation of zinc finger proteins (Zfp) are thought to repress transpos-

able elements in an evolutionary arms race [91].
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Conclusions

Isogenic inbred mice have held a unique position as the key mammalian model in evolution-

ary, genetics, genomics, and biomedical research for over a century. Sequencing and functional

studies have documented the extent of genetic polymorphism residing amongst the strains,

both shared and unique to each strain. Genetic variation between mouse strains is not evenly

distributed across the genome. In most regions, mice are >99.5% identical, but in SSDRs

(around 0.5%–2.8% of the mouse genome), the difference is often higher than interspecies

diversity between mouse and rat [13]. This scale of diversity cannot be easily represented using

the reference genome with SNPs, indels, and SVs. SSDRs are overrepresented with genes asso-

ciated with immunity, sensory, sexual reproduction, and behavioral phenotypes [16]. The

selective pressures driving diversity and CNV includes host–pathogen coevolution (e.g., red

queen hypothesis) [92], kin selection [93], mating preference [94], and even selective sweeps

due to strong positive selection [95,96]. Many of these genes have direct orthologues in the

human genome and are therefore important for understanding health and disease, drug devel-

opment, and vaccine development. Multiple well-annotated reference genomes will allow

researchers to use the appropriate strain for biological rather than historical reasons.

While this review has focused primarily on the limitations of our knowledge of diversity in

protein coding regions of the mouse genome, there are other functional elements in which our

knowledge is even more limited, e.g., long noncoding RNAs (ncRNAs); piRNAs; and tran-

scription controlling elements such as promoters, enhancers, silencers, and insulators. Multi-

ple reference quality chromosome sequences will provide the foundation for future mapping

studies to interrogate these elements. The dramatic drop in second-generation sequencing

costs has resulted in genome-wide catalogs of genetic variants for hundreds of mouse strains,

but the process of producing a reference quality genome sequence that includes fully resolved

novel haplotypes remains costly. Recent advances in third generation sequencing platforms,

such as Pacific Biosciences and Oxford Nanopore, can produce mammalian genomes that are

an order of magnitude more contiguous[97]. We expect that the representation of many

SSDRs in mouse strains will be greatly improved by third generation sequencing platforms.

Human genome-wide association studies (GWAS) have discovered many loci associated

with complex disease and traits. Knowledge from model organisms, combined with fine map-

ping techniques and functional studies, are used to identify causative genes and mechanisms.

Mouse SSDR regions are enriched for genes with disease functions with known orthologs in

the human genome. The completion of the mouse pan-genome that incorporates all known

genetic variants and novel haplotypes will enable the functional characterization of many unre-

solved quantitative trait loci (QTLs) associated with human disease.

One interesting question is what the origins of these highly diverse haplotypes in the mouse

genome are. To date, only a few of these loci have been studied in detail in both inbred and

wild mice. Trachtulec and colleagues [98] constructed a haplotype map of the Hst1 region and

H2 haplotypes for five mouse subspecies and found that trans-species SNPs were rare, con-

cluding that the haplotypes are unlikely to have arisen by recombination during inbreeding.

Lilue and colleagues[13] studied the polymorphic alleles of IRG proteins in inbred laboratory

mice that have also been found in European wild mice, suggesting that these alleles arose prior

to inbreeding, whilst other more ancient alleles are shared across mouse subspecies. The com-

bination of multiple reference quality genomes for the primary mouse subspecies and avail-

ability of larger numbers of sequenced wild mice from ancestral populations will enable a

comprehensive analysis of the origins of all SSDRs.
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Supporting information

S1 Table. The gene families, publication identifiers, human orthologs, and mouse gene

names for the SSDR regions in the mouse genome. SSDR, strain-specific diversity region.

(XLSX)

S1 Data. Coordinates on GRCm38 for the SSDR regions per strain (BED format). SSDR,

strain-specific diversity region.

(GZ)
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