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Abstract
Current strategies to improve graft outcome following kidney transplantation consider infor-

mation at the human leukocyte antigen (HLA) loci. Cell surface antigens, in addition to HLA,

may serve as the stimuli as well as the targets for the anti-allograft immune response and

influence long-term graft outcomes. We therefore performed exome sequencing of DNA

from kidney graft recipients and their living donors and estimated all possible cell surface

antigens mismatches for a given donor/recipient pair by computing the number of amino

acid mismatches in trans-membrane proteins. We designated this tally as the allogenomics

mismatch score (AMS). We examined the association between the AMS and post-trans-

plant estimated glomerular filtration rate (eGFR) using mixed models, considering trans-

plants from three independent cohorts (a total of 53 donor-recipient pairs, 106 exomes, and

239 eGFR measurements). We found that the AMS has a significant effect on eGFR (mixed

model, effect size across the entire range of the score: -19.4 [-37.7, -1.1], P = 0.0042, χ2 =

8.1919, d.f. = 1) that is independent of the HLA-A, B, DR matching, donor age, and time

post-transplantation. The AMS effect is consistent across the three independent cohorts

studied and similar to the strong effect size of donor age. Taken together, these results

show that the AMS, a novel tool to quantify amino acid mismatches in trans-membrane pro-

teins in individual donor/recipient pair, is a strong, robust predictor of long-term graft function

in kidney transplant recipients.
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Author Summary

The article describes a new concept to help match donor organs to recipients for kidney
transplantation. The concept relies on the ability to measure the individual DNA of poten-
tial donors and recipients. When the data about genomes (i.e., DNA) of possible donors
and recipients are available, the article describes how data can be computationally com-
pared to identify differences in these genomes and quantify the possible future impact of
these differences on the functioning of the graft. The concept presented in the article deter-
mines a score for each pair of possible donor and recipient. This score is called the alloge-
nomics mismatch score. The study tested the ability of this score to predict graft function
(the ability of the graft to filter blood) in the recipient several years after transplantation
surgery. The study found that, in three small sets of patients tested, the score is a strong
predictor of graft function. Prior studies often assumed that only a small number of loca-
tions in the genome were most likely to have an impact on graft function, while this study
found initial evidence that differences across DNA that code for a large number of proteins
can have a combined impact on graft function.

Introduction
Survival of patients afflicted with End Stage Renal Disease (ESRD) is superior following kidney
transplantation compared to dialysis therapy. The short-term outcomes of kidney grafts have
steadily improved since the early transplants with refinements in immunosuppressive regi-
mens, use of DNA-based human leukocyte antigen (HLA) typing, and better infection prophy-
laxis [1–3]. Despite these advances, data collected across the USA and Europe show that 40–
50% of kidney allografts fail within ten years of transplantation [4]. This observation strongly
suggests that as yet uncharacterized factors, including genomic loci, may adversely impact
long-term post-transplantation outcomes.

The HLA is a cluster of genes on the short arm of chromosome 6 and constitutes the major
histocompatibility complex (MHC) responsible for self/non-self discrimination in humans.
Multiple clinical studies have demonstrated the importance of HLA-matching to improve kid-
ney graft outcome. Therefore, in many countries, including the USA, donor kidney allocation
algorithms includes consideration of HLA matching of the kidney recipient and donor. With
widespread incorporation of HLA matching in kidney organ allocation decisions, it has
become clearer that HLA mismatching represents an important risk factor for kidney allograft
failure but fails to fully account for the invariable decline in graft function and failure in a large
number of recipients over time. Indeed, only a 15% survival difference exist at 10 years post
transplantation between the fully matched kidneys and the kidneys mismatched for both alleles
at the HLA-A, B and DR loci [5]. Findings from large cohorts of kidney graft recipients have
also been studied to separate the immunological effect mediated by HLA and the non-HLA
effects [6]. Overall, prior observations suggest that mismatches at non-HLA loci in the genome
could influence long-term graft outcomes. Also, antibodies directed at HLA as well as non-
HLA (e.g., MHC class I polypeptide-related sequence [MICA]) have been associated with allo-
graft rejection and reduced graft survival rates. Indeed, it has been reported that the presence
of anti-MICA antibodies in the pre-transplant sera is associated with graft failure despite HLA
matching of the kidney recipient with the organ donor.

Here, we used exome sequencing to determine the sequences of the HLA as well as non-
HLA peptides encoded by the donor organ and displayed on its cell surface, as well as bioinfor-
matics analyses to determine donor sequences not present in the recipient. The allogenomics
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approach integrates the unique features of transplantation, such as the existence of two
genomes in a single individual, and the recipient’s immune system mounting an immune
response directed at either HLA or non-HLA antigens displayed by the donor kidney. In this
report, we show that this new concept helps predict long-term kidney transplant function from
the genomic information available prior to transplantation. We found that a statistical model
that incorporates time as covariate, HLA, donor age and the AMS (allogenomics mismatch
score, introduced in this study), predicts graft function through time better than a model that
includes the other factors and covariates, but not the AMS.

Results

The allogenomics concept and the allogenomics mismatch score (AMS)
The allogenomics concept is the hypothesis that interrogation of the coding regions of the
entire genome for both the organ recipient and organ donor DNA can identify the number of
incompatible amino-acids (recognized as non-self by the recipient) that inversely correlates
with long-term function of the kidney allograft. Fig 1A is a schematic illustration of the alloge-
nomics concept. Because human autosomes have two copies of each gene, we consider two pos-
sible alleles in each genome of a transplant pair. To this end, we estimate allogenomics score
contributions between zero and two, depending on the number of different amino acids that
the donor genome encodes for at a given protein position. Fig 1B shows the possible alloge-
nomics score contributions when the amino acids in question are either an alanine, or a phe-
nylalanine or an aspartate amino acid. The allogenomics mismatch score (AMS) is a sum of
amino acid mismatch contributions. Each contribution represents an allele coding for a protein
epitope that the donor organ may express and that the recipient immune system could recog-
nize as non-self (see Equation 1 and 2 in Fig 1C and Materials and Methods and full descrip-
tion in S1 File).

We have developed and implemented a computational approach to estimate the AMS from
genotypes derived for pairs of recipient and donor genomes. (See Materials and Methods for a
detailed description of this approach and its software implementation, the allogenomics scor-
ing tool, available at http://allogenomics.campagnelab.org.) Our approach was designed to con-
sider the entire set of protein positions measured by a genotyping assay, or restrict the analysis
to a subset of positions P in the genome. In this study, we focused on the subset of genomic
sites P that encode for amino acids in trans-membrane proteins. It is possible that some
secreted or intra-cellular proteins can contribute to the allogenomics response, but the set of
trans-membrane proteins was considered in this study in order to enrich contributions for epi-
topes likely to be displayed at the surface of donor kidney cells. While proteins expressed in
kidney could appear to be a better choice, the technical challenge of defining a list of proteins
expressed by kidney alone, and perhaps only transiently in some kidney cell type exposed to
the surface of the kidney, argues against relying on a kidney expression filter. Similarly, we did
not consider other sets of proteins, and make no claim that the set of transmembrane proteins
is an optimal choice.

Because the AMS sums contributions from thousands of genomic sites across the genome, it
is an example of a burden test, albeit summed across an entire exome. The procedure is akin to
averaging and the resulting score is much less sensitive to errors introduced by the genotyping
assays or analysis approach than previous association studies which considered genotypes indi-
vidually. The AMS approach yields a single score per transplant. This eliminates the need to
correct for tens of thousands of statistical tests, which are common in classical association stud-
ies. The allogenomics approach therefore also decreases the number of samples needed to
reach statistical power.
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Testing the association between AMS and kidney allograft function
measured post-transplantation
In order to test the allogenomics hypothesis, we isolated DNA from kidney graft recipients and
their living donors. We assembled three cohorts:Discovery Cohort (10 transplant pairs) where
the allogenomics observation was first made (these patients were a subset of patients enrolled in
a multicenter Clinical Trial in Organ Transplantation-04 study of urinary cell mRNA profiling,
from whom tissue/cells were collected for future mechanistic studies [7], 10 transplant pairs),
and two validation cohorts: one from recipients transplanted at the New York Presbyterian
Weill Cornell Medical Center (Cornell Validation Cohort, 24 pairs), and a second validation
cohort from recipients transplanted in Paris hospitals (French Validation Cohort, 19 pairs).

Table 1 provides demographic and clinical information about the patients included in our
study. Exome data were obtained for each cohort. For the Discovery cohort, we used the Illu-
mina TrueSeq exome enrichment kit v3, covering 62Mb of the human genome. For the two val-
idation cohorts, DNA sequencing was performed using the Agilent Haloplex assay covering

Fig 1. Recipient/Donor incompatibility quantified by exome sequencing and calculation of
allogenomicsmismatch score (AMS). (A) Hypothesis: Post-transplantation kidney graft function is
associated with the number of amino acids coded by the donor genome that the recipient’s immune system
could recognize as non-self. (B) Examples of donor/recipient amino-acid mismatches at one protein position,
and resulting contributions to the allogenomics mismatch score. The allogenomics mismatch score is
calculated by summing contributions over a set of genomic polymorphisms (see Methods for details). (C)
Equations for the allogenomics model. Score contributions are summed across all genomic positions of
interest (set P) to yield the allogenomics score Δ(r,d).Gr,p: genotype of recipient r at genomic site/position p.
Gd,p: genotype of donor d at site p. Alleles of a genotype are denoted with the letter a.

doi:10.1371/journal.pcbi.1005088.g001
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37Mb of the coding sequence of the human genome. Primary sequence data analyses were con-
ducted with GobyWeb [8] (data and analysis management), Last [9] (alignment to the genome)
and Goby [10] (genotype calls). Table A in S1 File provides statistics of coverage for the exome
assays.

Table 1. Characteristics of Kidney transplant recipients and their donors. In bold, characteristics that differ between the Cornell validation cohort and
the French validation cohort (*P<0.05, two tailed t-test).

Characteristic Discovery cohort Cornell validation
cohort

French validation
cohort

Number of Transplant Pairs with living donors 10/10 24/24 19/19

Allogenomics mismatch score AMS(SD)[range] 1335(304)[994–
2033]

1094(259)[700–1630] 560(147)[349–811]

Clinical factors

Age

Donor (SD) 41 (13) 46 (10) 44(16)

Recipient (SD) 48 (10) 51 (13) 38(15)

Living Donor type

Living related N (AMS) [SD]) 4 (1116 [143]) 13 (939 [218]) 15(503[108])*

Living unrelated N (AMS) [SD]) 6 (1481 [300]) 11(1277 [170]) 4(769[41])*

Donor sex

Male (%) 2 (20%) 8 (33%) 6(32%)

Female (%) 8 (80%) 16 (67%) 13(68%)

Donor Race

Black (%) 4(40%) 5 (21%) 2(10%)

Non-Black (%) 6(60%) 19 (79%) 17(90%)

Recipient sex

Male (%) 9 (90%) 13 (54%) 13 (53%)

Female (%) 1 (10%) 11 (46%) 13 (47%)

Recipient Race

Black (%) 4 (40%) 7 (29%) 2 (10%)

Non-Black (%) 6 (60%) 17 (71%) 17 (90%)

Number of HLA mismatches ABDR (SD) 3.9 (1.91) 3.5 (1.89) 2.5 (1.68)*

Functional Factors

Number of Patients at 12 months 10 24 17

Serum creatinine level at 12 months mg/dL (SD) 1.51 (0.35) 1.45 (0.41) 1.29 (0.41)

eGFR at 12 months ml/min/1.73m2 (SD) 54.3(10) 54.3 (16.3) 61.8 (18.9)*

Number of Patients at 24 months 9 23 19

Serum creatinine level at 24 months mg/dL (SD) 1.36 (0.19) 1.45 (0.49) 1.26 (0.3)

eGFR at 24 months ml/min/1.73m2 (SD 59 (7.7) 54.85 (15.7) 59.3 (14.5)*

Number of Patients at 36 months 8 22 19

Serum creatinine level at 36 months mg/dL(SD) 1.62 (0.50) 1.38 (0.40) 1.35 (0.45)

eGFR at 36 months ml/min/1.73m2 (SD) 53.4 (15) 55.3 (15.9) 56.3 (16.4)

Number of Patients at 48 months 0 16 16

Serum creatinine level at 48 months mg/dL(SD) - 1.34 (0.43) 1.40 (0.56)

eGFR at 48 months ml/min/1.73m2 months (SD) - 57.4 (16.4) 55.7 (18.2)

Patients with an Acute Cellular rejection episode in the first year of
transplantation, N (%)

3 (30%) 5 (20%) 2 (10%)

Immunosupression

Calcineurin Inhibitors, n (%) 9 (90%) 24 (100%) 19 (100%)

Corticosteroids, n (%) 0 (0%) 5 (21%) 17 (90%)*

doi:10.1371/journal.pcbi.1005088.t001
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Kidney graft function is a continuous phenotype and is clinically evaluated by measuring
serum creatinine levels or using estimated glomerular filtration rate (eGFR) [11]. In this study,
kidney graft function was evaluated at several time points for each recipient, with the precise
time points varying by cohort. In the discovery cohort, kidney allograft function was measured
at 12, 24, 36 and 48 months following transplantation using serum creatinine levels and eGFR,
calculated using the 2011 MDRD [11] formula. We examined whether the allogenomics mis-
match score is associated with post-transplantation allograft function.

In Fig 2, we illustrate the association observed between AMS and creatinine levels or eGFR
in the Discovery Cohort. We found positive linear associations between the allogenomics mis-
match score and serum creatinine level at 36 months post transplantation (r2 adj. = 0.78,
P = 0.002, n = 10) but not at 12 or 24 months following kidney transplantation (Fig 2A, 2B and
2C). We also found a negative linear relationship between the score and eGFR at 36 months

Fig 2. Relationship between the allogenomicsmismatch score (AMS) and kidney graft function at 12, 24 or 36 months following
transplantation in the Discovery cohort. DNA was isolated from 10 pairs of kidney graft recipients and their living kidney donors (Discovery set).
Whole exome sequencing of the donor genomes and recipient genomes was performed and the sequencing information was used to calculate
allogenomics mismatch scores based on amino acid mismatches in trans-membrane proteins. The panels depict the relationship between the
allogenomics mismatch scores and serum creatinine levels at 12, 24 and 36 months post transplantation (Panels A, B and C, respectively) and the
relationship between the allogenomics mismatch scores and estimated glomerular filtration rate at 12, 24 and 36 months post transplantation (Panels
D, E and F, respectively). Both serum creatinine levels and eGFR correlate in a time-dependent fashion with the allogenomics mismatch score with
the strongest correlations being observed at 36 months post-transplantation.

doi:10.1371/journal.pcbi.1005088.g002
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post transplantation (r2 adj. = 0.57, P = 0.02) but not at 12 or 24 months following kidney
transplantation (Fig 2D, 2E and 2F). These findings suggest that in the Discovery cohort the
AMS is predictive of long-term graft function. It is also possible that the AMS score would pre-
dict short-term graft function, but that more data is needed to detect smaller changes in eGFR
at early time points, whereas cumulative effects on graft function become detectable at later
time points. Similar observations were made in the two validation cohorts (see Figures A and B
in S1 File) and discussed in detail in an earlier preprint [12].

The AMS predicts graft function longitudinally across three independent
cohorts
In the models presented so far, we have considered the prediction of graft function separately
at different time points. An alternative analysis would consider time since transplantation, as
well as other established predictors of graft function as covariates in the model. This is particu-
larly useful when studying cohorts where graft function was assessed at several distinct time
points (e.g., in the French cohort, clinical data describes graft function from 1 to 96 months
post transplantation, but few time points have observations for all recipients). To implement
this alternative analysis, we fit a mixed linear model of the form: eGFR ~ donor age at time of
transplant + AMS + T + (1|P) (Equation 3), where T is the time post-transplantation, mea-
sured in months, and (1|P) a random effect which models separate model intercepts for each
donor/recipient pairs.

To determine the effect of AMS on eGFR, we compared the fit of models that did or did not
include the AMS. We found that the effect of AMS is significant (P = 0.0042, χ2 = 8.1919, d.f. =
1). A similar result was obtained if HLA was also used as a covariate in the model (i.e., eGFR ~
donor age at time of transplant + AMS + T + HLA + (1|P) (Equation 4), comparing model
with AMS or without, P = 0.038, χ2 = 4.284, d.f. = 1). In contrast, models that included AMS,
but did or did not include the number of ABDR HLA mismatches fit the data equally well (test-
ing the effect of HLA, P = 0.60, χ2 = 0.2737, d.f. = 1), confirming that the effect of AMS was
independent of the number of HLA mismatches. The models of equations 3 and 4 include a
random effect for the transplant pair (1|P) term. This term models the differences among pairs,
such as level of graft function in the days post-transplantation, as well as correlations between
repeated measurements for the same recipient. See Fig C in S1 File for a more direct compari-
son between AMS and HLA ABDRmismatches. This comparison indicates that there is a mod-
erate correlation between AMS and the number of HLA ABDR mismatches. Taken together,
these results indicate that the predictive ability of the AMS effect is mostly independent of the
number of ABDR mismatches at the HLA loci.

In order to determine if the AMS effect is robust, we fit the model from equation 3 in each
cohort independently. The estimates for the AMS effect are shown in Table 2. Despite a limited
amount of data to fit the model in each cohort, the estimates are very similar, strongly suggest-
ing that the AMS effect is robust and can be observed even in small cohorts (10, 19 and 24
transplant pairs).

Table 2. Robustness of the AMS effect across cohorts.

Cohort # Transplant Pairs # eGFR Observations AMS effect size (from Eq. 3)

Discovery 10 27 -0.01994

Cornell Validation 24 90 -0.01748

French Validation 19 122 -0.01844

Combined 53 239 -0.01307

doi:10.1371/journal.pcbi.1005088.t002
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In Fig D in S1 File we plot the minor allele frequencies (MAF) of the variations that contrib-
ute to the AMS in the Discovery and Validation cohorts. We find that many polymorphisms
that contribute to the AMS have low MAF, indicating that they are rare in human populations.
This point needs to be considered for replication studies. For instance, GWAS genotyping plat-
forms may require adequate imputation to infer polymorphisms with low MAF.

Table 3 presents confidence intervals for the parameters of the full model (equation 4,
including HLA term), fit across 53 transplant pairs, as well as the effective range of each of the
model predictors. The table shows the expected impact of each predictor on eGFR when this
predictor is varied over its range, assuming all other predictors are kept constant. For instance,
assume that donor age at time of transplant varies from 20 years old to 80 years old (range: 60).
Across this range, eGFR will decrease by an estimated 28 units as the donor gets older. The
AMS effect has an effective range of 1,700 and the corresponding eGFR decrease is 19 units.
This comparison indicates that the strength of the AMS effect is similar to that of donor age
and more than five times larger than the effect of HLA- ABDR mismatches.

Discussion
While HLA-matching is a necessary requirement for successful hematopoietic cell transplants,
full HLA compatibility is not an absolute prerequisite for all types of transplantations as indi-
cated by the thousands of solid organ transplants performed yearly despite lack of full match-
ing between the donor and recipient at the HLA-A, B and DR loci. In view of better patient
survival following transplantation compared to dialysis, kidney transplants have become the
standard of care for patients with end stage kidney disease and transplants are routinely per-
formed with varying degrees of HLA-class I and II mismatches. Although, graft outcomes
improve with better HLA-matching [13], excellent long-term graft outcomes with stable graft
function have been observed in patients with full HLA -ABDR mismatches. The success of
these transplants clearly suggests that factors other than HLA compatibility may influence the
long-term clinical outcome of kidney allografts. Furthermore, grafts do fail even with the best
HLA match [13], suggesting that antigens other than HLA are targets of alloimmune response.
Indeed, several non-HLA antibodies have been identified for renal and cardiac allograft recipi-
ents and found detrimental to long-term outcome [14,15]. These antibodies were found to tar-
get antigens expressed on endothelial and epithelial cells but also on a variety of parenchymal
and immune cells and can be measured prior to transplantation. These prior studies support
the notion that non-HLA antibodies can influence long-term outcome in transplantation.

Recipients of a kidney transplant have two genomes in their body: their germline DNA, and
the DNA of the donor. It is clear that a Mendelian genetic transmission mechanism is not at
play in transplantation, yet, this assumption has been made in most of the transplantation
genomic studies published to date [16,17]. While several case-control studies have been con-
ducted with large organ transplant cohorts, the identification of genotype/phenotype associa-
tions has been limited to the discoveries of polymorphisms with small effect, that have been

Table 3. Estimatedmodel parameters, 95% confidence intervals and expected impact on eGFR.

Estimate Impact on eGFR

Model Coefficient Fit 2.50% 97.50% Effective Range Fit 2.50% 97.50% Note

Time post transplantation (in months) -0.24 -0.32 -0.16 480 -117.07 -155.27 -78.95 *

Donor age at transplant (in years) -0.47 -0.78 -0.15 60 -28.11 -46.86 -9.11 *

AMS -0.01 -0.022 -0.00063 1700 -19.40 -37.69 -1.07 *

HLA- ABDR mismatches -0.57 -2.74 1.61 6 -3.42 -16.42 9.64 n.s.

doi:10.1371/journal.pcbi.1005088.t003
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reviewed in [18], and have often not been replicated [19–21]. Rather than focusing on specific
genomic sites, the allogenomics concept sums contributions of many mismatches that can
impact protein sequence and structure and could engender an immune response in the graft
recipient. These allogenomics mismatches, captured in our study, represent the sequences of
non-HLA trans-membrane proteins, some of which may help initiate cellular and humoral
immunity directed at the allograft.

This study used eGFR as a surrogate marker for long-term graft survival. The advantage of
focusing on eGFR is that it is measured as part of clinical care on a yearly basis for each recipi-
ent, and eGFR has been associated with long-term outcome in multiple studies. Since acute
rejection has also been associated with a decrease in long-term graft survival, it may also serve
as a surrogate marker for long-term kidney allograft survival. Acute rejection however is a rare
event with current immunosuppressive regimens and given the relatively small size of our
study cohort, we would not have had sufficient cases to examine the association between acute
rejection and the allogenomics score. Another consideration for not using acute rejection is
that acute rejection only represents a fraction of the mechanisms that lead to graft loss [22].

The allogenomics concept that we present in this manuscript postulates a mechanism for
the development of the immune response in the transplant recipient: immunological and bio-
physical principles strongly suggest that alleles present in the donor genome, but not in the
recipient genome, will have the potential to produce epitopes that the recipient immune system
will recognize as non-self. This reasoning explains why the allogenomics score is not equivalent
to the genetic measures of allele sharing distance that have been used to perform genetic clus-
tering of individuals [23]. This manuscript also suggests that allogenomic mismatches in pro-
teins expressed at the surface of donor cells could explain why some recipients’ immune
systems mount an attack against the donor organ, while other patients tolerate the transplant
for many years, when given similar immunosuppressive regimens. If the results of this study
are confirmed in additional independent transplant cohorts (renal transplants, solid or hema-
topoeitic cell transplants), they may prompt the design of prospective clinical trials to evaluate
whether allocating organs to recipients with a combination of low allogenomics mismatch
scores and different HLA mismatch scores improves long term graft outcome. A positive
answer to this question could profoundly impact the current clinical and regulatory framework
for assigning organs to ESRD patients.

In this study, we introduced the allogenomics concept to quantitatively estimate the histoin-
compatibility between living donor and recipient outside of the HLA loci. We tested the sim-
plest model derived from this concept to calculate an allogenomics mismatch score (AMS)
reflecting the possible donor specific epitopes displayed on the cell surface. We demonstrated
that the AMS, which can be estimated before transplantation, helps predict post-transplanta-
tion kidney graft function more accurately than HLA-mismatches alone. Interestingly, the
strength of the correlation increases with the time post transplantation, an intriguing finding
observed in both the discovery cohort and the validation cohorts.

We chose the simplest model to test the allogenomics concept and did not restrict the score
to contributions from the peptides that can fit in the HLA groove despite their computational
predictability [24]. It is possible that such restriction would increase the score’s ability to pre-
dict renal function post transplantation. However, such a filter assumes that HLA and associ-
ated peptides are the only stimuli for the anti-allograft response and does not take into
consideration allorecognition involving innate effectors (NK cells or NKT cells for example,
the Killer-cell Immunoglobulin-like Receptor KIR genes, iTCR, the invariant T Cell Receptor,
and TLR, Toll Like Receptor, among others) [25]. The allogenomics concept incorporating
amino acid mismatches capable of triggering adaptive as well as innate immunity could be con-
sidered an important strength of the approach.
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Recent evidence indicates that mutations in splice sites, although rare, are responsible for a
large proportion of disease risk [26]. The allogenomics approach presented in this manuscript
does not incorporate knowledge of how polymorphisms in splice sites affect protein sequences.
We anticipate that future developments would consider longer splice forms in the donor as
allogenomics. Such an approach could score additional donor protein residues as allogenomics
mismatches when the sequence is not present in the predicted proteome of the recipient.

We chose to focus this study on living, ABO compatible (either related or non-related)
donors because kidney transplantation can be planned in advance and because differences in
cold ischemia times and other covariates common in deceased donor transplants are negligible
when focusing on living donors, especially in small cohorts. The selection criteria for deceased
donors include consideration of HLA matching, calculated panel reactive antibody and the age
of the recipient. Compared to live donors we expect that the range of the AMS in deceased
donors will be comparable to that in our discovery cohort composed primarily of unrelated
donors. Since many additional factors can independently influence graft function after trans-
plantation from a deceased donor (e.g. cold ischemia time), potentially much larger cohorts
may be required in such settings to achieve sufficient power to adequately control for the covar-
iates relevant to deceased donors and to detect the allogenomics effect.

While we have not attempted to optimize the set of sites considered to estimate the alloge-
nomics mismatch score, it is possible that a reduced and more focused subsets of amino acid
mismatches could increase the predictive ability of the score. For instance, the AMS could be
applied to look for genes with a high allogenomic mismatch burden. Such studies would
require larger cohorts and may enable the discovery of loci enriched in allogenomics mis-
matches responsible for a part of the recipient alloresponse against yet unsuspected donor
antigens. Their discovery might foster the development of new immunosuppressive agents
targeting the expression of these immuno-dominant epitopes. However, our study also raises
a novel mechanistic hypothesis: the total burden of allogenomics mismatches might be more
predictive of graft function, than mismatches at specific loci, as was previously widely
expected [17].

Materials and Methods

Ethics statement
The study was reviewed and approved by the Weill Cornell Medical College Institutional
Review Board (protocol #1407015307 “Predicting Long-Term Function of Kidney Allograft by
Allogenomics Score”, approved 09/09/2014). The second study involving the French cohort
was approved by the Comité de Protection des Personnes (CPP), Ile de France 5, (02/09/2014).
Codes were used to ensure donor and recipient anonymity. All subjects gave written informed
consent. Living donor ABO compatible kidney transplantations were performed according to
common immunological rules for kidney transplantation with a mandatory negative IgG T-cell
complement-dependent cytotoxicity cross-match.

Whole exome sequencing and genotyping
Briefly, genotypes of donors and recipients were assayed by exome sequencing (Illumina Tru-
Seq enrichment kit for the Discovery Cohort and Agilent Haloplex kit for the Cornell Valida-
tion Cohort and the French Validation Cohort). Reads were aligned to the human genome
with the Last [9] aligner integrated as a plugin in GobyWeb [8]. Genotype calls were made with
Goby [10] and GobyWeb [8]. Prediction of polymorphism impact on the protein sequence
were performed with the Variant Effect Predictor [27]. Genes that contain at least one trans-
membrane segment were identified using Ensembl Biomart [28].
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HLA typing. The HLA genotypes were obtained from the clinical information system.
HLA genotypes are performed as part of clinical care in transplantation centers. They are con-
ducted with the SSP and SSO methods[29].

Discovery cohort: Transplant recipients and DNA samples
We selected 10 kidney transplant recipients from those who had consented to participate in the
Clinical Trials in Organ Transplantation-04 (CTOT-04), a multicenter observational study of
noninvasive diagnosis of renal allograft rejection by urinary cell mRNA profiling. We included
only the recipients who had a living donor kidney transplant and along with their donors, had
provided informed consent for the use of their stored biological specimens for future research.
Pairs were limited to those where enough DNA could be extracted to perform the exome assay
for both donor and recipient. Subjects were not selected on the basis of eGFR, whose values
were collected after obtaining sequence data. The demographic and clinical information of the
Discovery cohort is shown in Table 1. DNA was extracted from stored peripheral blood using
the EZ1 DNA blood kit (Qiagen) based on the manufacturer’s recommendation.

Discovery cohort: Whole exome sequencing
DNA was enriched for exome regions with the TruSeq exome enrichment kit v3. Sequencing
libraries were constructed using the Illumina TruSeq kit DNA sample preparation kit. Briefly,
1.8 μg of genomic DNA was sheared to average fragment size of 200 bp using the Covaris E220
(Covaris, Woburn, MA, USA). Fragments were purified using AmpPureXP beads (Beckman
Coulter, Brae, CA, USA) to remove small products (<100 bp), yielding 1 μg of material that
was end-polished, A-tailed and adapter ligated according to the manufacturer’s protocol.
Libraries were subjected to minimal PCR cycling and quantified using the Agilent High Sensi-
tivity DNA assay (Agilent, Santa Clara, CA, USA). Libraries were combined into pools of six
for solution phase hybridization using the Illumina (Illumina, San Diego, CA, USA) TruSeq
Exome Enrichment Kit. Captured libraries were assessed for both quality and yield using the
Agilent High Sensitivity DNA assay Library Quantification Kit. Sequencing was performed
with six samples per lane using the Illumina HiSeq 2000 sequencer and version 2 of the
sequencing-by-synthesis reagents to generate 100 bp single-end reads (1×100SE).

Cornell validation cohort: Transplant recipients, donors and DNA
samples
We studied 24 kidney transplant recipients who had a living donor transplant at the NewYork-
PresbyterianWeill Cornell Medical Center. This was an independent cohort and none of the recip-
ients had participated in the CTOT-04 trial. Recipients were selected randomly based on the avail-
ability of archived paired recipient-donor DNA specimens obtained at the time of transplantation
at our Immunogenetics and Transplantation Laboratory. DNA extraction from peripheral blood
was done using the EZ1 DNA blood kit (Qiagen) based on the manufacturer’s recommendation.

French validation cohort: Transplant recipients, donors and DNA
samples
We studied 19 kidney transplant recipients who had a living donor transplant at Tenon Hospital.
This represented a third independent cohort. Recipients were selected randomly based on the
availability of archived paired recipient-donor DNA specimens obtained either at the Laboratoire
d'histocompatibilité, Hôpital Saint Louis APHP, Paris or during patient’s follow-up between
October 2014 and January 2015. DNA extraction from peripheral blood was done using the
Nucleospin blood L kit (Macherey-Nagel) based on the manufacturer’s recommendation.
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Cornell and french validation cohorts: Whole exome sequencing
The Cornell and French Validation cohorts were both assayed with the Agilent Haloplex
exome sequencing assay. The Haloplex assay enriches 37 Mb of coding sequence in the human
genome and was selected for the validation cohort because it provides a strong and consistent
exome enrichment efficiency for regions of the genome most likely to contribute to the alloge-
nomics contributions in protein sequences. In contrast, the TrueSeq assay (used for the Discov-
ery Cohort) enriches 63Mb of sequence and includes regions in untranslated regions (5’ and 3’
UTRs), which do not contribute to allogenomics scores and therefore do not need to be
sequenced to estimate the score. Libraries were prepared as per the Agilent recommended pro-
tocol. Sequencing was performed on an Illumina 2500 sequencer with the 100bp paired-end
protocol recommended by Agilent for the Haloplex assay. Libraries were multiplexed 6 per
lane to yield approximately 30 million paired end reads per sample.

Minor allele frequencies of the AMS sites
We determined the minor allele frequency of sites used in the calculation of the allogenomics
mismatch score using data from the Exome Aggregation Consortium (ExAC). This resource
made it possible to estimate MAF for most of the variations that are observed in the subjects
included in our discovery and validation cohort. Data was downloaded and analyzed with R
and MetaR scripts (see analysis scripts provided at https://bitbucket.org/campagnelaboratory/
allogenomicsanalyses).

Overlap with ESP variants
We use the NHLBI Exome Sequencing Project (ESP) release ESP6500SI-V2 [30]. The ESP mea-
sured genotypes in a population of 6,503 individuals across the EA and AA populations using
an exome-sequencing assay [30]. Of 12,657 sites measured in the validation cohort with an allo-
genomics contribution strictly larger than zero (48 exomes, sites with contributions across 24
clinical pairs of transplants), 9,765 (78%) have also been reported in ESP (6,503 exomes).

Sequence data analysis
Illumina sequence base calling was performed at the Weill Cornell Genomics Core Facility.
Sequence data in FASTQ format were converted to the compact-reads format using the Goby
framework [14]. Compact-reads were uploaded to the GobyWeb[8] system and aligned to the
1000 genome reference build for the human genome (corresponding to hg19, released in Feb-
ruary 2009) using the Last [9,31] aligner (parallelized in a GobyWeb [8] plugin). Single nucleo-
tide polymorphisms (SNPs) and small indels genotype were called using GobyWeb with the
Goby [32] discover-sequence-variants mode (parameters: minimum variation support = 3,
minimum number of distinct read indices = 3) and annotated using the Variant Effect Predic-
tor [27] (VEP version 75–75.7) from Ensembl. The data were downloaded as a Variant Calling
format [33] (VCF) file from GobyWeb [8] and further processed with the allogenomics scoring
tool (see http://allogenomics.campagnelab.org).

Estimation of the Allogenomics Mismatch Score (AMS) and
allogenomics tools
The allogenomics mismatch score Δ(r,d) is estimated for a recipient r and donor d as the sum
of score mismatch contributions (see Fig 1C and supplementary methods in S1 File).
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Statistical analyses
Analyses were conducted with either JMP Pro version 11 (SAS Inc.) or metaR (http://metaR.
campagnelab.org). Fig 2 as well as Figures in S1 File were constructed with metaR analysis
scripts and edited with Illustrator CS6 to increase some font sizes or adjust the text of some
axis labels. The model that includes the time post-transplantation as a covariate was con-
structed in metaR and JMP. The R implementation of train linear model uses the lm R func-
tion. This model was executed using the R language 3.1.3 (2015-03-09) packaged in the docker
image fac2003/rocker-metar:1.4.0 (https://hub.docker.com/r/fac2003/rocker-metar/). Models
with random effects were estimated with metaR 1.5.1 and R (train mixed model and compare
mixed models statements, which use the lme4 R package [34]). Comparison of fit for models
with random effects was obtained by training each model alternative with REML = FALSE an
performing an anova test, as described in [35]. We distribute the code necessary to reproduce
most of the analysis presented in this manuscript at https://bitbucket.org/campagnelaboratory/
allogenomicsanalyses.

Supporting Information
S1 File. Supplementary Table, Methods, Results and Figures. This file provides additional
details about method descriptions, additional results, as well as supplementary Table and Fig-
ures.
(PDF)
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