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ABSTRACT

Objective: Social determinants of health (SDoH) are nonclinical dispositions that impact patient health risks and

clinical outcomes. Leveraging SDoH in clinical decision-making can potentially improve diagnosis, treatment

planning, and patient outcomes. Despite increased interest in capturing SDoH in electronic health records

(EHRs), such information is typically locked in unstructured clinical notes. Natural language processing (NLP) is

the key technology to extract SDoH information from clinical text and expand its utility in patient care and re-

search. This article presents a systematic review of the state-of-the-art NLP approaches and tools that focus on

identifying and extracting SDoH data from unstructured clinical text in EHRs.

Materials and Methods: A broad literature search was conducted in February 2021 using 3 scholarly databases

(ACL Anthology, PubMed, and Scopus) following Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines. A total of 6402 publications were initially identified, and after applying the study

inclusion criteria, 82 publications were selected for the final review.

Results: Smoking status (n¼27), substance use (n¼21), homelessness (n¼20), and alcohol use (n¼15) are the

most frequently studied SDoH categories. Homelessness (n¼7) and other less-studied SDoH (eg, education, fi-

nancial problems, social isolation and support, family problems) are mostly identified using rule-based

approaches. In contrast, machine learning approaches are popular for identifying smoking status (n¼13), sub-

stance use (n¼9), and alcohol use (n¼9).
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Conclusion: NLP offers significant potential to extract SDoH data from narrative clinical notes, which in turn can

aid in the development of screening tools, risk prediction models, and clinical decision support systems.

Key words: social determinants of health, population health outcomes, electronic health records, natural language processing,

information extraction, machine learning

INTRODUCTION

Social determinants of health (SDoH) are circumstances in which

people are born, live, learn, work, and age and are closely tied to

individuals’ health behaviors, lifestyle, and interpersonal relations.

The upstream distribution of wealth, power, and resources at local,

national, and global levels can trickle down to impact individual

health outcomes and potentially lead to health disparities (https://

www.who.int/gender-equity-rights/understanding/sdh-definition/en/

). Several studies have investigated associations of SDoH with differ-

ential health outcomes, such as the effects of food insecurity on de-

veloping diabetes1; socioeconomic status, neighborhood,

employment, race, and social support on breast cancer risk and sur-

vival2; and housing quality on mental health.3 Not surprisingly,

risky health behaviors and maldistribution of SDoH have been asso-

ciated with increased financial burdens on patients and providers.4

The annual County Health Rankings (https://www.countyheal-

thrankings.org/explore-health-rankings/measures-data-sources/

county-healthrankings-model) gauge the impact of a wide range of

health factors by ranking the health outcomes of the over 3000

counties across the United States. Figure 1 theorizes how upstream

improvements in policies and programs impact health factors and

ultimately ripple into downstream community health outcomes.5 So-

cial, economic, and physical environment factors contribute the

most to health outcomes (50%), followed by health behaviors

(30%). Just 20% of health outcomes are attributed to clinical care.

Case in point, according to the Centers for Disease Control and Pre-

vention (CDC), 39% of deaths from chronic lower respiratory dis-

ease resulted from social and environmental exposure to

secondhand smoke, allergens, occupational agents, and other indoor

and outdoor air pollutants. To a lesser degree, 33% of premature

stroke deaths were attributed to risky health behaviors (tobacco use,

alcohol use, and sedentary lifestyles) and their related clinical mani-

festations—high blood pressure, high cholesterol, heart disease, dia-

betes, obesity, and previous stroke (https://www.cdc.gov/media/

releases/2014/p0501-preventable-deaths.html).

Such evidence suggests a strong association between nonclinical

factors with clinical outcomes and has increased clinical and public

health interest in incorporating SDoH into patient profiles on a

much broader scale. Collecting and understanding SDoH informa-

tion offers significant potential and can uncover important contex-

tual information about patients’ lifestyles to supplement clinical

findings. Most US health systems and providers use electronic health

records (EHRs) to document patient clinical information. In the last

decade, adoption of EHRs has widely expanded, however qualita-

tive information about patients’ lifestyles is usually documented in

unstructured clinical notes. Although SDoH information is often

collected, the lack of standardized data elements, assessment tools,

measurable inputs, and data collection practices in clinical notes

greatly limits the access to this information. Attempts to improve

standardization at the national level have been made by the Protocol

for Responding to and Assessing Patients’ Assets, Risks, and Experi-

ences (PRAPARE) (https://www.cdc.gov/media/releases/2014/

p0501-preventable-deaths.html) and the National Academy of Med-

icine (https://nam.edu/social-determinants-of-health-101-for-health-

care-five-plus-five/). Furthermore, the International Classification of

Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) V-

codes (V-60-62) and Z-codes (Z55–Z65) have been implemented for

diagnostic use; however, Truong et al6 noted that these codes are ex-

Figure 1. The County Health Rankings model of population health.
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tremely underutilized, with less than 2% of inpatient hospitaliza-

tions having a Z-coded diagnosis during the first 2 years of their

availability. A more comprehensive, coherent, and user-friendly set

of codes could be developed to improve SDoH documentation and

increase rates of adoption in healthcare settings.

Traditionally, extracting valuable information from unstruc-

tured data is performed manually through chart review, which can

be time-consuming. However, recent advances in natural language

processing (NLP) offer more efficient, automated approaches to un-

lock and analyze insightful information from existing EHR data.

Currently, about 80% of medical data are unstructured and do not

fit into easily actionable categories, including clinician encounter

notes, discharge summaries, patient-reported information, and radi-

ology/pathology reports,7 but they can be indexed and leveraged to

guide more informed clinical decision-making. Various clinical deci-

sion support systems are being developed using EHRs, and many

healthcare organizations are allocating substantial resources to sup-

port the integration of NLP technologies in an effort to expand the

amount of usable data, enhance analytic insights, and improve pa-

tient outcomes.8,9

Recent studies specified the scope and importance of NLP or in-

formation retrieval (IR) methods to extract SDoH information from

clinical notes.10–12 However, there are several different designs of

SDoH identification/extraction tools in recent literature, and the

utility of each tool depends largely on the type of SDoH in question.

Furthermore, the lack of a comprehensive review that delineates the

tools available and their most suitable purposes may hinder efficient

progress on this research problem in terms of deciphering what has

and has not been explored. In this review, we investigated various

NLP techniques for SDoH lexicon curation and implementation of

SDoH extraction systems that have been developed for extracting

SDoH data from unstructured clinical notes in EHR systems. We list

EHR systems and categories of SDoH concepts extracted using NLP

techniques and tools.

We also identified 2 relevant works that study the implementa-

tion of SDoH in EHR databases.13,14 Chen et al13 studied the inte-

gration of SDoH in EHRs, their impact on risk prediction, and the

specific outcomes. In addition, Bompelli et al14 studied artificial in-

telligence (AI) methods to extract SDoH from EHRs. They briefly

discussed different NLP methods used for identifying SDoH from

EHRs and surveyed the papers that studied the healthcare outcomes

using SDoH. These studies, while informative, do not describe the

details of NLP methodologies used for SDoH from clinical text

which is the major focus of this systematic review .

MATERIALS AND METHODS

Searching methods and screening
An initial literature survey was conducted to identify SDoH-related

keywords that could be used for searching relevant publications. We

also identified keywords related to multiple categories of SDoH

from the County Health Rankings model. A total of 73 SDoH-

related keywords were identified in addition to variants of “natural

language processing” and “electronic health records” (see Supple-

mentary Table S1).

We searched 3 scholarly databases—ACL Anthology, PubMed,

and Scopus—between October 2020 and February 2021 with the

goal of identifying all relevant articles related to SDoH extraction

from EHRs using NLP methods. This review followed the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines.15 For PubMed and Scopus, we created queries

for each SDoH keyword. A total of 3301 publications were identi-

fied from PubMed (n¼2672) and Scopus (n¼629) using our search

strategy. Search-related observations are reported in the Supplemen-

tary File. After removing duplicates, we screened 1874 publications

from PubMed and Scopus, during which 1746 publications were

further excluded as not relevant, or not having the full text avail-

able. In the case of ACL Anthology, 3101 publications were identi-

fied. Although the search results could not be saved, all 3101

publications were screened during this stage. The screening resulted

in 128 articles from PubMed and Scopus, and 11 articles from ACL

Anthology for the full text review. The PRISMA workflow is shown

in Figure 2 and example queries for each database are provided in

Supplementary Table S2.

Full text review
To be eligible for inclusion in the review, the articles needed to focus

on the description, evaluation, or use of NLP or text mining algo-

rithm/pipeline to identify or extract SDoH information from EHRs.

Two authors (BGP and MMS) independently reviewed each full text

article and discussed to reach consensus if there were any discrepan-

cies. There were several reasons for exclusion, for example, if the ar-

ticle was not relevant to NLP, EHRs, or any SDoH categories that

we intended to study. SDoH categories that were not evaluated in

the County Health Rankings (such as race, ethnicity, mental health

conditions, or stress) were not included in our study. Other reasons

for exclusion included if the SDoH extraction was performed on

non-EHR data (eg, survey results, homelessness assistance program

applications, or social media data), or if the publication involved

non-English EHR systems. Finally, we excluded studies that were

not peer-reviewed articles, such as abstracts and commentary, per-

spective, or opinion pieces.

Data
A final total of 82 publications were included in this study at the

end of the full text review process. We also searched references of all

82 articles, and most of these publications overlap with our search

results. The included articles were published between 2005 and

2021, as illustrated in Figure 3. Authors BGP and MMS performed

the data extraction and analysis of all 82 publications.

RESULTS

We list SDoH categories studied in the collected publications and

describe the steps associated with extraction of SDoH in EHRs. In

general, we observed 2 major steps associated with SDoH extraction

systems from literature. The first step is gathering SDoH-related

keywords to create lexicons for each SDoH category, and the second

step is developing rule-based or supervised systems to locate clinical

notes associated with SDoH categories or extract SDoH concepts.

The SDoH lexicons can be created using manual chart review of

clinical notes/medical dictionaries or using semisupervised or super-

vised algorithms. Many keyword/lexicon matching, supervised (clas-

sification using semantic and syntactic features), and unsupervised

(topic modeling) approaches were developed in the past for SDoH

identification.

SDoH categories
Figure 4a shows counts of publications that studied different SDoH

categories, whereas Figure 4b presents the combinations of SDoH
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categories that were studied in publications. Factors related to

smoking status are some of the most studied SDoH using NLP algo-

rithms, followed by drug abuse and homelessness. Figure 4c shows

historical counts of different SDoH categories that were extracted

using NLP methods (here, we grouped the SDoH factors into 4 cate-

gories). NLP studies in health behaviors focused primarily on

extracting smoking status in the early 2000s. The first set of studies

in extracting physical environment (eg, housing issues/homelessness)

and social and economic factors were conducted in 2012 and 2013,

respectively.

SDoH lexicon development
Manual lexicon curation

Initial approaches to SDoH lexicon development were based on

manually reviewing the literature and filtering clinical notes with the

help of domain experts.10,11,16–19 Figure 5a highlights the frequen-

cies of different techniques to develop lexicons and suggests that

manual lexicon development techniques were more commonly

employed than semiautomated techniques. This finding could

be explained by data that are too noisy or limited in availability to

support development of semiautomated approaches. SDoH catego-

Figure 2. PRISMA workflow of included articles.

Figure 3. Publication years of included articles.
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Figure 4. (a) Frequency of SDoH categories in the collected publications. (b)

Heatmap of different SDoH categories combinations implemented in publica-

tions. (c) Year-wise frequencies of SDoH categories that were extracted using

NLP.

Abbreviations: A, alcohol abuse/use; C, cigarettes/smoking status; CA, child

abuse/adverse childhood experiences; CC, clinical care (access to care/quality of

care); CS, community safety; DE, diet & exercise; DS, drug/substance abuse; E,

employment; ED, education; EN, environment (water/air quality); F, financial/in-

come issues; FI, food insecurity; H, housing issues; SA, sexual activity/abuse; SF,

social connection/isolation or family problem; T, Transportation.

Figure 5. (a) Frequencies of rule-based and semiautomated methods for

SDoH lexicon creation. (b) Frequencies of existing tools and systems (rule-

based, supervised, and unsupervised) for SDoH identification/extraction. (c)

Year-wise frequencies of different NLP methods that were used to extract dif-

ferent SDoH categories.

Abbreviations: A, alcohol abuse/use; C, cigarettes/smoking status; CA, child

abuse/adverse childhood experiences; CC, clinical care (access to care/quality of

care); CS, community safety; DE, diet & exercise; DS, drug/substance abuse; E,

employment; ED, education; EN, environment (water/air quality); F, financial/in-

come issues; FI, food insecurity; H, housing issues; SA, sexual activity/abuse; SF,

social connection/isolation or family problem; T, Transportation.
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ries that used manual lexicon development techniques are listed in

Supplementary Table S4.

Gundlapalli et al18 created a homelessness lexicon after manual

chart review and used the National Library of Medicine (NLM)’s

lexical generation tool for extending lexicons. Greenwald et al20 cre-

ated lexicons for housing, financial issues, substance use, social and

psychosocial support, substance abuse, and physical abuse from

multiple focus group conversations with front-line clinical staffs

(nurses, case managers, physical therapists, occupational therapists,

physicians, and social workers). Hatef et al10 created a homelessness

lexicon using various public health surveys and instruments such as

the American Community Survey (ACS); the American Housing Sur-

vey (AHS); the Protocol for Responding to and Assessing Patients’

Assets, Risks, and Experiences (PRAPARE); and the Accountable

Health Communities Model from the Center for Medicare and Med-

icaid Innovation. Hatef et al10 also used ICD-10 codes, Current Pro-

cedural Terminology (CPT) codes, Logical Observation Identifiers

Names and Codes (LOINC), and Systematized NOmenclature of

MEDicine (SNOMED) codes to create lexicons for social connec-

tion/isolation, housing issues, and income/financial resource strain.

Blosnich et al21 used ICD-10 codes, Veterans Health Administration

(VHA) stop codes, and VHA health factors to create lexicons for

housing issues, financial issues, adult violence, and military sexual

trauma. Winden et al22 initially reviewed SNOMED codes for

homelessness keywords and then used these to identify additional

terms in the EHR flowsheet.

Semiautomated lexicon creation

Figure 5a suggests that fewer efforts were made to create lexicons

automatically. Bejan et al12 proposed a semisupervised method to

develop SDoH lexicons related to housing and adverse childhood

experiences. Their work used the seed words (single or multi-words)

at first, followed by lexical association and word2vec in clinical

notes to find similar SDoH keywords to further increase the inven-

tory of lexicons. The initial set of lexicons were modified iteratively

using clinical notes retrieved by similarity calculation. In a similar

approach, Bettencourt-Silva et al23 used the skip-gram model and

word embedding on EHRs and Wikipedia. They collected relevant

keywords related to 5 SDoH categories (housing, criminal justice, fi-

nancial services, health behaviors, and homelessness) using semisu-

pervised methods. Initially, they provided 57 related terms to a

word2vec model trained on Wikipedia pages and then collected

2000 similar words as candidate lexicons for further annotation by

domain experts.

Topaz et al24 used word2vec to expand the seed word list for al-

cohol use and substance-related disorders and then manually

reviewed this list to generate the final lexicon. Velupillai et al25 used

WordNet and word2vec to develop a substance use lexicon. Con-

way et al9 collected a lexical dictionary of words and phrases from

the Unified Medical Language System (UMLS) metathesaurus. Each

SDoH category involving semiautomated lexicon development tech-

niques and the corresponding citations are shown in Supplementary

Table S4.

SDoH identification/extraction
Most studies used rule-based (keyword searching/keyword similar-

ity), traditional supervised machine learning (ML), and deep learn-

ing (DL) approaches to identify SDoH at the keyword or document

level. Many SDoH identification systems leveraged existing NLP

systems, terminologies, and infrastructures. Figure 5b shows the fre-

quencies of existing tools and systems (using rules, supervised, and

unsupervised methods) for identifying SDoH categories. Different

techniques for SDoH extraction for each category and the corre-

sponding citations are provided in Supplementary Table S4.

Rule-based methods

In total, 22 out of 82 publications (about 27%) used rule-based

methods to identify SDoH in clinical notes. (Note: There may be

multiple SDoH/methods in a single publication. However, we con-

sidered each SDoH/method separately while counting the numbers.)

Figure 5b shows how frequently different methods were used to

identify SDoH categories.

Rule-based systems were used more frequently for housing,

transport, and social isolation and less frequently for smoking, alco-

hol, and substance use. Insufficient volumes of annotated or struc-

tured data for homelessness, social support, and other

socioeconomic factors may explain why rule-based systems were

more common for these variables. The rule-based systems were de-

veloped either using keyword matching/counts or regular expression

or similarity matching to identify the presence of SDoH in any clini-

cal document.10,12,20–22,26–28 We provided the corresponding cita-

tions for SDoH extraction methods in Supplementary Table S5.

Figure 5c shows frequencies of different NLP methods that were

used to extract SDoH data.

Supervised methods

In supervised classification approaches, the features can be broadly

classified into 2 categories. First, a category of features that were

based on developed lexicon/keywords and the others that were

based on embeddings. A wide range of embeddings (bag-of-words/

term frequency and inverse document frequency [TF-IDF], n-grams,

and word2vec) served as features for classifying SDoH categories.29–

35 In addition to these 2 feature categories, several other features

such as part-of-speech (POS), POS unigram, POS bigrams, lexicon

counts, and concepts (identified using UMLS, MetaMap, and the

clinical Text Analysis and Knowledge Extraction System [cTAKES])

were also used for classification in several studies.36,37 Our investi-

gation found that diagnosis codes from ICD-9 and ICD-10 and con-

cepts identified using cTAKES and UMLS, were extensively used as

features for substance use, alcohol use, and smoking status.17,26,38,39

In 24 out of 82 publications (about 32%), classification methods

were used for identifying SDoH. Several studies that identified

homelessness (n¼5), alcohol use (n¼9), substance use (n¼9), and

tobacco/smoking (n¼13) used supervised techniques. Support Vec-

tor Machine (SVM), random forests, and logistic regression classi-

fiers were commonly used for classification tasks.24,29,30,32–

35,37,38,40–44

Furthermore, we observed 7 studies that investigated deep learn-

ing algorithms for SDoH extraction.29,32,33,42,45–47 Convolutional

neural network (CNN) and feedforward neural network (FNN) per-

formed poorly compared to traditional ML algorithms, such as

SVM, random forests, Classification and Regression Tree (CaRT),

and AdaBoost due to scarcity of annotated data for identifying

SDoH such as alcohol abuse, substance abuse, homelessness, and

sexual orientation.33 In more recent work, Lybarger et al42 used Bi-

directional Encoder Representations from Transformers (BERT) for

embedding, Bidirectional Long Short-Term Memory (BiLSTM) for

trigger and label identification, and Conditional Random Field

(CRF) for SDoH span identification. This study identified living sta-

tus and employment status, as well as drug, alcohol, and tobacco
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use. A comprehensive list of traditional ML and DL algorithms used

in publications with their citations is provided in Supplementary Ta-

ble S6.

Feature selection plays an important role in improving the per-

formance of supervised systems, and we observed these methods in

SDoH identification. Wang et al35 used latent Dirichlet allocation

(LDA) and information gain feature selection techniques to identify

drug, alcohol, and nicotine use. Regression models and random for-

est classifiers were used to evaluate the importance of features on

different tasks.24,34,38,45 Feller et al32 used chi-squared goodness of

fit tests to perform feature selection for housing status, sexual his-

tory, substance use, alcohol use, sexual orientation, and gender doc-

umentation identification.

Unsupervised analysis

Three studies investigated unsupervised approaches for SDoH ex-

traction from clinical notes. Lindemann et al48 used topic modeling

to perform a detailed analysis of social history topic variation, which

was followed by validation through a separate manual analysis of

1400 clinical documents from Fairview Health Services (FHS). Simi-

larly, Afshar et al49 employed LDA to detect the subtypes of opioid

misuse. In this study, latent class analysis (LCA) was used to cluster

documents into 20 categories. The authors concluded that the 4-

class latent model was the most parsimonious model to define clini-

cally relevant subtypes for opioid misuse. In another related study,

Wang et al50 used LDA to identify topics for nutrition (swallow

function, artificial feeding, and nutritional status) and social support

(family support, spiritual support, caregiver support, and social his-

tory) in patients with Alzheimer’s disease and related dementias

(ADRD).

Other methods

Multiple publications used previously developed NLP systems, ter-

minologies, and infrastructure to accomplish SDoH extraction/iden-

tification tasks. Table 1 lists experiments that used NLP tools for

different SDoH extraction, and most of these systems were devel-

oped using lexicons and rules.9,17,51,63 MTERMS was also used for

deidentification in addition to SDoH identification.50

Evaluation
One of the steps in the development of NLP systems is the manual

review of relevant documents or, similarly, the creation of a gold

standard through chart review. UMLS, SNOMED, LOINC, CPT,

ICD-9, and ICD-10 codes were used for both lexicon development

and NLP systems evaluation.10,17,21,38,55 Many supervised NLP sys-

tems used these codes to identify notes for training and testing (eg, if

a patient has an ICD-10 Z-code for homelessness, then their notes

were used for training/testing homelessness models). ICD-9 and

ICD-10 codes, VHA stop codes, and VHA health factors in EHR

systems were used to validate systems for homelessness.21,40 Several

publications described chart review of clinical notes for evalua-

tion.48,60,64 In addition, Wang et al29 used weak labeling to generate

labels for raw data. The authors manually reviewed the initial la-

beled data from a rule-based system and developed a supervised ML

system using embeddings to identify unseen notes containing smok-

ing status.

DISCUSSION

The majority of lexicons were created using manual curation. The

manual curation requires more efforts to develop and manually eval-

uate a lexicon, however, it helps to understand the characteristics of

EHRs. One of the advantages of using semiautomated techniques is

that these greatly reduce the human efforts and resources needed to

create lexicons.

Keyword matching and classification were the 2 most common

techniques in the literature used to identify notes with SDoH. Select-

ing a technique depends on the availability of an SDoH annotated

gold standard corpus. Researchers used a keyword matching-based

method if there was no gold standard corpus, followed by manual

evaluation of the matching algorithms’ performances. Researchers

used supervised techniques if a gold standard SDoH annotated data-

set was available. Furthermore, concepts identified using UMLS,

cTAKES or any dictionaries were used as features for identifying be-

havioral determinants. It can be observed that these terminology dic-

tionaries are more developed for behavioral determinants than

others.

Table 1. Tools used for SDoH identifications and the corresponding citations

NLP systems, terminologies, and

infrastructure

Task (citations)

cTAKES alcohol use status, tobacco cessation, diet and exercise,17 opioid misuse49

Moonstone NLP housing and social issues,9 lifestyle modification,17 lived alone, marginal housing, alcohol use, substance use51

ARC homelessness,16 adverse childhood experiences52

V3NLP homelessness,18,19 sexual trauma53,54

MediClass opioid related overdose,38,39 opioid use55

I2E social isolation56

UMLS lifestyle modification17

HITEx smoking status57,58

MTERMS homelessness, social support, and drug abuse59

MedTagger and MedTime smoking status60

VINCI MST8

VISA adverse childhood experiences52

CRIS-IE smoking61

TextHunter cannabis use,43 neighborhood characteristics, and physical violence62

Abbreviations: ARC, automated retrieval console; CRIS, clinical record interactive search; cTAKES, clinical Text Analysis and Knowledge Extraction System;

HITEx, health information text extraction; MST, military sexual trauma ; VISA, veterans indexed search for analytics; VINCI, VA Informatics and Computing In-

frastructure.
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Many studies used the NegEx and ConText algorithms to iden-

tify negations, experiences, and temporal status in the clinical notes

and reported improved accuracy.12,19,32,33,37,47,59,65 BRAT (https://

brat.nlplab.org) was used for annotating SDoH in clinical texts.52,66

Knowtator was also used for annotation in VA EHRs for annotating

homelessness,18 education, and employment.67 From the publica-

tions included in this study, we compiled all SDoH classes extracted

from EHR systems using NLP and summarized this information in

Table S3. We included papers with at least 1 SDoH category in our

study. We mentioned additional categories in the “Other” column

of Table S3. We collected a list of EHR data sources and associated

papers from the literature, and these are listed in Table 2. Many

experiments on SDoH identification were carried out on VHA pa-

tient populations in the United States and are mostly related to

homelessness and military sexual trauma.

Potential benefits may emerge in the healthcare delivery land-

scape from integrating SDoH extraction tools to EHR systems. In

clinical settings, providers report spending less time on patient care

and more time on administrative burdens that are byproducts of

data management in the EHR.86 Manual screening of SDoH could

potentially further complicate and delay the process for healthcare

staff. Furthermore, as SDoH categories grow in number and com-

plexity, storing SDoH in a structured framework could potentially

become inefficient and require frequent maintenance. In light of

these scenarios, we believe that the NLP-based SDoH identification

and the developed outcome analysis tools may offer an optimal solu-

tion that may minimize impact on current documentation routines

while guiding providers to make better, informed and holistic clini-

cal decisions.

SDoH outcome analysis
Many publications included in this survey focused on developing de-

cision/intervention systems for SDoH categories. The outcome anal-

ysis helps in the diagnosis, treatment, and clinical outcomes. We

Table 2. EHR data sources used for SDoH experiments. Here * represents different databases from the same source

Datasets Citations

100 synthetic data sets using Monte Carlo methods 68

Academic Health Center Information Exchange (AHC-IE), Academic Health Center (AHC) 22

Brigham and Women’s Hospital or Massachusetts General Hospital 57,58

Centre Clinical Record Interactive Search (CRIS) 62

Cerner Corporation, Kansas, MO 69,70

Child Health Department Netherlands 30

Columbia University Irving Medical Center (CUIMC), Columbia University Medical Center (CUMC) 32,33

Epic EHR systems* 17,71–73

Fairview Health System 22,48

four HMOs 74

Group Health, Washington State 11,55

Informatics for Integrating Biology and the Bedside (i2b2) smoking database 29,36,46,75,76

Kaiser Permanente* 4,38,39,77

Level I Trauma Center 78

Loyola University Medical Center 45

Marshfield Clinic’s Enterprise Data Warehouse (MC-EDW)* 34,79

Mayo Clinic 60

Medical University of South Carolina (MUSC) Research Data Warehouse 56

Midwestern academic medical center 80

MIMIC-II 24,25

MIMIC-III 42,81

Minnesota Disability Determination Services 37

MTSamples 35,66

Multilevel academic health care system 10

National Homeless Registry 40

Loyola University Medical Center 41

Partners Healthcare System 59

SLaM Case Register 61

South London and Maudsley (SLaM) Biomedical Research Centre (BRC) Case Register 43

State child welfare agencies 31

UK Clinical Record Interactive Search (UK-CRIS) 82

University of Pittsburgh Medical Center (UPMC) 66

University of Minnesota* 22,35,66

University of Vermont Medical Center (UVMMC) 35

University Hospital, University of Utah, Salt Lake City 25

University of Massachusetts Memorial Health Care 44

University of Utah Health Sciences Center 83

University of Washington (UW) and Harborview Medical Centers 42

Urban tertiary academic center 18 49

US academic health system 84

Vanderbilt HER, Vanderbilt Synthetic Derivative, Vanderbilt University Medical Center (VUMC) 12,63,76

VeteransHealthAdministration, VA’sCorporate Data Warehouse (CDW)* 8,9,16,18,19,21,26,27,40,52–54,65,68,85
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found 33 publications performed SDoH identification only and 49

publications performed outcome analyses in addition to SDoH iden-

tification. Table 3 describes relationships between SDoH and corre-

sponding health outcomes. Mental health (n¼12) is a notable

outcome that is associated with all SDoH categories except environ-

mental factors. Emergency hospitalization or readmission (n¼3)

was another major SDoH associated with several SDoH categories,

such as housing, financial issues, social connection/isolation or fam-

ily problems, and drug and alcohol abuse.

Limitations
The findings of this review should be understood within the context of

a few methodological limitations. First, the number of search results in

the ACL Anthology was higher compared to PubMed and Scopus;

however, the search resulted in many nonrelevant publications. Second,

we chose to include existing NLP systems, terminologies, and infra-

structures used for SDoH extraction, however a comprehensive study

is required to capture details of these facets, and future review would

benefit from further elaboration. Third, we did not include non-English

EHR systems, however, it will be interesting to see the SDoH extrac-

tion in these EHRs. Despite these limitations, this study presents a com-

pelling overview of the most recent and reliable NLP approaches that

can be applied to identify SDoH in EHR systems.

Future work
A number of future directions can be derived from this literature re-

view. Several studies were performed on identifying smoking, substance

abuse, housing, and alcohol status in the EHR systems using NLP tech-

niques. In the future, the NLP research community might focus on less-

studied SDoH such as child and sexual abuse, financial issues, transpor-

tation, neighborhood, social isolation, family problems, employment,

education, food insecurity, and healthcare access. Another interesting

study would be to compare different aspects of NLP algorithms, such

as system performance, amount of annotated data, type of NLP sys-

tems, and so forth with the difficulty of SDoH extraction.

Analyzing longitudinal aspects of the data may be helpful for de-

veloping outcome-based systems. Bejan et al12 analyzed longitudinal

data on homelessness and found that homelessness status changes

with time. Temporal information (temporal information [current

and past], amount/quantity/frequency, and type) extraction systems

were developed for alcohol abuse, smoking status, and substance

use/abuse.35,55 However, temporal extraction was rare in homeless-

ness (temporal)16 and employment (status, duration, history, and

type).42 Also, Lybarger et al42 identified the span of SDoH concepts

related to living status type, employment status, drug, alcohol, and

tobacco from clinical notes. Fewer experiments have identified the

span of SDoH keywords in clinical texts. Furthermore, relation ex-

traction/identifying relationships between medical concepts are se-

mantic tasks that have been popular among the NLP community.

Thus, developing comprehensive systems for 1) capturing longitudi-

nal information; 2) extracting temporal information; 3) extracting

SDoH concepts; and 4) extracting relations among SDoH concepts

will be valuable future goals in this area of interest.

Next, the implementation of DL in clinical text has increased in

the last decade, and DL-based NLP systems obtain better perform-

ances than other state-of-the-art NLP systems. Surprisingly, DL

algorithms were rare for identifying SDoH. This may be attributed

to insufficient amounts of annotated data whereas DL models neces-

sitate large volumes of annotated data. More experiments imple-

menting DL algorithms for SDoH identification and relation

extraction can be performed in future.

Table 3. SDoH classes and the corresponding healthcare outcomes

SDoH categories Outcome

Transportation Multiple social and behavioral factors,10 suicide21

Housing issues 30-day readmission,20 suicide,21 acute myocardial infarction (AMI), mental and behavioral

disorders and multiple SDOH,47 heart failure (HF), or pneumonia51

Environment (water/air quality) Food and drug allergies63

Employment Suicide,21 mental and behavioral disorders and multiple SDOH,47 post-deployment rehabilita-

tion (mild traumatic brain injury)67

Education Mental and behavioral disorders and multiple SDOH,47 postdeployment rehabilitation (mild

traumatic brain injury)67

Financial issues/income Multiple Social and Behavioral factors,10 30-day readmission,20 suicide,21 cost/financial con-

siderations84

Social connection/isolation or family problem Multiple social and behavioral factors,10 30-day readmission,20 mental and behavioral disor-

ders and multiple SDOH,47 dementia,50 cardiovascular diseases,59 geriatric syndrome87

Community safety Mental illness62

Food insecurity Multiple social and behavioral factors,10 mental and behavioral disorders and multiple

SDOH47

Child abuse/adverse childhood experiences Childhood abuse,12,69,70 suicide52

Sexual activity/abuse Suicide,21 sexual trauma54

Drug/substance abuse Chronic opioid therapy,11 suicide attempt and depression,38 hospitalization49

Alcohol abuse/use Multiple social and behavioral factors,10 suicide,26 myocardial infarction (AMI), heart failure

(HF), or pneumonia,51 mental health/social and behavioral factors,82 emergency

admission88

Cigarettes/smoking status Multiple social and behavioral factors,10 asthma or chronic obstructive pulmonary disease

(COPD),57 mood disorders (depression, anxiety, or bipolar disorder),58 smoking status,60

tobacco use/smoking,71,85 smoking behavior,75 smoking status (including vape, electronic

cigarette, pen),77 tobacco use status79

Diet & exercise dementia,50 weight management64

Clinical care (access to care/quality of care) Mental and behavioral disorders and multiple SDOH,47 breast cancer80
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Finally, NLP algorithms developed for SDoH extraction heavily

rely on structural and linguistic information available in the data.

Significant progress has been made in terms of enhancing portability

of NLP systems across clinical specialties. In the future, developing a

cross-site NLP algorithm will be helpful to delineate individual not-

ing styles of providers and to generalize NLP systems for SDoH.

CONCLUSION

This review presented a qualitative analysis of 82 publications fo-

cused on the extraction of SDoH concepts in EHR systems using

NLP techniques. With increasing recognition of nonclinical factors

that define patients’ health risks, needs, and outcomes, it becomes

equally imperative that social and behavioral concepts are captured

in order to be leveraged during clinical decision-making related to

diagnosis and therapy planning. Devising novel ways in which such

data can be extracted and leveraged with as little impact on current

documentation routines of providers is an ideal solution. With the

valuable knowledge of the relatively new literature in this area,

researchers can leverage such reviews to steer their study in innova-

tive ways.
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