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Abstract: Human activities are having increasingly devastating effects on the health of marine and
terrestrial ecosystems. Studying the adaptive responses of animal species to changes in their habitat
can be useful in mitigating this impact. Vultures represent one of the most virtuous examples of adap-
tation to human-induced environmental changes. Once dependent on wild ungulate populations,
these birds have adapted to the epochal change resulting from the birth of agriculture and livestock
domestication, maintaining their essential role as ecological scavengers. In this review, we retrace
the main splitting events characterising the vultures’ evolution, with particular emphasis on the
Eurasian griffon Gyps fulvus. We summarise the main ecological and behavioural traits of this species,
highlighting its vulnerability to elements introduced into the habitat by humans. We collected the
genetic information available to date, underlining their importance for improving the management
of this species, as an essential tool to support restocking practices and to protect the genetic integrity
of G. fulvus. Finally, we examine the difficulties in implementing a coordination system that allows
genetic information to be effectively transferred into management programs. Until a linking network
is established between scientific research and management practices, the risk of losing important
wildlife resources remains high.

Keywords: Gyps fulvus; genetic integrity; species management; anthropogenic impacts

1. Introduction

Human activities causing alteration of habitats, along with overfishing and hunting, in-
tensive use of pesticide, herbicides and fertiliser in agriculture, the impacts of invasive alien
species and climate change are the main causes of biodiversity loss for ecosystems [1–4].
Based on the latest report on the health of ecosystems, one million of plant and animal
species are at risk of extinction because of human activities. Since the rate of species extinc-
tion has grown up to hundreds of times higher than in the past 10 million years, many of
these species will become extinct within a few decades [5]. However, there are some species
that have adapted to these changes and developed new behavioural strategies to survive
in close contact with humans, as in the case of vultures. These birds have changed their
eating habits by switching their primary food source to farm animals because carcasses of
wild animals are scarce and even disappeared in some areas.

Vultures play a key role in maintaining the functioning and health of an ecosystem.
As obligate scavengers, they deliver crucial benefits to humans by providing several ecosys-
tem services, such as the regulatory one, which has gained more and more importance,
especially in recent times with the spread of intensive breeding [6,7]. Indeed, vultures

Life 2021, 11, 1038. https://doi.org/10.3390/life11101038 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-0847-1128
https://orcid.org/0000-0001-6615-4828
https://orcid.org/0000-0002-5277-5698
https://doi.org/10.3390/life11101038
https://doi.org/10.3390/life11101038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11101038
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11101038?type=check_update&version=1


Life 2021, 11, 1038 2 of 19

reduce the rates of transmission of infectious diseases quickly consuming domestic and
wild animals’ carcasses. Regarding this role of vultures, the provision of supplementary
safe food at artificial feeding stations (SFFS) appears to be the most important manage-
ment action applied to counter sanitary problems related to intensive breeding and to
the conservation of these species sensitive to poisons or drugs present in contaminated
carcasses [7–14].

Old World vultures living in Europe, Asia and Africa are members of the Accipitridae
family and are closely related to raptors. The New World vultures’ species from America
belong to the Cathartidae family, which has been proposed by some authors as being evolu-
tionarily related to Ciconiidae [15,16]. Because of convergent evolution, these two groups
of vultures would have adapted their lifestyle to the same ecological niche, developing
similar morphology and behaviour [17]. However, more recent studies have disproved
the “cathartid-stork hypothesis” and pointed out a Cathartidae sister relationship with
Accipitridae [18–21]. Both Old World and New World vultures are scavenging birds and
feed mostly on carcasses of dead animals. Among the morphological and biological char-
acters interpretable as adaptations are bare heads and neck to avoid pollution of feathers
when feeding inside carcasses, strong hooked beaks with cutting edges to tear skin apart
and feet more appropriate for movement on the ground than to catch prey [16]. A further
adaptation is related to the feeding behaviour resulting in complex relationships at both
intraspecific and interspecific levels during carcass exploitation [22–25]. The species of
both families developed a static soaring style, perfectly optimised for searching for food
over wide areas minimising the energy expenditure. Vultures rely heavily on soaring flight
using air thermals [26].

Based on the “IUCN Red list for birds” [27], 11 out of the extant 16 Old World
vultures’ species are classified as globally threatened (eight Critically Endangered and
three Endangered), while among the seven New World vultures’ species, only two are at
risk (one Vulnerable and one Critically Endangered). The causes of the decline of vultures
are well known and it is necessary to urgently coordinate and implement the action plan
in all its components [28]. In this review, we retrace the evolutionary history of vultures,
with particular emphasis on the Eurasian griffon vulture Gyps fulvus, and analyse their
adaptation to habitat changes, providing useful information for a better management of
this species.

2. The Genus Gyps

The family Accipitridae includes the genus Gyps which groups ten Old World vulture’s
species. Among them are the extant G. rueppellii, G. africanus and G. coprotheres in Africa; G.
bengalensis, G. indicus, G. tenuirostris and G. himalayensis in Asia; G. fulvus in Europe, Africa
and Asia; and the two extinct G. melitensis and G. bochenskii [29].

The feeding behaviour among Gyps vultures is thought to have evolved because of
their close association with ungulates, particularly migratory populations in Africa and
Asia. Indeed, the temporal and geographic diversification of Gyps species coincides with
the radiation of Old World ungulates, especially from Bovidae [30–33]. Such a relationship
likely played a significant role in the adaptation and rapid diversification of Gyps vultures.
In 1983, Houston [34] proposed that their large body size and ability to soar over large
distances in search for food are related to the associated migrant distributions and seasonal
fluctuations in mortality of ungulates, and that they have consequently become incapable
of killing their own prey [26]. However, occasionally, a vulture has been described to kill
young and weak individuals without affecting livestock productions [35]. These presumed
killing of live and healthy livestock by griffon vultures Gyps fulvus, that have no offensive
weapons, lacks scientific evidence but has been magnified by the media through the
spread of fake news, creating alarm that must be stemmed through careful information
campaigns [36,37]. The species of Gyps show similar morphological features and can
hybridise each other in natural conditions when range overlaps. In central Africa, G.
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rueppellii crossbreeds with G. africanus, G. coprotheres and G. fulvus individuals, the latter
migrating in autumn from Spain to Africa, and produces fertile hybrids [38].

3. The Eurasian Griffon Vulture: Ecology and Behaviour

Among species of Gyps, the Eurasian griffon G. fulvus is the most widespread vulture
across Europe, Asia and Africa, with a reproductive distribution extending from Kaza-
khstan and Nepal to southern Europe via the Caucasus [39]. The species is now considered
extinct as a breeding species in North Africa, where mainly records of nomadic juveniles or
migratory overwintering adults are reported [40]. In Europe, Spain holds more than 95%
of the total population and, in global terms, 75% of the world’s griffon vultures [41–43].
The remaining European breeding colonies are from the Balkan Peninsula, including Bul-
garia, Greece, Macedonia, Serbia and Croatia [44–49], along with France, Portugal and
the Mediterranean islands of Sardinia, Crete, Naxos and Cyprus [50]. Since this species
has an extremely large range, the population trend appears to be increasing, and as the
population size is very large, it is currently classified as “Least Concern” according to the
IUCN criterion [39].

3.1. Habitat

The vertical cliffs are the preferred nesting sites of the Eurasian griffon as well as most
species of Gyps, except for G. indicus and G. africanus, both adapted to use trees. The cliffs
are high areas of rock with a very steep side, often on a coast, where the erosive action of
water generated small caves, ledges and protrusions, making them ideal nesting sites well
protected against potential predators [51] (Figure 1).
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share the same habitat and nest near the griffon vulture's nests. Both these species repre-
sent a potential danger because they often attack or disturb the Eurasian griffon when 

Figure 1. Breeding habitat of the Eurasian griffon with small caves in vertical cliffs. Inset shows an
adult attending the chick in the nest (photo: S. Naitana; date: 16 May 2018; location: Badde Aggiosu,
Bosa—Italy; GPS coordinates: N 40.30163803046105, E 8.516893362179143).

In addition, the presence of narrow and high gullies where the air is often forcibly
conveyed generating vertical air currents provides important advantages for the take-off
and flight [52]. Particularly during the autumn/winter season, these movements of air
masses are useful because they compensate for the lack of thermals currents during days
with overcast skies.

Beside the nesting sites, the habitat is characterised by a landscape with large open
spaces of scrub and small forests, allowing Eurasian griffon to identify carcasses of wild or
domestic animals [53]. The golden eagle (Aquila chrysaetos) and the raven (Corvus corax)
share the same habitat and nest near the griffon vulture’s nests. Both these species represent
a potential danger because they often attack or disturb the Eurasian griffon when landing
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in the nest. Particularly, the raven represents a potential predator of eggs and chicks if left
unattended; it also competes with the griffon vulture for carcasses remains (Figure 2).
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Figure 2. Eurasian griffon surrounding a carcass with crows around waiting for their turn (photo: G.
G. Leoni; date: 12 February 2015; location: Sa Fenalzosa, Pozzomaggiore—Italy; GPS coordinates: N
40.4184752, E 8.6828675).

The Eurasian griffon is sedentary, but it can colonise new areas thanks to the dispersal
behaviour of young individuals which are driven to explore new territories by overpopula-
tion or reduction in food availability. The evolutionary adaptation of the wing structure
allowed the Eurasian griffon to adopt the soaring flight, an energy-efficient style that
minimise the energy cost by using environmental resources such as rising air currents [54]
(Figure 3). Due to this flying style, the Eurasian griffon usually flies over land and is very
reluctant to cross even short distances over the sea, where the absence of ascending thermal
air currents associated to crosswinds may change speed and/or direction of flight [55].
At the beginning of the colonisation process, information derived from habitat features is
crucial in determining the colony settlement, while social information between conspecifics
becomes predominant when the colony expands [56].
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The Eurasian griffon is socially monogamous and shows high nest-site fidelity.
Adult philopatry to a general area and site tenacity to a specific nest-site are presumed
to gain a benefit in intra-sexual competition for territories due to familiarity with an
area [57–60]. Indeed, the deep knowledge of the breeding site and the consolidated re-
lationships with the conspecifics facilitate individuals in finding food, choosing the best
nest-site and taking care of chicks, fundamental aspects for guaranteeing reproductive suc-
cess. This tendency to prefer the safety of an already known breeding site to the uncertainty
of the unknown leads to a reduction in the dispersion rate and favours the formation of
colonies, which tend to diversify at a rate proportional to the isolation time, as previously
detected in populations on islands [50,61]. Such a behaviour is one of the causes of the
site-specific genetic variability highlighted among griffon vulture populations in different
geographical areas [50,62].

3.2. Food Availability

The extension of the feeding area of the Eurasian griffon is proportional to carcass
availability and generally involves a territory of ~25 km in radius in the mainland [63] and
of ~9 km in the islands [64], starting from the centre of its nesting site. Every day, it carries
out flights such as mopping-up for control and identification of carcasses in the territory,
flying much higher if the density of the ungulate population is very low [65].

The relationship between the use of feeding sites by avian scavengers and the trophic
requirements resulting from the life-cycle phase and individual activities has been pointed
out [14,22,66]. Given the considerable parental investment of vultures during their lengthy
breeding period [67], they optimise the time spent on searching and obtaining food. In
fact, during the incubation and chick-rearing phases, couples attend sites where the food is
more predictable and accessible [22].

Gyps fulvus has evolved an effective strategy based on rapid exchange of information
between conspecifics as a mechanism to counteract the uncertainty deriving from the
unpredictability of food. This condition is particularly evident during the period of chick
feeding where adults build aerial networks by keeping visual contact each other to cover
a wide area. The immobility of the wings in flight contrasts with the incessant lateral
oscillation of the head aimed to inspect the territory and locate a carcass [68,69].

Gyps fulvus is one of the most sensitive avian species to reductions in food supplies [70].
The drop in the amount of food provided by extensive livestock herds has led to an
intensification of the consumption of food by vultures at predictable feeding stations.
The link between the food supplied at feeding stations and the increase in antibiotics
and in Non-Steroidal Anti-Inflammatory Drugs (NSAID) in plasma and carcasses of the
Eurasian griffon vulture has been evidenced [71,72]. The European Medicine Agency (EMA)
recognised the risk for Gyps vultures from the use of NSAID in animals whose carcasses
could be available as food to avian scavengers [73] and several proposals have been carried
out to overcome this problem, such as the implementation of control systems, the use of
alternative vulture-resistant drugs [28,74,75] and the so-called “One Health Approach” that
promotes environmental responsibility and stimulates collaboration between veterinarians,
pharmacologists, biologists and ecologists for the health of humans, animals and the
environment [76].

To locate food directly, griffon vultures do not use a sense of smell but rely on vi-
sion [77]. The griffon has excellent eyesight and in flight can spot an animal carcass from
a great distance, and when an individual locates a carcass, lowering its legs, it sends a
signal to prepare for landing [78]. The entire carcass is eaten starting from the mouth and
anus, in a relatively short time. Observations carried out by Spanish ornithologists have
shown how a group of ~30 individuals can identify a carcass in a very short time (2–3 h)
and consume a sheep in half an hour [79].

Biotelemetry studies aimed to track movements of sympatric individuals have high-
lighted how the shared roosts could play as information centre where conspecifics share
information about the position of food [80]. The behaviour of conspecifics on foraging
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success have facilitated the spread of the species [81,82]. As a downside, the efficient
information transfer could play an important role in declining populations according to a
sigmoidal relationship describing the probability of vultures finding food as a function of
vulture density in the habitat [81].

Vultures have one of the most effective immune systems that evolved to protect
them from the daily exposition to factors affecting transmission of contagious diseases,
such as those deriving from the consumption of the carcasses that produce pathogens
and high toxic molecules. The immunity to pathogens present in carcasses is provided
from an efficient digestive tract with a low pH value ranging from 1 to 1.5 [83] where,
in symbiosis, lives a huge number of bacteria constituting the microbiota producing a
bacteriocin with remarkable antimicrobial activity [84]. The presence of the microbiota is
the result of the evolutionary ecological strategy for the exploitation of animal carcasses
and, consequently, appears to be crucial in conferring protection against pathogens and
for survival of the griffon [85]. For these reasons, vultures can also act as a reservoir of
pathogenic zoonotic bacteria that can be transmitted to other animal species, increasing
their diffusion in wildlife [86,87].

3.3. Reproductive Investment

Gyps fulvus are monogamous birds with a slow lifestyle, producing a single chick
that takes a long time to grow and has an increased food requirement [88]. The feeding
frequency is primarily regulated by the extent of the foraging range [89]. Since the breed-
ing success depend on the availability of carcasses, a source of food whose presence is
unpredictable in space and time, the parental investment is directly related to the carrying
capacity of the territory near the nest site [23,40]. The reproductive activity starts with the
nuptial flights and the nesting in early winter. Nuptial flights are performed in acrobatic
mode by partners who fly one on top of the other or “hand in hand” (Figure 4).
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Figure 4. Eurasian griffon performing the nuptial flight (photo: S. Naitana; date: 19 June 2020;
location: Su Caule, Bosa—Italy; GPS coordinates: N 40.39430966980878, E 8.40493093114848).

The latter is a typical flight where two adults fly side by side with the tips of the
wings almost touching each other to check the partner’s ability of fly, which is essential
in contributing to chick attendance and growth (S.N.—personal observation). During the
breeding season, to reduce potential risk of extra-pair copulation in large colony, the
Eurasian griffon shows a good average of copulation attempts equal to 71.7, with an average
frequency of 1.2 copulations per day [67,88,90]. Different results have been observed in
low-density colony [91]. The nuptial flight usually ends on the nest where the partners
mate with the cloacal kiss, joining each other and consequently becoming part of the colony.
Although it is not a territorial species, during the breeding season, the griffon vulture is
inclined to attack intruders to the nest-site.

The female lays a single white egg 2.5% of its weight, hatching after 52–54 days,
with an average productivity ranging from 0.50 to 0.69 of juveniles per breeding pairs
per year [63,92] and improving up to 0.82 in a reintroduced colony under favourable
conditions [93]. In the early stages of weaning, parents take turns daily in caring for the
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chick, who is never left alone. Starting from 2 to 3 months, the food frequency is gradually
reduced and the chick is often alone in the nest. Most chicks continue relying on their
parents and eating in the nest especially during autumn/winter, when food is scarce [88].

Juveniles can learn by observation and imitation of adults up to ~5 years after reaching
puberty and improve their performances in relation to the ability of flying by using thermal
air currents, control and precision when landing and the identification of animal carcasses
(S.N.—personal observation). Such a social transmission of information is taxonomically
widespread and has already been described in avian species, including some birds of
prey [94–97]. Adults outperform juveniles in challenging thermal soaring conditions and
have a greater mastery of soaring static [98].

4. Eurasian Griffon Population Expansion and Decline

The availability of animal carcasses and predation residues was fundamental in
determining the evolutionary success of the griffon and defining their role as specialised
birds in recycling of biomass, in alternative to capturing and killing prey. These birds
play a crucial role in keeping ecosystems healthy by contributing to carcass removal,
limiting diseases transmission and providing indications of environmental contamination
in relation to the quantity of pollutants deposited on their wings [99].

In the past, the main source of food for vultures derived from carcasses of wild animals
which, in great numbers, populated most of the habitats overall the world. The Neolithic
expansion of human people, the birth of agriculture and animal domestication had a strong
impact on the distribution of wild animal populations, changed their natural habitats
and caused the extinction of the megafauna. These events led to a continuous reduction
in the availability of habitat for wildlife species and therefore, the carcasses of domestic
animals such as small ruminants, cattle, pigs and horses became the main source of food
for vultures. This phenomenon was particularly evident in Europe, where the vulture
drastically changed its habits, switching to a diet almost exclusively based on domestic ani-
mal carcasses [12]. A different scenario occurred in Asia and, particularly, in Africa where
domesticated cattle was lower in number compared to wild ungulate populations [51,100].
At first, the presence of livestock farms ensured a wide and continuous availability of food,
thus creating the conditions for a demographic expansion of the vulture species. However,
the dependence on livestock as a primary source of food raised several problems which
synergistically led to the decline of vulture populations [101]. Once widespread across the
continent, the Eurasian griffon population began to drastically decrease at the beginning
of the last century in various European regions such as Italy and France, South-Eastern
Europe, the Middle East and throughout the territory of North Africa. The causes of
this decline have a single common denominator represented by the expansion of human
activities and the emergence of related problems [102]. The alterations are manifold and
include fragmentation of the territory for the construction of roads and wind turbines,
implementation of new intensive forms in animal breeding, changes in sanitary policies
as a result of diseases such as the bovine spongiform encephalopathy, the high diffusion
of climbing activity, obsessive photographic hunting, the uncontrolled environmental
pollution systems and the disturbing warming of the planet [12].

Among the main negative effects deriving from human activities, hunting, electro-
cution [103–105] and, critically, the use of illegal poisoning baits to control wild and feral
predators threatening livestock has been associated with the decline of vultures during
1970–1990 in Europe [106–111]. The consumption of a poisoned carcass has a destructive
impact on a population, because of the dietary habits of the Eurasian griffon usually builds
an aerial information network for the control of the territory and accesses it with a con-
sistent number of individuals (10–30 subjects). This event can cause a vertical drop in
consistency in a relatively short time. The effects would be even more devastating if the
event occurred during the breeding season, which lasts 9 months of the year. Indeed, the
death of the individuals that fed on the poisoned carcass would lead to the disruption
of reproductive couples, probably causing an alteration of the male/female sex ratio. In
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addition, the partner left alone will be forced to leave the nest (resulting in the loss of the
egg/chick) to look for a new adult partner and a new nesting site.

In Spain, the strong sensitivity towards this issue has prompted the regional authorities
to set up a structure within the Environmental Supervisory Body, called Unidad Canina
Especializada, which inspects livestock farms using specially trained dogs, checking for
suspicious substances. The detection of these substances immediately leads to heavy fines.
This is a very effective approach because it carries out a strong preventive action in the use
of poisonous substances.

More recently, the development of wind farms due to the European objective to
increase the proportion of renewable energy increased the rate of disturbance and fatality
due to collision of flying vultures with rotating turbine blades [78,112–115].

It has been revealed that the use of veterinary drugs such as NSAID and antibiotics
used in livestock treatments that are toxic to Gyps severely affect populations of the Old
World vultures [74,76,109,116–119]. Moreover, the use of poisonous compounds for the
fight against stray dogs and against predators of domestic animals such as foxes play a
more harmful role [109,110].

In parallel, after the outbreak of bovine spongiform encephalopathy, in 2001, European
health policy banned the abandonment of livestock carcasses in the field, and consequently,
the availability of food resources declined in some regions by more than 80% [120–123].

To mitigate the effects of all these negative factors, were firstly created the “vulture
restaurants” or Supplementary Feed Stations (SFS) to supply food and help re-establish the
decimated populations of these species, and more recently, the light SFS or Supplementary
Farm Feed Stations (SFFS) [120,124] which actually represent a fundamental conservation
strategy for the management of endangered vultures [125]. These feed stations have
been set up away from wind farms and dispersed in the tropic area of vultures where
farmers can leave traced carcass to avoid risk of poison and go from unpredictable to
predicable food determining a good impact on griffon lifespan [10,78,113,124,126], as well
as environmental and economic ecosystem services [127]. The use of SFFS has increased
reproductive success and the survival of juveniles in the first year of life, passing from
average values of 0.65 and 30% in natural conditions of the colonies [63] to 0.82 and 70%
during conservation actions [93], respectively. The conservation actions associated with
the establishment of the SFFS may in the future play an effective role in the conservation of
the Eurasian griffon as well as the other Gyps vulture species. One measure to prevent and
eradicate the problem is the establishment of the abovementioned SFFS within individual
farms, representing an important conservation tool [22,66].

5. Conservation Strategies

The genetic diversity observed among griffon vulture populations could be related
to the natal philopatry behaviour expressed by the high nest-site fidelity of the adult.
Indeed, although it may lead to reduction in intra-population genetic variability due to
increasing in inbreeding levels, natal philopatry is thought to stimulate the rise in genetic
variants perfectly adapted to specific ecosystems. Accordingly, natal philopatry expressed
for several generations can generate genetic differentiation of local populations, giving
rise to a genetic mosaic of the species. Recent studies showed that the Eurasian griffon
population living in Sardinia harbours one mitochondrial haplotype never detected in other
European populations [61]. Similar results were reported for the griffon vulture population
of Crete [50]. These findings suggest that restocking actions could be deleterious and
determine negative effects on the genetics of local populations, especially when carried
out by means of the introduction of not-genotyped animals. However, restocking is the
most effective way to increase the number of individuals and avoid populations reaching
the critical level of the minimum viable population size, which is the smaller number of
individuals below which a population risks disappearing. This has a greater significance
for gregarious species such as G. fulvus, in which individuals of a colony help each other to
carry out their daily activities. Another important aspect to consider when restocking is
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carried out is the climate which must be similar between the source region and the area in
which the animals will be reintroduced. Indeed, Davidovic et al. [62] pointed out specific
morphological differences between the griffon vultures that inhabit the Balkan Peninsula
and their counterparts from the Iberian Peninsula. On average, the griffon from the Balkan
Peninsula shows a greater body mass and have later hatching time, 1 month after the
Mediterranean populations, most likely as an adaptation to a colder climate and delays
of herds pasturing due to longer periods of cold. This could explain why only a small
percentage of introduced birds from the Iberian Peninsula to Bulgaria survived, suggesting
that the continental Balkan population deserves a different conservation strategy, and that
reintroduction should not be performed with foreign birds but sourcing from those native
populations already present in the Balkan Peninsula.

6. The Eurasian Griffon Vulture: Phylogeny and Genetic Diversity

The genetic characterisation of native populations—especially if subjected to pressures
causing a significant demographic decline—allow the collection of information useful to
preserve local variants that have found to be exclusive to some geographical areas, as in
the cases mentioned above of Sardinia and Crete. During the last 20 years, many molecular
studies have been carried out aiming to analyse the genetic variability among and within
several G. fulvus populations from the whole Eurasian continent [50,61,62,128–130]. Most of
these studies were performed by means of mitochondrial and/or microsatellite markers.

6.1. Mitochondrial DNA

Because of its intrinsic characteristics such as maternal inheritance and quick substitu-
tion rate, mitochondrial DNA (mtDNA) is the most suitable tool in unravelling evolutionary
history and phylogeny of many species [131,132]. If the whole mitogenome sequence is
not available, the mtDNA D-loop region can be helpful in estimating the amount of vari-
ability and identifying the number of haplogroups and haplotypes in the intra-species
level, thanks to its high substitution rate. When some haplotypes/haplogroups are lost or
emerged because of events such as migrations, a genetic structure over the geography is
generated and geographic patterns of genetic diversity can be detected [133]. Conversely,
coding sequences analysis proved to be more suitable for inter-specific investigations and
estimates of divergence times between lineages.

In 2005, Lerner and Mindell [134] analysed the phylogenetic relationships within and
among the six subfamilies of eagle and Old World vultures by using molecular markers.
Overall, 1047 and 1041 base pair of the mitochondrial genes NADH Dehydrogenase
subunit 2 (ND2) and cytochrome B (cytB), respectively, along with 1074 bp of the nuclear
β-fibrinogen intron 7 (FGB-I7), were sequenced from 55 eagle species representatives of
18 genera, and 13 Old World vulture species representatives of nine genera. The Old
World vulture group was found to be polyphyletic with two well-separated subfamilies of
different evolutionary origin. The Gypaetinae, which includes four genera different for
both genetic and morphological features, split earlier, forming a sister group with Perninae.
The remaining vulture species were grouped in the monophyletic Aegypiinae clade that
was found closely related to Circaetinae snake eagles.

In 2006, Johnson et al. [128] carried out a phylogenetic study within the genus Gyps by
analysing the complete sequences of cytB and ND2, plus a fragment of 400 bp length from
the mtDNA D-loop from 60 representative specimens of all species. The phylogenetic trees
based on the analysis of both single and combined markers sequences supported the mono-
phyly of the genus and its species, whose historical radiation evolved 0.2 to 2.1 million
years ago starting from the earliest splitting event that separated G. bengalensis from all
other species. A sister relationship between G. fulvus-G. rueppellii and G. i. indicus-G.
i. tenuirostris-G. coprotheres clades was pointed out, while the G. f. fulvescens, before then
considered on a morphological basis a subspecies of G. fulvus, was found closely related to
G. himalayensis.
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In a more recent study carried out in 2009 and based on both nuclear (recombination
activating gene 1-RAG1) and mitochondrial (cytB gene) sequences, Arshad et al. [129]
analysed 260 samples from different localities with the aim to detect any phylogeographic
structure among Gyps populations. According to what was previously reported [128,134],
two main lineages, Aegypiinae and Gypaetinae, were found in the Old World vulture’s
evolutionary history. The phylogenetic analysis based on 1026 bp of cytB revealed eight
clades of Gyps species closely related each other, with G. bengalensis early separating about
1.1 million years ago from all other Gyps, followed by G. himalayensis and G. africanus.
A sister relationship was furtherly confirmed between G. fulvus and G. rueppellii, and these
two taxa together were a sister group to a clade consisting of G. indicus, G. tenuirostris and
G. coprotheres. Similarly to Johnson et al. [128], the most genetically distant species were
also found to be those with bordering or even overlapping ranges. For example, lower
divergence was found between G. indicus and G. rueppellii that occupy different continents
(Asia and Africa) than between G. coprotheres and G. africanus in Africa, or G. tenuirostris
and G. himalayensis in South Asia.

An important step was taken in 2017 towards a more comprehensive understanding of
the Gyps species phylogeny when Mereu et al. [61] sequenced the first entire mitogenome
of the griffon vulture. The molecular comparison with other 18 avian mitogenome se-
quences, including the Aegypius monachus, which was the only vulture species to have
been characterised when the study was carried out, shed further light on the raptor species
evolution. The divergence between eagles and vultures was dated back to about 43 million
years ago (MYA), while the birth of the Old World vulture clade and the Gyps species’ early
radiation occurred about 26 MYA and 5 MYA, respectively (Figure 5).
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Figure 5. Bayesian tree based on the complete mitogenome sequences, adapted from Mereu et al.
2017, summarizing the phylogenetic relationships between Old World vulture and raptor clades,
highlighted in blue and green, respectively. All the nodes retrieved are supported by maximum
posterior probability (PP) scores (100). Molecular dating in million years ago (MYA) referring to the
nodes marked with full grey circles are reported on the corresponding branch.

Finally, the Gyps fulvus species originated about 750,000 years ago. The authors pointed
out that the dating of the vulture species appearance overlaps with the diversification
of Bovidae [135], something that confirms once again the strict ecological association
between vultures and ungulates species. The investigation was carried out on 66 Sardinian
griffon samples and identified three mtDNA haplotypes, named Hpt A, Hpt B and Hpt C,
with an incidence in the whole sample of 52.9%, 38.2% and 8.9%, respectively. Since the
Sardinian colony was subjected to two restocking actions in 1986 (48 individuals) and in
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1995 (12 individuals), 22 toe-pad museum specimens collected before 1986 were used to
evaluate the impact of these introductions on the mtDNA haplotype frequencies in the
native population. Among the museum samples, seven (31.8%) harboured the Hpt A and
15 (68.2%) the Hpt B, while no specimens carrying the Hpt C were found. The authors
argue that this change in haplotype frequencies when comparing extant and museum
samples could be related to the restocking actions which mostly reintroduced animals with
Hpt A, along with a small number of Hpt C individuals. Accordingly, Hpt B could be the
most representative haplotype of the pre-decline Sardinian population, whereas the Hpt C
was recently introduced sourcing from other populations.

In a recent study on the mitochondrial D-loop variability of the griffon vulture pop-
ulations from the Mediterranean islands of Crete, Cyprus and Sardinia, Mereu et al. [50]
identified a new haplotype (Hpt D) in the Cretan population. Both in Sardinian and Cretan
populations, three haplotypes were detected, two shared (Hpts A and C) and one exclusive
to each population: Hpt B in Sardinia and Hpt D in Crete. On the other side, a single
haplotype (Hpt A) was found in the Cyprus population. Based on these data, the authors
supposed that the higher genetic variability detected in the Cretan and Sardinian popula-
tions is the consequence of an evolutionary process affected by long isolation times while
the Cypriot colony probably underwent a drastic bottleneck which only the Hpt A sur-
vived. The colonisation of these islands would have been characterised by several arrivals
of individuals spaced out over time which could have replaced or contributed to enrich
the pre-existing gene pool, up to determine the current genetic variability and different
expressiveness of the four mtDNA haplotypes among the three populations analysed.

6.2. Microsatellite Markers

In 2002, Mira et al. [136] developed five microsatellite markers for the Eurasian vulture
G. fulvus, providing new molecular tools for population genetic studies and for designing
strategies in conservation and reintroduction projects.

A few years later, the first investigation by means of microsatellite markers was car-
ried out on a network of native and reintroduced Griffon vulture populations successfully
restored in Southern Europe, including the native colonies of Israel, Croatia and French
Pyrenees (Ossau), one established reintroduced colony in France and four captive founding
groups [130,137]. The genetic diversity estimations were similar in all native and reintro-
duced populations, and overall higher than those measured for other species of vulture
in Europe, such as Gypetus barbatus [138] and Neophron percnopterus [139]. The low FST
levels detected among native populations supported the past existence of high dispersal
rates among populations. The native population of Croatia was found to be significantly
differentiated from all other populations, probably because of a limited immigration rate
into Croatia that, together with small population size, may quickly lead to genetic differ-
entiation. The authors speculated that the present genetic structure is due to the recent
isolation of Croatia from other populations caused by the extinction events of intermediate
populations between Croatia and Ossau (France) and between Croatia and Israel, which
occurred at the end of 19th century and in the 20th century, respectively.

Moreover, high migration rates from Spain into the French colony of Causses were
detected, according to asymmetrical gene flow, which over a long period of time could
have consequences on local adaptation [140] and deleterious effects on metapopulation
viability [141] and should therefore be monitored.

The G. fulvus populations from Spain and Israel were found to share their gene
pool with populations of G. africanus, G. bengalensis and G. indicus [142] according to
some degree of hybridisation, an event that has been reported between Gyps species in
captivity and under natural circumstances [38]. However, the genetic pattern revealed by
Arshad et al. [142] may also be related to homoplasy or retention of shared ancestral states.
Overall, the study confirmed what was previously reported [130] regarding the low genetic
differentiation among G. fulvus populations as a consequence of high mobility and gene
flow among them.
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A recent molecular study by means of microsatellite markers [62] collected the first
genetic data on the Griffon vulture population from Serbia, inhabiting parts of the Balkan
Peninsula and representing the last inland population adapted to the continental climate.
This griffon population was compared with those from Croatia, Israel (Mediterranean cli-
mate) and the Pyrenees in France [130]. Genetic diversity was overall similar to other native
populations, including Cyprus and Spain, although the population from Serbia experienced
a serious bottleneck during the last decade of the twentieth century. Population structure
analysis detected two genetic clusters, one grouping populations from the Balkan Penin-
sula and the other grouping those from Pyrenees, derived from the Spanish population.
The griffon populations from Croatia and Serbia showed higher genetic diversity than
those from Pyrenees, with the population of Serbia being genetically most differentiated
from all other populations. The Israeli population was found to have admixed ancestry
derived equally from the Balkan and the Iberian genetic clusters. Based on this evidence,
the authors hypothesised that the Middle East could be recognised as the region from
which European populations originated and Israel would be the remnant of the source pop-
ulation from which this species colonised the Mediterranean area. Indeed, it is suggested
that during the Last Glacial Maximum (LGM) in Europe the European griffon vulture
populations retreated to refugia in North Africa and the Arabian Peninsula. After the
end of LGM, Europe was recolonised following two directions, including the way across
Gibraltar into the Iberian Peninsula and the way across Bosporus into the Balkan Peninsula.
The Israeli population was the only one without a recent bottleneck, a result supporting
this hypothesis. Accordingly, it is plausible that during the initial colonisation of Europe
from the Middle East, the populations of the Iberian and Balkan Peninsulas went through
a founder effect and successive bottleneck, which resulted in the two genetic clusters
mentioned above.

7. Conclusions

The geographical distribution of the Eurasian griffon appears to be very diversi-
fied [39,40,42,44–50]. In Europe, Spain hosts the largest population, while in other Euro-
pean countries, a sharp population decline has been recorded, native populations have
become extinct locally and have consequently been replaced by reintroduced individuals,
mostly from Spain, as in the cases of France, Italy, Cyprus and Bulgaria.

Several restocking programs are currently active in Europe with the aim to redistribute
the species evenly. Restocking is crucial to contain the numerical decline or repopulate a
territory, but if not properly performed, it can determine the dilution, until the definitive
disappearance, of local genetic variants. High genetic variation is important for populations
to allow the survival of a species under environmental changes. In this regard, emblematic
is the case of the griffons of the Balkan peninsula, which, due to their adaptation to the
continental climate and the territory where they nest, exhibit a greater body mass and
have a hatching time delayed by 1 month compared to the Mediterranean populations.
The adaptation to territory and climate also explains why the repopulation of Bulgaria
with Spanish griffons did not provide results as expected. Indeed, griffon vulture popu-
lations from the Balkan and Iberian Peninsulas are genetically differentiated because of
a previously described natal philopatry behaviour. In addition, they probably adapted
to different climatic conditions, a not negligible factor in evaluating the potential success
of a restocking action. The low success rate observed in Bulgaria after the reintroduction
of Spanish griffons suggests that restocking actions should be carried out sourcing from
geographically close regions with similar climatic conditions [62].

The native populations, and the genetic and phenotypic variability they show, are the
result of a long process of evolution and adaptation to the territory, and therefore represent
a historical heritage that must be absolutely protected. Unfortunately, the ecological condi-
tions that have seen the proliferation and spread of Gyps species have now disappeared,
largely due to the impact of human activities on the environment. However, in some
inaccessible and isolated geographical areas, these conditions have been maintained and
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native populations with genetic variants that have disappeared in other regions have been
preserved, as reported for Sardinian and Cretan griffon populations. It is essential that these
variants are protected from the risk of being replaced by more common variants harboured
by individuals introduced during restocking actions. An example of this danger is what
happened in Sardinia, where the mitochondrial haplotype frequencies in the local popula-
tion significantly changed because of the introduction of Spanish individuals. Indeed, the
comparison between museum and extant samples performed by Mereu et al. [61] shows
how Hpt B, predominant in the native population, has been largely replaced by Hpt A,
which is currently the most frequent in the whole Mediterranean area. The example of the
Sardinian population highlights the importance of museum samples to have an estimate of
the residual original genetic variability in the current population.

Since genetic data, combined with behavioural, demographic or spatial information,
provide a powerful tool for management of wildlife, genetically informed restocking
programs started 10 years ago. This preventive control action allows a genetic selection,
and, in view of the possible hybridisation phenomena, confirms or not the morphological
identification of the specimens, avoiding the risk of introducing unsuitable individuals.
This has been the case of a hybrid G. fulvus/G. rueppelli that was erroneously included in
the group of griffons to be released since it was morphologically not distinguishable from
pure individuals. This specimen was therefore excluded from the restoking program.

Despite the abovementioned programs, more efforts can be undertaken in developing
partnerships between researchers, institutions and bodies responsible for the management
of griffon vulture colonies across Europe. The natural extension of this approach is the
further development of programs aimed to not only safeguard the species’ presence but
consider the genetic variants that evolved over time in close relationship with the habitats
to which they perfectly adapted. For these reasons, it is more important than ever to ensure
the transfer of knowledge from the world of scientific research to the structures responsible
for the management of the species through the creation of a European network involving
all the countries where the species is still present.

As genetic information become progressively available, it is expected that it, along
with the massive use of FFS and the awareness of people to minimise the anthropic impact,
will play an increasingly important role in the ecology and management of griffons.
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