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DDX3, a potential target for cancer
treatment
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Abstract

RNA helicases are a large family of proteins with a distinct motif, referred to as the DEAD/H (Asp-Glu-Ala-Asp/His).
The exact functions of all the human DEAD/H box proteins are unknown. However, it has been consistently
demonstrated that these proteins are associated with several aspects of energy-dependent RNA metabolism,
including translation, ribosome biogenesis, and pre-mRNA splicing. In addition, DEAD/H box proteins participate
in nuclear-cytoplasmic transport and organellar gene expression.
A member of this RNA helicase family, DDX3, has been identified in a variety of cellular biogenesis processes, including
cell-cycle regulation, cellular differentiation, cell survival, and apoptosis. In cancer, DDX3 expression has been evaluated
in patient samples of breast, lung, colon, oral, and liver cancer. Both tumor suppressor and oncogenic functions have
been attributed to DDX3 and are discussed in this review. In general, there is concordance with in vitro evidence to
support the hypothesis that DDX3 is associated with an aggressive phenotype in human malignancies. Interestingly,
very few cancer types harbor mutations in DDX3, which result in altered protein function rather than a loss of function.
Efficacy of drugs to curtail cancer growth is hindered by adaptive responses that promote drug resistance, eventually
leading to treatment failure. One way to circumvent development of resistant disease is to develop novel drugs that
target over-expressed proteins involved in this adaptive response. Moreover, if the target gene is developmentally
regulated, there is less of a possibility to abruptly accumulate mutations leading to drug resistance. In this regard,
DDX3 could be a druggable target for cancer treatment. We present an overview of DDX3 biology and the currently
available DDX3 inhibitors for cancer treatment.
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Background
The secondary and tertiary structure of RNA and its
interaction with other proteins are important for the
function of RNA and the cell as a whole. This process is
heavily regulated by chaperones like RNA helicases,
which are able to unwind RNA duplexes or displace
bound proteins in an energy-dependent fashion. RNA
metabolism by helicases is essential in processes such as
transcription, ribosome biogenesis, splicing, RNA edit-
ing, RNA export from the nucleus, translation initiation,
and RNA turnover [1]. The largest group of RNA heli-
cases is the DEAD-box proteins, which belong to the

helicase superfamily 2. These DEAD-box helicases are
named after the conserved amino acid sequence DEAD
(Asp-Glu-Ala-Asp) and are characterized by 12 conserved
motifs [2]. The non-conserved domains at the N- and C-
terminus largely determine the specific interactions, sub-
cellular localization, and expression patterns of each
DEAD-box helicase [3]. DEAD-box helicases are present
in almost all organisms, conserved from human to yeast,
and play a crucial role, as knockdown of these helicases
are embryonically lethal [4].
DDX3 is a highly conserved subfamily of the DEAD-box

proteins. There are 37 different DEAD-box proteins in
humans, of which the most similar to DDX3 (DED1) are
shown in Fig. 1a [5]. In humans, there are at least two
pseudo genes and two DDX3 homologs, DDX3X and
DDX3Y [6]. Although DDX3X and DDX3Y share 92 %
protein sequence identity, they have very different func-
tions and expression patterns in various organs. DDX3Y is
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located in the azoospermia factor a (AZFa) region of the
Y-chromosome, is only expressed in the testes, and plays
an important role in male fertility. Deletion of DDX3Y
causes azoospermia and cannot be rescued by the DDX3X
homologue in humans [7, 8].
DDX3X on the other hand is located on the X-

chromosome bands p11.3– > p11.23 [9] and is ubiqui-
tously transcribed in all human tissues. Deletion of
DDX3 is embryonically lethal; however, Ded1P (Yeast
orthologue) deletion can be rescued by human DDX3
[10] or Belle (Drosophila orthologue) [11], which under-
scores the conserved functionality across different spe-
cies (Fig. 1b). Mice, on the other hand, have three DDX3
homologues - Ddx3x, Dby, and PL10 - which together
have functions similar to those of the two human homo-
logues [12–14].
Functionally, DDX3 appears to be one of the most

multifaceted helicases with various roles in immunology
and cancer. The function of DDX3 in viral manipulation
has been extensively reviewed [15], but its importance in
cancer is a more recent advancement in science and will
be the focus of this comprehensive review.

DDX3X structure
Like other members of the DEAD-box helicase family,
DDX3 consists of two recA-like domains and 12 conserved
motifs (Fig. 2a). DDX3X structure has been studied by
protein crystallography and X-ray diffraction [16, 17]. A
smaller fraction (V168-G582) of the 662 amino acid

DDX3X protein was co-crystallized with ATPγS and ADP
by Högbom et.al., which resulted in a crystal structure of
DDX3X with AMP (Fig. 2b) [17]. DDX3X with 12
conserved motifs (shown in Fig. 2b) has highly similar
interaction with AMP to the thermophilus DEAD-box
helicase Hera. The interaction of AMP with amino acid
residues in the nucleotide-binding pocket of DDX3X
(V168-G582) is shown in Fig. 3. Purine nucleobase stacks
over phenyl group of Tyr 200. The adenine moiety of AMP
interacts with amino acids in the Q motif (Arg 202 and Gln
207), whereas residues in the P-loop in motif I interact with
the phosphate group (Gly 227, Ser228, Gly 229, Lys 230
and Thr 231).
The lack of ATPase/helicase activity from this DDX3

core construct (V168-G582) is perhaps due to the lack
of posttranslational modification, as it is produced in
E.coli. Another possible explanation for the lack of
ATPase/helicase activity would be the lack of the flank-
ing amino- and carboxy- terminal. Other DExD box pro-
teins also have decreased ATPase/helicase activity when
the flanking regions are deleted [18, 19]. Recently, it was
shown that indeed the N-terminal (135-168) of DDX3
harbors an ATP-binding loop, which interacts with ATP
in an RNA-stimulated fashion [20]. This could have im-
plications for our functional understanding of the flank-
ing regions of DDX3X.
Shown in Fig. 2, DDX3X with AMP binding exhibits

an open conformation. As P-loop has flexibility, DDX3X
can adapt to several conformations. Because of the

Fig. 1 Phylogenetic tree depicting homologous of DDX3. a. Phylogram of human DDX3 homologous (Ded1/P68 cluster) made in clustalX (guide
tree). b. Phylogram of DDX3 orthologs in commonly used model organisms made in clustalX (guide tree)
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Fig. 2 Structure of RNA helicase DDX3. a. Schematic representation of DDX3 (human) and conserved motifs. In grey the two RecA-like domains.
The motifs include Q (182F–200YTRPTPVQ), I (226TGSGKT), Ia (274PTRELA), Ib (302GG), Ic (323TPGR), II (347DEAD), III (382SAT), IV (445LVFVET), Iva (477QRDR–487F),
V (494ILVAT), Va (502ARGLD), VI (527HRIGRTGR). Conserved amino acid sequences are indicated in parenthesis. Boxes represent the conserved motifs
involved in ATP binding (red), RNA binding (green) and linking (blue). b. Crystallography structure of DDX3 (V168-G582) (PDB: 2I4I) with AMP as the
substrate (12 conserved motifs are indicated with colors)
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Fig. 3 DDX3 interactions with AMP. a. Hydrogen interactions between AMP and amino acid residues of DDX3 ATP binding pocket: the C6 amino
group of AMP as a hydrogen donor (HD) and the backbone carbonyl oxygen of Arg202 as a hydrogen acceptor (HA); the 2’-OH group as well as
N9 of AMP (both act as HA) and the phenolic oxygen of Tyr200 (HD); N7 of AMP (HA) and the side chain NH2 group of Gln207 (HD); two phosphate
oxygens of AMP (HA) and the backbone NH groups of Gly229 and Thr 231 (HD). b. π-π interaction between the aromatic ring of AMP and the phenol
side chain of Tyr200
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structural similarities with the protein Vasa [21], DDX3
will most likely obtain the closed conformation by rotat-
ing domain 2 approximately 180 ° relative to domain 1
with the addition of ATP and RNA binding [22].

Translation regulation (mRNA metabolism)
DEAD-box proteins are involved in all steps of RNA me-
tabolism, yet our knowledge about the RNA processing
functions of DDX3 specifically continues to expand. DDX3
has been shown to be involved in promoter regulation of
p21, E-cadherin, and IFN-β [23–25]. Further down the line
of RNA processing, DDX3 has also been found in the exon
junction complex [26] and mRNA export [27, 28]. Most
importantly, DDX3 seems to function in translation initi-
ation because of its interaction with 80S ribosomes and
eukaryotic initiation factors [29, 30].
The various roles of DDX3 in RNA metabolism indi-

cate a broad functional domain for DDX3. However,
DDX3 knockdown did not affect general protein synthe-
sis [28, 31, 32]. Instead, it has been suggested that spe-
cific co-factors [30, 33, 34] and RNA specificity [31, 35]
determine the functionality of DDX3. DDX3 has been
co-immunoprecipitated with eIF4E, PABP1, Ezrin, and
eIF3, all part of a cap dependent translation initiation
complex. It is hypothesized that DDX3 destabilizes com-
plex RNA structures as part of the eIF4F translation
complex to facilitate translation of specific mRNA’s with
complex 5’-UTR’s [31, 35]. Also, DDX3 may be organiz-
ing translational control of cellular stress via stress
granules.

DDX3 and the stress response
The stress response in eukaryotic cells often inhibits
translation initiation and leads to the formation of cyto-
plasmic RNA-protein complexes, referred to as stress
granules. Stress granules serve as a reservoir of non-
translating mRNAs, translation initiation components,
and many additional proteins affecting mRNA function
that allow the cell to respond quickly under stress con-
ditions [36]. Stress granules play a protective role dur-
ing stress by stalling general protein translation,
allowing specific mRNA translation for adaptation and
repair, and facilitation of post stress recovery by acting
as reservoirs [37–39].
DDX3 has been found in stress granules and is

involved in assembling these stress granules in an ATP-
independent manner [28, 33]. Promoting stalled transla-
tion of stress-specific factors in an ATP-dependent man-
ner by Ded1p [40, 41] is also most likely a function of the
human orthologue DDX3. Gle1A is another protein in-
volved in stress granule assembly and translation under
stress conditions. Stress granules and translation defects,
initiated by Gle1A knockdown, are rescued by expression
of DDX3, underlining the importance of DDX3 in stress

granule dynamics [42]. However, some factors need to be
taken into consideration: First, not all stressors give rise to
the same response in stress granule assembly or compos-
ition [43]. Secondly, stress granules may not always be
involved in DDX3 related stress responses. But, at least
DDX3 seems to be involved in the stress response to hyp-
oxia and radiation, via modulation of apoptosis and cell
cycle control [35, 44–47].

Hypoxia
The process of tumor progression is characterized by
rapid cellular growth, typically displaying a broad range
of structural and functional abnormalities leading to
tumor hypoxia [48, 49]. Hypoxia inducible factor-1
(HIF-1) is a transcription factor, key in cellular survival
during hypoxia and is associated with tumor progression
and metastasis in various solid tumors [50]. The DDX3
promoter has three HIF-1 responsive elements (HRE)
[29] to which HIF-1α binds. Under hypoxic conditions
HIF-1α promotes DDX3 expression through promoter
activation at the most proximal HRE to the transcrip-
tional start site [46]. In breast cancer patient samples,
DDX3 is strongly correlated to hypoxia markers, specif-
ically HIF-1α. Interestingly, the correlation between pro-
teins related to HIF-1α and DDX3 is usually observed in
a PI-3 K/AKT dependent fashion [45].

Apoptosis
The ability of tumors to grow is not only determined by
the rate of cell proliferation, but also by the rate of cell
death. Acquired resistance to apoptosis (i.e., programmed
cell death) is a hallmark of most and perhaps all types of
cancer [51]. Apoptosis can be categorized as intrinsic
(mitochondrial) or extrinsic (death receptors), but there is
considerable crosstalk, finally leading to activation of ef-
fector molecules like caspase 3, caspase 7, or PARP.
Stimulation of death receptors (extrinsic apoptosis)

causes receptor trimerization, followed by recruitment
of Fas Associated with Death Domain protein (FADD)
and caspase-8 to form the death-inducing signaling
complex (DISC) [52]. Using 2D gel shift assays and mass
spectrometry, DDX3 was identified as a TRAIL-R2
(death receptor) associated protein. TRAIL-R2 signal
transduction involves the disassociation of DDX3, which
counterbalances death signals [53]. Several proteins are
known to provide protection from apoptosis, but few are
known to act specifically at death receptors to inhibit
apoptosis. A few known examples are cellular FLICE
inhibitory protein c-FLIP [54], cellular inhibitor of apop-
tosis protein-1 (cIAP-1) [55], and Glycogen synthase
kinase-3 (GSK3) [56]. DDX3 is also involved in forming
death antagonizing signaling complex with GSK3 and
cIAP-1 at each of the four major death receptors (Fas,
TNF-R1, TRAIL-R1, and TRAIL-R2) thus inhibiting
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apoptotic signaling. Strong stimulation of death recep-
tors overcomes this antiapoptotic complex by inactivat-
ing GSK3 and cleaving DDX3 and cIAP-1, permitting
progression of the apoptotic signal [57]. Impairment of
the death receptor-induced disabling of these proteins
contributes to the evasion of apoptosis, specifically in
triple negative breast cancer (lack of ER, PR and HER2
expression) [57, 58]. The relationship between DDX3 and
the death receptor complex is currently tested in patients
with metastatic triple negative breast cancer. DDX3 will
be assessed as a predictive biomarker for TRAIL-R2 treat-
ment as part of a phase II clinical trial; results are
expected May 2017 (ClinicalTrials.gov NCT01307891).
It was reported that DDX3 functions irrespective of

p53 however, all hepatocellular cancer samples with
enhanced DDX3 mRNA expression also harbored p53
mutations [24]. In contrast with these results, in lung
cancer, it was shown that p53 inactivation (HPV or mu-
tation) reduced DDX3 expression by transcriptional
regulation [59, 60]. P53 responds to the nature and
extend of many stressors in different tissues very differ-
ently [61, 62], perhaps this could explain some of the
contradictory outcomes with respect to DDX3. For in-
stance, following DNA damage, DDX3 regulates apop-
tosis in a p53-dependent manner. In cells expressing
wild-type p53, DDX3 associates with p53, increases p53
accumulation, and positively regulates camptothecin-
induced apoptotic signaling via activation of caspase 7.
Paradoxically, in cells expressing mutant or non-
functional p53, DDX3 inhibits apoptosis by reducing
caspase 3 activation [44]. The exact mechanism by
which DDX3 affects cell fate is not clear, especially with
respect to p53.

Cell cycle regulation
To maintain genome integrity, cells need to adequately
respond to various modes of genotoxic stress. This is
achieved by activation of evolutionarily conserved DNA-
damage response pathways that abrogate cell-cycle pro-
gression when the genome is damaged and stimulate
DNA repair. Depending on the extent of DNA damage,
cells either manage to repair all lesions and re-enter the
cell cycle (checkpoint recovery), or are eliminated by
apoptosis. Alternatively, cells can remain permanently
arrested after a DNA-damaging insult (senescence) [63].
To balance the cellular stress response, DDX3 is

essential to conserve cell cycle progression. Knockdown
of DDX3 expression reduces growth and proliferation,
most likely by impeding the G1/S-phase transition of the
cell cycle through cyclin D1 and cyclin E1 mRNA trans-
lation [4, 23, 30, 32, 35, 64–68]. In contrast to the role
of DDX3 in the stress response as described above, the
H Lee group and Y-H Wu Lee group have reported that
DDX3 reduces cell cycle progression via p53-DDX3-p21

regulation [24, 59, 69]. Perhaps, the HPV-, HBV-, and
HCV-related nature of their tumor models has a distinct
effect on DDX3 function in cancer. This is probable, as
DDX3 is an important co-factor in the pathogenesis of
these viral diseases [15]. The preserved PL-10 gene
(DDX3 homologue) in the mouse fibroblast cells (NIH-
3 T3) that were used could also complicate matters.
Furthermore, the ambiguous role of DDX3 in regulating
p21 could partly explain the discrepancies [23, 65]. Lastly,
DDX3 facilitates translation of specific sets of mRNAs,
but when overexpressed, suppresses general translation
[33, 69]. Collectively, the effector functions of DDX3 in
different cell types and the differential effects observed
following DDX3 manipulation may explain the variable
results observed.

Wnt regulation
The Wnt signal transduction cascade is involved in
developmental processes and various diseases, including
colon cancer, medulloblastoma, and melanoma [70]. The
first indication of the involvement of DDX3 in Wnt
signaling came from the closely related DEAD-box pro-
tein DDX5. Like the epithelial-mesenchymal transition
that occurred after overexpression of DDX3 in breast
cancer cells [23], phosphorylated DDX5 interacted with
nuclear β-catenin and subsequently stimulated EMT via
a Wnt-independent pathway [71]. Through a whole-
exome hybrid capture and with deep sequencing, activat-
ing mutations of DDX3 have been found in the majority
of Wnt-driven medulloblastoma tumors. Moreover, mu-
tant DDX3 potentiates transactivation of the TCF pro-
moter and enhances cell viability in combination with
mutant, but not wild-type, β-catenin [72]. Recently,
three papers described the interaction with DDX3 and
the Wnt signaling cascade. Xenopus and C.elegans
development depends on Wnt signaling, which was im-
paired by knockdown of DDX3. They found that DDX3
acts as a V-type allosteric activator of CK1ε activity, to
phosphorylation disheveled and thereby activating β-
catenin, in an ATP hydrolysis and helicase-independent
fashion [73]. Another mechanism in which DDX3 can
impair Wnt signaling is via translational control of Rac1.
They show that β-catenin is stabilized in the presence of
Rac1 to increase Wnt signaling. Likewise other proteins
with a complex 5’-UTR, Rac1 also depend on DDX3 for
efficient translation. Hence, translational regulation of
Rac1, by DDX3, does not only result in cytoskeletal
remodeling but also affects Wnt regulation [74]. This is
all in line with our paper in which we reported that loss
of DDX3 function, by shRNA or DDX3 inhibitor, im-
paired Wnt signaling and caused disruption of the
DDX3- β-catenin axis in lung cancer. However, we also
show that DDX3 binds directly and co-localizes to β-
catenin, which is not necessarily in line with either the
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DDX3-CK1ε-β-catenin or the DDX3-Rac1-β-catenin
pathway [47]. Also, since the DDX3 inhibitor RK-33 was
designed to bind to the ATP binding domain, it is unlikely
that this goes via the ATPase and helicase independent
DDX3-CK1ε-β-catenin pathway. Further research is war-
ranted to elucidate the role of DDX3 in Wnt signaling.

DDX3 in human samples
The differential expression of DDX3 and its orthologous
in vivo and in vitro systems has greatly informed us
about the functionality of DDX3. To translate these find-
ings to a clinical setting, it is important to understand
the expression, distribution, and regulation of DDX3 in
cancer patients. Herein we describe the different findings
of DDX3 in human cancer samples, as related to its util-
ity as a prognostic and predictive biomarker, and its role
in cancer biogenesis.

Protein expression
In several cancer types, DDX3 expression has been eval-
uated in pathological samples. The variability in antibody
usage, scoring of nuclear and/or cytoplasmic staining,
and study population led to several differences (Table 1).
Initially, it was reported that mRNA levels of DDX3 is
elevated in 64 % of liver cancer patients [65] and 52 % of
glioblastoma patients [75]. On the other hand, Y-H Wu
Lee’s group found a decrease of DDX3 levels by qPCR
and immunohistochemistry (IHC) in most liver cancer
patients (50-73 %) and a positive association with p21
[24, 68]. Interestingly, in squamous cell carcinomas of
the skin they found reduced nuclear expression whilst
their illustrative pictures also suggest a cytoplasmic
increase of DDX3 expression [24]. These interesting re-
sults led to more dedicated biomarker studies in human
cancer samples.
In a Taiwanese cohort of 144 lung cancer patients,

DDX3 is found to be a positive prognostic factor on
overall survival, hazard ratio (HR) = 0.62 (95 % CI; 0.40–
0.96). Moreover, DDX3 has a positive association with
E-cadherin (OR = 3.32; p = 0.007) and p21 (OR = 3.25;
p = 0.001), and a negative association with HPV (OR =
0.30; p = 0.002) [59, 76]. This contrasts with a Dutch
cohort of 95 lung cancer patients, where patients whose
lung cancer samples expressed high levels of DDX3
died on average 18 months earlier compared to patients
with low DDX3 expressing tumors (HR = 2.10; 95 % CI;
1.13–3.93) [47]. In the Taiwanese cohort by Wu et al.,
28 % of patients had HPV related lung cancer and less
than 40 % of patients had a history of smoking [59],
whereas most patients were smokers in the Dutch co-
hort. Perhaps this could explain, at least in part, the dif-
ference found in prognosis related to DDX3 expression.
In 324 oral squamous cell carcinoma (OSCC) patients,

DDX3 was assessed by pooling nuclear and cytoplasmic

expression and scoring whichever was the highest. This
showed to be a positive predictor for survival (HR = 0.42;
95 % CI; 0.20–0.89). This is somewhat surprising since
in the same paper it is reported that cytoplasmic DDX3
expression increases and nuclear DDX3 expression de-
creases in dysplastic oral epithelium [77]. Interestingly,
we showed an inverse relation between cytoplasmic
DDX3 expression and survival rate in 291 oral squamous
cell carcinomas of smoking patients (HR = 1.34; 95 % CI;
1.00 - 1.81) [78]. Again, patients with oral squamous cell
carcinoma in the Taiwanese cohort by Lee et al. are
mainly non-smokers and HPV positive, whereas patients
in the Dutch cohort were mainly smokers. Both in lung
cancer and in oral squamous cell carcinoma, differences
in survival related to DDX3 expression seem HPV/
smoking dependent, however the underlying mechanism
is yet unclear.
In 366 breast cancer patients, cytoplasmic DDX3 was

increased, showed a correlation with the hypoxia response
[45], and had an overall worse survival (HR = 2.01; 95 %
CI; 0.99-4.08). In public databases of RNA expression in
cancer, high DDX3 level was a poor prognostic indicator
in RNA sequencing analysis but not in microarray analysis
(HR 2.06; p < 0.001). In this same publication, the authors
could not establish a correlation between survival and
DDX3 protein expression in breast cancer, due to the
limited power of the study [79]. Interestingly, it was sug-
gested that women express higher levels of DDX3 since it
is located at chromosome X and escapes X-inactivation in
women [80].
In a cohort of 221 colon cancer patients, DDX3

expression was shown to be a positive predictor for
survival both at the RNA and the protein level (HR =
0.45; 95 % CI; 0.31-0.65) [79]. For colon cancer specific-
ally, the high frequency of both mutations in p53 and
dysregulation of the Wnt pathway, in combination with
the earlier described association of DDX3 with these
oncogenic pathways, may explain why there appears to
be a positive prognostic association with DDX3. This
might not be the case in specific sub groups.
In gallbladder cancer as well, high DDX3 expression

was related to worse survival both in squamous cell car-
cinoma, 13 vs 8 months (p = 0.003), as in adenocarcin-
oma, 15 vs 7 months (p < 0.001) [81].
The localization of DDX3 within the cell might deter-

mine its different functions. In general, DDX3 appears
to accumulate in the cytoplasm of the cell. But, there are
also reports of nuclear localization of DDX3 in HeLa
cells and liver tissue, as well as the suggestion of a shift
from nuclear to cytoplasmic localization during tumor
progression [24, 77]. Because RNA transcription and
translation occur in two discrete compartments, eukaryotic
cells must evolve highly efficient mechanisms to traffic
macromolecules such as RNA into and out of the nucleus.
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Table 1 DDX3 expression in cancer patients

DDX3 (% of samples)

protein

Cancer type subtype study
size (n)

DNA
(mutated)

RNA
(high expression)

nuclear cytoplasmic
(high expression)

prognostic value other findings ref

Breast cancer all 366 - - 20 % 35 % HR 2.01 (95 % CI; 0.99–4.08) [45]

all 152 - - - 45 % HR 2.06 (RNA-seq)* [79]

Lung cancer predominantly
non-smokers

144 - 47 % - 53 % HR 0.62 (95 % CI; 0.40–0.96) DDX3 association with: [59, 76]

E-cadherin (OR=3.32; p=0.007),
p21 (OR=3.25; p=0.001),
HPV (OR=0.30; p=0.002)

predominantly smokers 95 - - 5 % 66 % HR 2.10 (95 % CI; 1.13–3.93) [47]

Colon cancer 221 - - - 60 % HR 0.45 (95 % CI; 0.31–0.65) inverse association with
metastasis (RR=0.44; p=0.005)

[79]

303 - - - 41 % - DDX association with nuclear
β-catenin (RR=1.77; p<0.001)

[92]

Gallbladder cancer 126 - - - 55 % 15 months (low DDX3) vs
7 months (high DDX3)#

[81]

Liver cancer 45 - 64 % - - - [65]

26 - 9 % - 4 % - [24]

41 - - - 19 % no prognostic significance [68]

Head and neck cancer oral squamous cell cancer 324 - - 11 % HR 0.23 (95 % CI;
0.07–0.75) – non-smokers

decrease of nuclear expression,
increase of cytoplasmic expression
in dysplastic epithelium

[77]

(nuclear or cytoplasmic) HR 1.12 (95 % CI;
0.41–3.04) – smokers

oral squamous cell and
oropharyngeal cancer

423 - - - 51 % HR 0.88 (95 % CI;
0.53–1.45) – non-smokers

[78]

HR 1.34 (95 % CI;
1.00–1.81) – smokers

oral squamous cell cancer 107 - - - 47 % no prognostic significance [79]

all 74 4 % - - - - not evidently HPV dependent,
mutations in oropharyngeal cancer

[84]

HPV+ 51 8 % - - - - probably loss of function mutation [90]

HPV- 69 0 % - - - - [90]

oral squamous cell
carcinoma

50 10 % - - - - homozygous deletions, not
evidently HPV dependent

[91]
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Table 1 DDX3 expression in cancer patients (Continued)

Skin cancer squamous cell cancer 34 - - decreased nuclear and
increased cytoplasmic
DDX3 expression

compared to normal

- [24]

Brain cancer medulloblastoma 92 8 % - - - - probably gain of function mutation,
association with WNT subtype (50 %
of WNT subtype has DDX3 mutation)

[72]

glioblastoma 31 - - 52 % (western blot) - association between DDX3 and snail
(p=0.001)

[75]

Leukemia chronic lymphocytic
leukemia

91 3 % - - - - [85]

* = but no prognostic significance in microarray or IHC
# = average
HR = hazard ratio; OR = odds ratio; RR = relative risk; 95 % CI = 95 % confidence interval
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DDX3 proteins are exported from the nucleus to the cyto-
plasm in combination with chromosome maintenance re-
gion 1 (CRM1) [27] and Tip-associated protein (TAP) [28].
The diverse conclusions of these studies can be ex-

plained by the variability in antibody usage, localization
of DDX3 (nuclear and/or cytoplasmic), the presence of
virus mediated cancer (HBV, HCV, HPV), smoking sta-
tus, and cancer type. However, the extent and molecular
mechanisms of these factors that contribute to the can-
cer biogenesis process requires further investigation.

DDX3 and metastasis
In support of the role of DDX3 in promoting metastasis,
Chen et al. [74] showed that loss of DDX3 decreases
Rac1 and β-catenin proteins, leading to lower Wnt/β-ca-
tenin target proteins. The functional consequences of this
dysregulation are increased cell-cell adhesion and de-
creased cell motility and migration. We obtained similar
results which demonstrated that knockdown of DDX3 in
cancer cells decreased metastatic load in the lungs in a
preclinical model of breast cancer [82]. Another key regu-
lator of cancer metastasis, Ezrin, appeared to interact with
DDX3 to control the translation of proteins involving the
metastatic phenotype [34].
Besides perturbing intracellular signaling, DDX3 has

been shown to induce epithelial-mesenchymal transition
via Snail. Snail is a transcription factor that plays an im-
portant role in regulating cancer progression, especially
invasion and metastasis [83]. By supporting increased
cellular Snail levels, DDX3 influences cell proliferation
and motility in a GSK3- and p53-independent fashion
[23, 75]. This could be a potential mechanism of the
increased propensity of metastatic disease in DDX3-
overexpressing tumors [78, 81], although this was not
shown in lung cancer or colon cancer [76, 79]. Here it
was shown that loss of DDX3 also led to a loss of E-
cadherin as a possible explanation for the increase in
metastatic events. Collectively, this work supports the
role of DDX3 in promoting metastasis.

Mutations in DDX3
Through an improved understanding of the genetic basis
of DDX3, we anticipate that future patients will be strati-
fied and treated according to the biological makeup of
their disease. DDX3 has been found as a driver mutation
in a small set of head and neck tumors (4 %) [84] and
chronic myeloid leukemia (CML) (3 %) [85].
Integrative genomic studies have recently identified at

least four distinct molecular subgroups of medulloblas-
toma – Wnt, sonic hedgehog (SHH), Group 3, and
Group 4 – which exhibit highly discriminate transcrip-
tional, cytogenetic, and mutational spectra, in addition
to divergent patient demographics and clinical behavior
[86]. After CTNNB1, DDX3 is the second most

frequently mutated gene in medulloblastoma (8 %). As
much as 50 % (16 of 32) of all Wnt associated medullo-
blastomas and 11 % (7 of 66) of all SHH associated me-
dulloblastoma cases harbored mutations in DDX3 [87].
Through mapping of the mutations to its crystal struc-
ture, it seems that the mutations alter DDX3 – RNA
binding and are likely to result in altered protein func-
tion, as opposed to loss of function [20]. DDX3 muta-
tions enhance cellular proliferation by potentiating the
transactivation capacity of mutant β-catenin. Moreover,
DDX3 is required to maintain the lineage of lower
rhombic lip progenitor cells (origin of Wnt medulloblas-
toma cells) [72, 88, 89].
In head and neck cancer, missense mutations in DDX3

do occur but, the majority of genetic alterations are homo-
zygous deletions, frame shift-, and nonsense- mutations,
which is more supportive of loss of function. Interestingly,
all mutations were found in oropharyngeal cancer [84, 90]
and deletions were found in oral squamous cell cancer
[91]. The influence of smoking and HPV probably deter-
mines the biology of the tumor and therefore determines
the role that DDX3 plays in those tumors. One study
found DDX3 to be exclusively mutated in HPV-positive
HNSCC [90].
By mining the COSMIC database, we found only 12 %

of genetic abnormalities of the DDX3 gene typical for
tumor suppressor genes (nonsense mutation, deletions,
frame shift or loss of heterozygosity), whereas 81 % of
DDX3 genetic abnormalities are more typical for a gain
of function (substitution missense mutations). In conclu-
sion, DDX3 mutations are found in different types of
cancer and seem to induce altered protein function ra-
ther than a loss of function. The extent to which these
mutations impact clinical care by potential DDX3 inhibi-
tors is yet to be determined.

Functional divergence of DDX3-a potential tumor sup-
pressor gene
In addition to the supporting evidence that DDX3 could
act as a putative oncogene[23], there is an opposing view
that loss of DDX3 promotes growth and could have po-
tential tumor suppressor functions [24]. This is evident
from publications [24, 59, 68, 76], which indicate that
DDX3 is a transcriptional activator of p21 and is directly
regulated by p53. Furthermore, the Lee group showed
that loss of P53 decrease DDX3 expression, thus pro-
moting tumor malignancy via the MDM2/Slug/E-cad-
herin pathway [76]. This is in contrast with others who
indicate that DDX3 does not activate p21 [23, 45] and
loss of DDX3 impairs growth and proliferation [44].
Furthermore, a recent paper showed that loss of DDX3
expression promotes metastasis in colorectal cancer
[79]. Interestingly, our recent publication indicates that
DDX3 expression is associated with aggressive colorectal
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Fig. 4 Structure of ring-expanded nucleosides targeting DDX3, REN-1 and REN-2 [96]

Table 2 Inhibitors of DDX3Original table attached in the e-mail. Please use this for the paper. Font and Bold features should be maintained

Structure for modification Cmpd # n R1 R2 Ki [μM] Reference

1a 2 2-OH 3-Br 5.4

1b 2 2-OH 3-F 0.3

1c 2 2-OH 3,5-diF 0.5

1d 2 2-OH 3-(O-CH2-O)-4 1.0 [98]

1e 2 2-OH 3,4,5-triOMe 0.1

1f 2 2-Cl 3,4,5-triOMe 3.9

1 g 2 2-COOH 3-(O-CH2-O)-4 0.4

1 h 2 2-COOH 4-OMe 2.0

2a 2 2-OH 3-Br 4.2 [98]

2b 2 2-OH 3-F 4.3

3 2 2-OH 3-Br 28 [98]

Structure for modification Cmpd# n R1 R2 R3 Ki [μM]

4a 0 NH-Ph H - 0.4

4b 0 morpholinyl 3-Cl - 1.6 [98]

4c 1 morpholinyl 3-Cl - 2.9

4d 1 NEt2 H - 0.1

5a 0 NH-Ph H Ph(4-NHCOCH3) 0.3

5b 1 NH-Ph H Ph(4-NHCOCH3) 0.5

5c 0 morpholinyl H Ph(4-NHCOCH3) 2.2

5d 0 morpholinyl F Ph(2-OH) 0.7

5e 1 morpholinyl H Ph(2-OH) 0.6 [98]

5f 1 morpholinyl H Ph(2-OH, 5-Cl) 1.9

5 g 1 morpholinyl H Ph(2-OH, 3-NO2) 4.0

5 h 0 morpholinyl 4-F Ph(2-OH) 0.4

5i 0 NH-Ph(4-F) 4-F Ph(2-OH) 0.1

5j 0 morpholinyl 4-F 2-methyl-indol-3-yl 0.20.3
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cancer [92] as well as in sarcomas [93]. Of note is a
paper by Jiang et al. [94] that identified mutations in
DDX3 as potential drivers of natural killer/T-cell lymph-
oma. Given the diametrical opposite functions of DDX3
in cancer biogenesis, what could be the potential mech-
anisms of this dual role of DDX3? A study on the role
of the Saccharomyces cerevisiae DDX3 homolog, Ded1,
has suggested that it can act both as a repressor of
translation initiation through its ability to interact with
other components of the translation initiation factors
and as an activator via its ATP-dependent activity [40].
Also, one can posit that DDX3 functions in a temporal

fashion, exhibiting both an unstable and a stable
phenotype. Given that tissue culture experiments can
be viewed as a snapshot data collection point, it is cru-
cial to define the end-points of each experiment. More-
over, patient sample variation and heterogeneity of the
molecular pathogenesis of the diverse cancer types in
different continents may contribute to the oncogenic/
tumor suppressor functions of DDX3. For example, it is
possible that in a sub-set of patients with a concurrent
dsDNA viral infection (HPV, HBV, HCV), the role of
DDX3 can be alerted [68]. Also, the different popula-
tions may have different stochastic ratios of co-factors

Fig. 5 Inhibitors of DDX3 helicase function

Table 2 Inhibitors of DDX3Original table attached in the e-mail. Please use this for the paper. Font and Bold features should be maintained
(Continued)

6a 0 morpholinyl 4-F Ph(2-Cl, 4-NO2)

6b 0 piperidinyl H Ph(4-Cl) 0.4 [98]

Structure modification Compound Name

RK-33 [47]

ZINC00011012 [104]
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associated with DDX3 that might facilitate differential
functions of DDX3. At the present time, it is only
speculative and requires a concerted effort by all the in-
vestigators in this field to delineate the biological role
of DDX3 in the context of cancer biogenesis.

Inhibitors of DDX3
DDX3 inhibitors were initially designed for treatment of
human immunodeficiency virus-1 (HIV-1) [27, 95–97].
Small molecule inhibitors against DDX3 were discovered
through rational design and by high throughput screen-
ing of commercially available compounds. The high
throughput docking screen is based on the pharmaco-
phoric model of the X-ray crystallographic structure of
DDX3 in complex with AMP [17] as a three-
dimensional filter to screen in sillico databases of com-
pounds targeting the ATP binding site of DDX3. Gold-
Score and ChemScore were applied for scoring how fit
the potential ligands bind to the ATP binding site [98].
According to the X-ray crystallographic structure of
DDX3 in complex with AMP [17], the interactions
between DDX3 and AMP consist of six hydrogen bond
interactions and one π-π interaction (Fig. 3). While a
general review on helicase inhibitors was published
recently [99], this section focuses on DDX3 inhibitors as
anticancer drugs.
Inhibition of helicase-catalyzed ATP hydrolysis can

logically be done by nucleotide and nucleobase ana-
logues. As such, ring expanded nucleoside (REN) ana-
logues, which structurally mimic adenosine nucleoside,
inhibit helicase activity of DDX3 (structures shown in Fig. 4)
[96]. One of the REN analogs studied in our laboratory ex-
hibited inhibition of cell motility and viability in breast can-
cer [82]. Based on the molecular model of DDX3, these
REN analogues were structurally modified into a series of
tricyclic 5:7:5-fused diimidazo[4,5-d:4’,5’-f][1, 3]diazepine
analogues [47, 64, 100, 101].

From databases of commercially available compounds,
rhodanine analogues, triazine derivatives, and diphenyl
analogues were identified by virtual screening to bind to
the ATP binding site of DDX3 [97, 98, 102]. Ten out of
the original 70 entries were tested with increasing
concentrations of inhibitors and variable ATP concentra-
tions for Ki value, resulting in inhibition of the ATPase
activity of human DDX3 by a rhodanine analogue (1a in
Table 2) with IC50 of 5.4 μM. Modifications of the hit
rhodanine analogue 1a were made for structure-activity
relationship studies (Structure 1-3 in Table 2).
Triazine-based analogues (5a) were also structurally
modified and tested for Ki value against DDX3 ATPase
activity (Structure 4-6 in Table 2). The cytotoxicity
study indicates that these drugs possess potential anti-
cancer properties [98]. It will be exciting to see further
target validation and in vivo activity of these potential
DDX3 inhibitors as anticancer drugs.
DDX3 inhibitors, targeting the RNA-binding site of

DDX3, were discovered by screening 220,000 entries of
the Asinex database by high throughput docking [103].
The 3D structure of DDX3 in the closed conformation is
currently unavailable. Thus, individual domains of
DDX3 crystallized with AMP in an open conformation
were aligned with corresponding domains of the closed
conformation of the DEAD-box helicase eIF4A. Three
lead compounds were identified (Compound 1, 2, 3 in
Fig. 5). Structural modifications of 1 were made to in-
crease binding affinity at the RNA binding site of DDX3
(4a-d in Fig. 5). Two compounds showed strong inhib-
ition against DDX3 helicase activity (IC50 4a = 1 μM±
0.2 and 4c = 5 μM± 0.6) [103].
Recently, we reported a tricyclic diimidazodiazepine

analogue, also known as RK-33, as a DDX3 inhibitor [47,
64, 101]. RK-33 is a derivative of REN analogues with a
third ring added to the 7-member diazapine ring
(Fig. 6a). RK-33 binds to DDX3, inhibits DDX3 helicase

Fig. 6 DDX3 inhibitor RK-33. a. Structure of 5:7:5 tricyclic heterocycle RK-33. b. Graphic depiction of the interaction of DDX3 and RK-33 and the
subsequent biological effect
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activity and cancer growth, and radiosensitizes lung can-
cer cells in a DDX3-dependent manner (Fig. 6b) [47]. A
number of tricyclic diimidazodiazepine analogues were
generated by structure modifications of RK-33. These
compounds maintain their cytotoxic activity against
breast, prostate, and lung cancer cell lines [47, 101]. In
particular, the imidazolone ring could be altered to im-
prove cytotoxicity [101].
Several compounds that inhibit DDX3 were identified

through high throughput screening, resulting in the
following: rhodanine derivatives and triazine analogues
to bind to the DDX3 ATP binding domain, and biphenyl
analogues to inhibit RNA helicase activity. These
analogues have been investigated for their anti-HIV
properties and their anticancer properties are under in-
vestigation. Conversely, the tricyclic heterocyclic RK-33
has shown potent anticancer activity against multiple
cancer cell lines including, but not limited to, those of,
sarcoma, and lung [47, 93]. The validation of DDX3
helicase activity inhibition by RK-33 was performed by
measuring the proportion of unwound RNA duplexes
(FAM-labeled) by DDX3 homolog Ded1p (80 nM) and
varying concentrations of RK-33 [47]. Moreover, specifi-
city assay of RK-33 binding to DDX3 but not the closely
related protein DDX5 and DDX17 were also performed
by pull-down assay of biotinylated RK-33 [47]. Recently,
another compound called 5-benzoyl-2,3-dihydro-1H-
pyrrolizine-1-carboxylic acid, tris (hydroxymethyl) amino
methane salt (ZINC00011012) was explored as a DDX3
inhibitor in preclinical models of oral cancer [104]. In-
hibition of DDX3 ATPase activity by ZINC00011012
was validated by measurement of Pi release from ATP in
the mixture of purified His-DDX3 (6 μM) and varying
concentrations of ZINC00011012 [104].
Predictive biomarkers are common practice with mod-

ern targeted therapies like anti HER2, ER, BCR-ABL, or
EGFR treatment [105]. DDX3 expression level could
serve as a predictive biomarker for clinical applications
of targeted treatment. DDX3 inhibitors, with more valid-
ation, would be a new and promising strategy in tackling
cancer.

Conclusions
In this review, we have thoroughly examined the role of
DDX3 in cancer. DDX3 is a DEAD-box helicase located
on the X-chromosome with various roles in immunology
and cancer. Functionally, DDX3 is specifically involved
in promoter regulation, the exon junction complex,
mRNA export, and translation initiation. During cellular
stress, DDX3 can assemble stress granules in an ATP-
independent manner or promote stalled translation of
stress-specific factors in an ATP-dependent manner.
DDX3 appears to be involved in at least the stress

response to hypoxia and radiation, via modulation of
apoptosis and cell cycle control.
Whether DDX3 has tumors suppressing abilities or

facilitates the maintenance of the oncogenic state has
been of considerable debate. Some state that DDX3 acts
as a tumor suppressor gene by regulating p21 [24, 59,
68, 69, 76, 77, 79]. However, a majority has shown a
plethora of different functions of DDX3, which enable a
cancer cell to survive in an unstable state [23, 35, 44–47,
53, 57, 72, 73, 75, 81, 85, 88, 89, 93, 106–109].
Altogether, DDX3 is essential in maintaining can-

cer cell viability in non-virus mediated stress re-
sponse by controlling the cell cycle and apoptosis.
As a result, there is increasing effort to design or
identify, via high throughput screening, new DDX3
inhibitors [97, 98, 102, 103]. Pre-clinical and clinical
evaluation of those compounds will shed light on
the applicability of this new paradigm to block can-
cer progression via inhibition of DDX3. Understand-
ing efficacy of these novel inhibitors and the
potential use of DDX3 expression as an appropriate
biomarker will need further scrutiny.
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