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Abstract

Introducing a knowledge graph into a recommender system as auxiliary information can

effectively solve the sparse and cold start problems existing in traditional recommender sys-

tems. In recent years, many researchers have performed related work. A recommender sys-

tem with knowledge graph embedding learning characteristics can be combined with a

recommender system of the following three forms: one-by-one learning, joint learning, and

alternating learning. For current knowledge graph embedding, a deep learning framework

only has one embedding mode, which fails to excavate the potential information from the

knowledge graph thoroughly. To solve this problem, this paper proposes the Ripp-MKR

model, a multitask feature learning approach for knowledge graph enhanced recommenda-

tions with RippleNet, which combines joint learning and alternating learning of knowledge

graphs and recommender systems. Ripp-MKR is a deep end-to-end framework that utilizes

a knowledge graph embedding task to assist recommendation tasks. Similar to the MKR

model, in the Ripp-MKR model, two tasks are associated with cross and compress units,

which automatically share latent features and learn the high-order interactions among items

in recommender systems and entities in the knowledge graph. Additionally, the model bor-

rows ideas from RippleNet and combines the knowledge graph with the historical interaction

record of a user’s historically clicked items to represent the user’s characteristics. Through

extensive experiments on real-world datasets, we demonstrate that Ripp-MKR achieves

substantial gains over state-of-the-art baselines in movie, book, and music

recommendations.

1 Introduction

Recommender systems are known as the growth engine of the Internet. A better recommender

system model can facilitate users in efficiently obtaining high-interest information under the

circumstance of information overload, improve the user conversion rate of products, and
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achieve the purpose of continuous growth of a company’s business objectives. To improve the

accuracy of a recommender system, a large amount of side information is added to the model

of the recommender system to extract the hidden content of the information and to enhance

the association between users and projects. Side information can be understood as auxiliary

information, such as item attributes [1, 2], item reviews [3, 4], and users’ social networks [5, 6].

Because of its characteristics, a knowledge graph is more suitable for correlation mining

than causality mining. By deeply mining the deep relationships among projects, users, and

between projects and users from the knowledge graph, more relevant results can be obtained,

which is conducive to personalized recommendation for users, improving the diversity of rec-

ommendation results and maintaining a high recommendation accuracy.

The recommender model with knowledge graph as the edge information can mine the

information of knowledge graph and combine it with the existing user information and project

information to enhance the dimension of data and thus improve the accuracy of recommenda-

tion. Joint learning and alternating learning are two kinds of learning methods that combine

knowledge graph and recommender system, but each has its advantages and disadvantages.

For example, The RippleNet [7] model represents joint learning pays more attention to the

user-item interaction matrix while neglecting the knowledge graph’s structural information.

In RippleNet, the knowledge graph’s relational elements are weakly characterized because R’s

embedded matrix is challenging to be trained to capture the quadratic. MKR pays attention to

the knowledge graph’s structural information for alternating learning mode and uses a cross

and compression unit to connect the recommendation module and knowledge graph module

to carry out training in a multi-task way. However, it also ignores the critical information car-

ried by the project scoring matrix. Therefore, this paper combines the two training methods to

maximize knowledge graph information mining.

To obtain the potential information in a knowledge graph and maximize the information

content of a knowledge graph, we apply the Ripp-MKR model, which combines the preference

propagation idea of RippleNet with the cross-training idea of the MKR model. KG side infor-

mation is combined with the history of user interaction information to represent the user’s fea-

ture vector, and the KG is again used as side information with item one-hot embedding to

train the maximum digging KG of the hidden information. We are using the cross-compres-

sion unit’s idea in the MKR model, deeper mining of knowledge graph is carried out. The tail

vectors (item attribute information) in the knowledge graph are updated with this unit. The

user vector can be represented by the historical item attribute (the knowledge graph’s tail vec-

tor). The item vector can be represented by the head vector of the knowledge graph. This pro-

cess is iterated, and the user vectors and item vectors are updated at the same time.

The significant difference between Ripp-MKR and the existing literature is that Ripp-MKR

combines joint learning and alternating learning in two ways for the process of knowledge

graph feature learning applied to recommender systems: (1) The KGE methods are incorpo-

rated into recommendations by preference propagation to use the information and the prefer-

ence information to represent a user’s feature vector. (2) The knowledge graph and

recommendation algorithm’s feature learning is regarded as two separate but related tasks,

and the framework of multitask learning is used for alternating learning.

In summary, our contributions in this paper are as follows:

1. To the best of our knowledge, this is the first work to combine joint learning and alternating

learning methods in KG-aware recommendations.

2. We propose Ripp-MKR, a framework utilizing KGs to assist recommender systems. Ripp-

MKR automatically discovers users’ hierarchical potential interests by iteratively
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propagating users’ preferences in a KG, and the recommendation module and the KGE

module are bridged by a specially designed cross and compress units.

3. We conduct experiments on three real-world recommendation scenarios, and the results

prove the efficacy of Ripp-MKR over several state-of-the-art baselines.

We preserved the historical information of user interaction in the RippleNet model through

the above work, and we also preserved the knowledge graph structure mining in the MKR

model. The knowledge graph is fully mined in the Ripp-MKR model. Through the user’s his-

torical clicks and knowledge graph information, the user’s preferred item attribute set is

obtained, and the item attribute set is used to represent the user, According to the overlap

between items and entities in the knowledge graph, cross and compression unit is used for

multi-task training to ensure the maximization of knowledge graph structure mining. In our

proposed Ripp-MKR, under the condition that the amount of inherent information remains

unchanged, the prediction accuracy and recall rate can be maximized by adding less time and

space complexity.

2 Related work

Since the user set, item set, and user score matrix of a recommender system are highly inte-

grated and correlated with a knowledge graph, many scholars are keen to study knowledge

graphs as recommendation models for side information.

When side information is used to learn about item embedding, an item of the same brand

or category should be more similar. Recommendation algorithms can be divided into two cate-

gories according to data types: the first category is recommendation algorithms based on user

behavior data, also known as collaborative filtering. Collaborative filtering can be divided into

two categories: memory-based and model-based. A representative algorithm of memory-based

collaborative filtering includes UserCF, based on a user, and ItemCF, based on an item, and

their function is to directly calculate the similarities between user-user or item-item and

behavioral data. The representative algorithms of model-based collaborative filtering mainly

include some implicit variable models, such as SVD, matrix factorization (MF) [8, 9], the

PLSA theme model, and LDA [10]. These models use behavioral data to calculate the implicit

vectors of users and items and then calculate the matching degree between user-user or item-

item to make recommendations. In the second class of algorithms, the most common model is

the CTR model. The CTR model is essentially a binary classifier that commonly uses LR,

XgBoost [11], lightGBM [12], and other classifiers.

For the two types of models, different side information is used to improve the recommen-

dation’s accuracy. For the first type of algorithm, in addition to the behavioral data of users,

portrait data of users and objects can also be used, such as gender, age, region, label, classifica-

tion, title, and text. For the second type of algorithm, behavioral data and side information are

used to construct training samples’ characteristics and class criteria.

In addition to the attribute data mentioned above, other data structure information can

also be used as side information, including social networks [13], attributes [14], multimedia

(e.g., texts [15] and images [16]), and knowledge graphs (KGs).

Proposed in this paper, the recommender system based on knowledge graph as side infor-

mation, the structure of knowledge graph and content can be better integrated into the recom-

mender system in user-item interaction matrix. On the one hand, to build a knowledge graph

and use its internal structure and item attribute node to represents the item vectors, on the one

hand, the user vector is represented by the user’s history score combined with the knowledge

graph. Combines knowledge graph and recommender system because the topology of the
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knowledge graph and recommender system in the item attributes, user, and user rating matrix

can be the perfect fusion. Knowledge graphs, as side information based on traditional data

mining, are more likely to dig up its internal topology information.

2.1 Side information

To solve the sparse data and cold start problems of a recommender system, many recommen-

dation algorithms have been proposed, which utilize the profile information of users or items

(such as social network and item category) and have high effectiveness in improving the rec-

ommendation performance. In recent years, a recommender system not only uses the interac-

tive historical data of users and items but also adds considerable side information to estimate

users’ preferences.

Side information can be divided into two categories: structured data and nonstructured

data. Structured data can be divided into flat features, feature hierarchies, and knowledge

graphs. For nonstructured data, text features, image features, and video features are included.

The above data can be integrated into a recommender system through a unique deep learning

training model, which has also attracted the researchers’ attention. He and Xiangnan et al. [17]

modeled the implicit feedback information (interaction matrix) of user projects and improved

the traditional collaborative filtering model. The multilayer perceptron (MLP) is used to

model the user-project interaction matrix. Man, Tong et al. [18] proposed a cross-domain rec-

ommended embedded mapping framework called EMCDR. The proposed EMCDR frame-

work is different from the existing cross-domain recommendation model in two aspects. First,

embedding learning is realized by employing the implicit factor model in each domain to

learn the entities’ specific features in each domain. Second, a graphing technique is used to

supplement sparse data in different domains. Zheng et al. [19] proposed using two parallel

CNNs to process text information corresponding to comments at the user level and comments

at the project level to mine users’ behavioral characteristics and the attribute characteristics of

projects. The ConvMF model proposed by Kim et al. [20] also uses text information to alleviate

the scoring matrix’s sparsity by using text information as auxiliary edge information. The

Wide&Deep learning model proposed by Cheng et al. [21] uses the characteristics of users and

projects to improve recommendation accuracy. For the Ripp-MKR model presented in this

paper, KG is mainly used to fuse the recommender system’s side information.

2.2 KGE for RS

A recommender system refers to analyzing historical data to recommend products that users

are likely to like or buy, the core of which is the users and items. Furthermore, the key to rec-

ommender systems includes three parts: user preference, item features, and interactions.

The common approaches for embedding-based methods are divided into two steps. The

first step is to embed all entities and relationships with knowledge graph embedding (KGE)

technology, such as TransE [22], TransR [23], TransH [24], and other Trans series algorithms.

The second step is to fuse the entity and relationship embedded vectors with item-user interac-

tions and then model the knowledge graph.

For instance, Zhang et al. proposed CKE [25], which unifies various side information types

in the CF framework. They fed an item’s structural knowledge (items attributes represented

with a knowledge graph) and content (textual and visual) knowledge into a knowledge base

embedding module. First, they adopted TransR to calculate the embedding knowledge graph,

and each entity embedding was extracted as the structural vector of the item. Then, the SDAE

model was adopted to obtain the descriptive text of the items. Finally, the SCAE model was

adopted to obtain the visual embedding of the item-related images. Therefore, an item
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representation vector is the sum of the original vector and the new information vector from

the three aspects. However, CKE does not utilize the relationship information among entities

in a knowledge map, and user embedding has not been updated. Even though the additional

information is multifaceted, adding a layer of weight could be beneficial.

Wang et al. proposed DKN [26] for news recommendations. It models the news by combin-

ing the textual embedding of sentences learned with Kim’s CNN [27] and the knowledge-level

embedding of news content entities via TransD. DKN introduces a knowledge graph to mea-

sure user preferences based on the user’s past interactions. However, only one hop is selected

as the analysis of context information, and the relational information in the map is not

involved at all.

The other type of embedding-based method directly builds a user-item graph, where users,

items, and their related attributes function as nodes. Zhang et al. proposed CFKG [28], which

constructs a user-item KG. User behaviors (purchases and mentions) are regarded as one rela-

tion type among entities in this user-item graph. Multiple types of item side information

(review, brand, category, bought together, etc.) are included. Wang et al. proposed SHINE

[29], which takes the celebrity recommendation task as the sentiment link prediction task

among entities in a graph. Besides, this model uses social networks, personal data information,

and sentiment networks as side information. Dadoun et al. proposed DKFM for POI recom-

mendations. DKFM [30] applies TransE over a city KG to enrich the representation of a

destination.

Yang et al. introduced a GAN-based model, KTGAN [31], for movie recommendations. In

the first phase, KTGAN learns the knowledge embedding for movies by incorporating the

Metapath2Vec model [32] with a movie’s KG and tag embedding with the Word2Vec model

[33] on a movie’s attributes. Later, Ye et al. proposed BEM [34], which uses two types of graphs

for items, the knowledge-related graph (containing item attribute information, such as brand

and category) and behavior graph (containing item interaction-related information, including

cobuy, corate, and coadd to cart) for recommended. In Hongwei Wang’s paper on MKR [35]

(multitask feature learning for knowledge graph enhanced recommendations), the main idea

is that there is overlap among items in a recommender system and entities in a knowledge

graph, multitask learning frameworks, two separate but related tasks, and alternating learning.

MKR’s model framework includes recommender systems tasks and knowledge graph feature

learning tasks. The recommended inputs are characteristic representations of users and items,

and the estimated click-through rate is the output. In the feature learning part of the knowl-

edge graph, the head node and relation of triples are used as input, and the predicted tail node

is used as output. The MKR model applies a pattern of alternating training between the knowl-

edge graph and recommender systems.

Path-based methods are primarily based on the inherent correlation structure of knowledge

graphs, and the recommended pattern, namely, "metapath ", is defined artificially in advance.

For example, in a movie recommendation task, a metapath can be defined as a "user-item-

actor-item" or "user-item-director-item" and then modeled on the metapath.

Xiao Yu, Xiang Ren, Ycursed Sun, et al. proposed the PER [36] model published in 2014. In

this paper, the concept of a metapath was proposed. Based on each type’s predefined paths, the

authors extracted all paths that fit the definition of the metapath for each pair of user items

and designed an evaluation function to measure the possibility of user-item interaction. Then,

the classic MF algorithm is used to model and solve for the user and item vectors. Similar to

PER, Huan Zhao et al. [37] designed metapaths for Yelp and Amazon datasets and obtained L

evaluation functions. However, the FM model is adopted in the modeling, and the FM-group

lasso is used for further optimization. Sun et al. proposed a recurrent knowledge graph embed-

ding (RKGE) approach that mines the path relation between a user and an item automatically,
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without manually defining metapaths. Wang et al. proposed a knowledge-aware path recurrent

network (KPRN) [38] solution. KPRN constructs the extracted path sequence with both the

entity embedding and the relation embedding.

For unified methods, the RippleNet model is the leading representative and the basis for

improving this article. RippleNet proposed that users’ preferences spread like waves on the

knowledge graph, which is also known as one-hop, two-hop, etc. For an embedding knowledge

graph, user embedding is realized through a hop communication of an item that has interfaced

with the user. In other words, starting from an item entity with historical interactions, embed-

ding is diffused into three layers, and an entity embedding weighted sum is realized at each

layer. Finally, an embedding of the three layers is added.

3 Formulation

We formulate the knowledge graph enhanced recommendation problem in this paper as fol-

lows. The recommender systems mainly include user set U and item set V. The user set can be

represented as U = {u1, u2. . ...un}. Similarly, the sets of items can be expressed as V = {v1,

v2. . ...vm}. The user-item interaction matrix composed of n users and m items can be expressed

as Y2Rm×n, where yuv2Y = 1 indicates user u engaged with item v; otherwise, yuv2Y = 0. The

knowledge graph G is generally represented by triples (h,r,t). Here, h2E, r2R, and t2E denote

the head, relation, and tail of a knowledge triple. E and R denote the set of entities and relations

in the KG. For example, the triple (Jack Chan, actor, Rush hour) means Jackie Chan and Rush

Hour are two entities, and film.actor.film is the relationship between the two entities. Thus, it

is easy to find multiple KG triples between entities associated with the knowledge graph during

the recommendation process. The relationship structure between the knowledge graph and

the recommender system is shown in Fig 1. The notations we will use throughout the article

are summarized in Table 1.

Given user-item interaction matrix Y as well as knowledge graph G, we aim to predict

whether user u has a potential interest in item v with which he has had no interaction before.

Our goal is to learn a prediction function ŷuv ¼ Fðu; v; YÞ where ŷuv denotes the probability

that user u will click item v, and Θ represents the model parameters of function F.

4 RIPP-MKR model

In this section, the main structure of the Ripp-MKR model is introduced. The mathematical

representation of related terms in the knowledge graph and recommender system presents the

representation of user feature vectors and the interaction between multitask units.

4.1 Framework

The framework of the Ripp-MKR model is shown in Fig 2. The framework can be divided into

a recommendation module, KGE module, and cross and compress units framework.

As shown in Fig 2, the tail vectors are predicted by the knowledge graph’s head vectors and

the relation vectors (represented by the blue module). The tail vectors represent the attribute

values of the item. According to users’ historical interaction information, perform ripple prop-

agation gets user preferences for item’s attributes, aggregate these tail vectors, and form a pre-

liminary user vector representation (green module representation). Through ripple

propagation in different hops, multiple user vector representations can be obtained and

merged to form the final user vector (the rightmost part of the figure). During this period, the

cross-training of item vectors (the leftmost part of the figure) and head vectors in the knowl-

edge graph is performed through the cross-compression unit, and the knowledge graph and

the recommender system are merged again to iterate the above process. On the one hand, the
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user vector is represented by the knowledge graph and the user’s historical interaction infor-

mation. Then cross-training is performed by combining the head vector of the knowledge

graph with the item vector in the recommender system. Converged by the loss function, and

the final vector representation is obtained and recommended.

The KGE module uses multiple layers to extract features from the head and relation of a

knowledge triple. The predicted tail characteristics can be output under the control of the loss

function. In this paper’s model, the training of the KGE module is similar to that of the MKR

model, while for the recommended module, the training is improved based on the MKR

model. In the MKR model, the feature learning of users and items is extracted through multi-

ple layers. In the Ripp-MKR model, the idea of RippleNet is utilized to obtain users’ interest

propagation lists through the historical interaction information between users and items. In

this process, the knowledge graph’s t vector is combined to express users’ feature vectors

instead of the one-hot method. The cross and compress units are another bridge between the

KGE module and the recommendation module; they can automatically learn the high-order

feature interactions of items in recommender systems and entities in the KG.

4.2 Cross and compress unit

The method of the MKR model combining the KG model and RS model has been described

previously. For the Ripp-MKR model, the cross and compress units are represented by a red

rectangle in Fig 2, which will be described in this section. The cross and compress unit gener-

ates a cross feature matrix from item and entity vectors by cross operation, and outputs their

vectors for the next layer by compress operation.

Fig 1. The relationship structure between the knowledge graph and recommender system.

https://doi.org/10.1371/journal.pone.0251162.g001
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The cross and compress units are shown in Fig 3. This unit is the link module between item

v and one of its associated entities e. For the latent feature of latent feature vl2Rd and the latent

feature of latent feature el2Rd, we construct Cl, representing the cross feature matrix of layer L.

vðiÞl e
ðjÞ
l is the possible feature interaction between item v and its associated entity e is modeled

explicitly in the cross feature matrix of layer L.

Cl ¼ vle
T
l ¼

vð1Þl eð1Þl � � � vð1Þl eðdÞl

..

. ..
.

vðdÞl eð1Þl . . . vðdÞl eðdÞl

2

6
6
6
4

3

7
7
7
5

ð1Þ

Table 1. Notations and explanations.

Notations Descriptions

U user set

V item set

ui user i

vj item j

ui2Rd raw feature of user i

vj2Rd raw feature of item j

ul latent feature of user u

vl latent feature of item v

Vu User u’s interaction history set

Y2Rm×n user-item interaction matrix composed of n users and m items

yuv2Y implicit feedback from user u to item v

ŷ uv Prediction function the probability that user u will click item v

G Knowledge graph

E Entity set of knowledge graph

R Relation set of knowledge graph

h2E Head vector

r2R Relation vector

t2E Tail vector

t̂ The predicted vector of tail t

Cl2Rd×d Cross feature matrix of layer L

CL The cross and compress unit which have L layers

el2Rd latent feature of entity e
[e] The entity e obtained by Cross and Compress Unit

[v] The item v obtained by Cross and Compress Unit

vðiÞl eðjÞl Possible feature interaction between item v and its associated entity e is modeled explicitly in the cross

feature matrix of layer L.

wï2Rd trainable weight

bi2Rd bias vectors

S(h) The associated items of entity h

S(v) The associated items of item v

MK A fully connected neural network with K layer

fKG() Score (similarity) function for KG

Ek
u

The set of k-hop relevant entities for user u

Sku The set of knowledge triples that are k-hop(s) away from seed set Vu.

Pi relevance probabilities

https://doi.org/10.1371/journal.pone.0251162.t001
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Eq 1 describes the cross operation in cross and compress units. In cross and compress

units, there are compress operations in addition to cross operations. The feature vectors of

items and entities for the next layer are output by projecting the cross feature matrix into the

latent representation spaces, as shown in Eq 2.

vlþ1 ¼ Clw
VV
l þ CT

l w
EV
l þ bV

l

elþ1 ¼ Clw
EV
l þ CT

l w
EE
l þ bE

l ð2Þ

where wï2Rd and bi2Rd are trainable weight and bias vectors. The cross and compress unit

can be denoted as the formula:

½vlþ1; elþ1� ¼ Cðvl; elÞ ð3Þ

We use a suffix [v] or [e] to distinguish its two outputs in this paper’s following. Through

cross and compress units, Ripp-MKR can adaptively adjust the weights of knowledge transfer

and learn the relevance between the two tasks.

Fig 2. The framework of Ripp-MKR.

https://doi.org/10.1371/journal.pone.0251162.g002
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Fig 3. The framework of cross and compress units.

https://doi.org/10.1371/journal.pone.0251162.g003
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4.3 KGE modul

The purpose of knowledge graph embedding is to represent the entities and relationships as

vectors and map the KG triples to low-dimensional space under the supervision of functions

while preserving their structure. In the recommendation model design process, a knowledge

graph is often used as side information because a triple of the knowledge graph has a high cor-

relation with the items and users of the recommender system. When using a KG as side infor-

mation for the recommender system, item attribute characteristics can be represented as

triples of the knowledge graph.

In the KGE module of Ripp-MKR, a head vector and a relation vector are taken as inputs.

The head and relation features are extracted using the multilayer perceptron (MLP) and cross

and compress units, respectively. The head embedding of the KG triple corresponds to the

item ID in the recommender system. The relation embedding corresponds to the item attri-

bute, and the tail embedding corresponds to the specific item attribute value. The process of

obtaining a k-layer MLP for predicting tail t is as Eq 4:

hL ¼ Ev�SðhÞ½C
Lðv; hÞ½e��

rL ¼ MðMðMð� � �MðrÞÞÞÞ ¼ MLðrÞ

t̂ ¼ MK
hL

rL

" # !

ð4Þ

S(h) stands for the association set of h in the knowledge graph, v stands for the item ID cor-

responding to h in the recommender system’s data, and CL is the cross and compress unit. M

(x) = σ(Wx+b) is a fully connected neural network layer with weight W, bias b, and nonlinear

activation function σ(�). For simplicity, we use the exponent L in Eq (4) and the following

equation throughout the rest of this paper but note that the L layer parameters are different.

MK is a fully connected neural network with K layer. And t̂ is the predicted vector of tail t. hL
and rL are respectively latent features of h and r. Finally, the score of triple (h, r, t) is calculated

using a score (similarity) function fKG.

scoreðh; r; tÞ ¼ fKGðt; t̂Þ ð5Þ

In this model, fKG is defined in the form of the inner product using the same treatment as in

the MKR model:

fKGðt; t̂Þ ¼ sðt
>; t̂Þ ð6Þ

4.4 Recommendation modul

The Ripp-MKR model of the KGE module part is consistent with the conventional MKR

model, and no great innovation has been made In contrast, the recommendation module is

the main innovation and improvement of this paper. Among the models that take knowledge

graphs as side information, knowledge graphs are mainly carried out in two ways: joint train-

ing or alternating training. The Ripp-MKR model integrates these two methods, which is

bound to improve the mining degree of latent information of the knowledge graph.

The input of the recommendation module in MKR consists of two primary feature vectors,

u and v, that describe user u and item v. In the input process, a one-hot method is used to

encode the user and the item by transferring the V vector and the E vector of the KGE model
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to the cross and compress unit and the recommender system’s deep fusion, and the knowledge

graph is completed.

The Ripp-MKR model proposed in this paper combines the knowledge graph processing

method of the RippleNet model with the knowledge graph processing method of the MKR

model. The RippleNet model uses t vectors combined with the user’s interaction history and

the items and represents the user’s vectors through the t vector set of the knowledge graph. As

an improvement point, the ripple propagation idea of RippleNet is applied to the user repre-

sentation method of the recommendation module in the MKR model to eliminate the original

one-hot coding.

The Ripp-MKR model uses user U’s interaction history Vu and item V as input in the rec-

ommendation module, t. Start with the item of user U’s history click as the seed collection

(using these items as the user’s existing preference information). The following logic exists:

Vu � V ð7Þ

Therefore, any member of Vu must be a member of V. Therefore, Vu is a subset of V. In a

KG, each item has its corresponding triplet (item, attribute, and attribute value), so the user’s

item interaction history set can be changed into the set of corresponding attribute values,

which correspond to the t vector in the knowledge graph.

For the input user u, the historical set of interests Vu is treated as seeds in the KG and then

extended along links to form a set of k-hop relevant entities for user u Ek
uðk ¼ 1; 2; . . . ;HÞ.

The relational entity of user U can be defined as:

Ek
u ¼ ftjðh; r; tÞ 2 G and h 2 Ek� 1

u g;

k ¼ 1; 2; � � � ;H ð8Þ

When the value of k is 0, the value of Ek
u is the collection of historical interaction items of

user U, which can be seen as the seed set of user u in the KG.

The k-hop ripple set for user U is defined as a related triplet with k−1 relevant entities as

heads. Sku is the set of knowledge triples that are k-hop(s) away from seed set Vu. Consistent

with the RippleNet model, we can define the ripple set as:

Sku ¼ fðh; r; tÞjðh; r; tÞ 2 G and h 2 Ek� 1

u g;

k ¼ 1; 2; � � � ;H ð9Þ

Through this recursive form, ripple simulation is carried out; water wave transmission is

carried out in the knowledge graph. The transferred entity sequence is composed of the set of

knowledge graphs, and the corresponding user vector representation is completed. To avoid

the ripple set being too large, a maximum length is usually set as a cutoff. On the other hand,

the constructed knowledge graph is a directed graph that considers only the degree of the

point’s output.

As shown in Fig 2, user embedding is realized by adding vectors represented by the green

rectangle in the figure. The vector represented by the first green rectangle needs to use the rip-

ple set of 1-hop (the first item set that extends outward in the KG). Given the item embedding

v and the 1-hop ripple set S1u of user u, each triple(hi, ri, ti) in S1u is assigned a relevance proba-

bility pi by comparing item v to the hi and ri in this triple. The relevance probabilities are as
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follows:

pi ¼ softmaxðvTRihiÞ

¼
expðvTRihiÞP

ðh;r;tÞ2S1u
expðvTRihiÞ

ð10Þ

Finally, the embedding vector represented by the first green rectangle is weighted for all

corresponding t, S1

u is the set of knowledge triples that are 1-hop(s) away from seed set Vu, o1
u

means the result of the user interest after the 1-hop:

o1

u ¼
P
ðhiri ;tiÞ2S1

u
piti ð11Þ

The procedure can be performed iteratively on user u’s ripple sets Siu for i = 1,. . .,H and the

result of user embedding u is:

u ¼ o1

u þ o2

u þ � � � þ oHu ð12Þ

Given user u’s raw feature vector u, we use an L-layer MLP to extract the feature of user u,

MK is a fully connected neural network with K layer:

UL ¼ M
LðuÞ ð13Þ

For item v, we use L cross and compress units to extract its latent feature:

VL ¼ Ee�SðvÞ½C
Lðv; eÞ½v�� ð14Þ

where S(v) is the set of associated entities of item v. After acquiring the latent feature of user u

and item v, the final predicted probability of user u engaging with item v can be obtained

through the prediction function:

ŷuv ¼ sðU
T
L VLÞ ð15Þ

We can obtain the final representation by formulas (7)~(12):

ŷuv ¼ s ML
XH

n¼1

X

ðhiri ;tiÞ2Snu

expðvTRihiÞtiP
ðh;r;tÞ2S1

u
expðvTRihiÞ

 !T

;VL

 !

ð16Þ

where s xð Þ ¼ 1

1þexpð� xÞ is the sigmoid function.

5 Learning algorithm

The complete loss function of Ripp-MKR is as follows:

L ¼ LRS þ LKG þ LREG ð17Þ

The loss of Ripp-MKR consists of three parts, namely, the loss of the recommendation

module, the loss function of the KGE module and the regularization term for preventing over-

fitting.

LRS ¼
X

u2U;v2V

Fðŷuv; yuvÞ

LRS ¼
P

u2U;v2V � ðyuvlogsðu
TvÞ þ ð1 � yuvÞlogð1 � sðu

TvÞÞÞ ð18Þ
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For the loss in the recommendation module, u and v represent the sets of users, and items

F are the cross-entropy function. σ is the sigmoid function.

LKG ¼ l1ð
P
ðh0;r;t0Þ=2Gscoreðh

0; r; t0Þ �
P
ðh;r;tÞ2Gscoreðh; r; tÞÞ ð19Þ

For the loss in the KGE module, the main method of convergence is to increase the score

for all true triples, while reducing the score for all false triples. λ1 is the balancing parameter

for the KGE module.

LREG ¼ l2kwk
2

2
þ
l3

2
kVk2

2
þ kEk2

2
þ
P

r2RkRk
2

2

� �
ð20Þ

LREG is the regularization term. It consists mainly of two parts, λ2 and λ3, which are the bal-

ancing parameters. Now the learning algorithm for Ripp-MKR is introduced. The Learning

algorithm for Ripp-MKR is shown as Table 2.

6 Experiments

This section will evaluate the Ripp-MKR model based on three realistic scenarios: movies,

books, and music recommendations. This chapter introduces the data set, baseline, and experi-

mental parameter settings. Then, the experimental results and the analysis of the results are

presented.

6.1 Dataset

The data set used in this article is shown below.

a. MovieLens-1M [39] is a commonly used recommender system dataset that mainly includes

user data, movie data, and rating data, which consists of approximately 1 million explicit

ratings (ranging from 1 to 5) on the MovieLens website. The knowledge graph section data-

set contains the movie’s attributes and tags.

b. Book-Crossing [40] dataset contains 1,149,780 explicit ratings (ranging from 0 to 10) of

books in the Book-Crossing community. The dataset contains binary feedback between

Table 2. Learning algorithm for Ripp-MKR.

Algorithm 1 Learning algorithm for Ripp-MKR

Input: Interaction matrix Y, knowledge graph G

Output: Prediction function F (u,v|Θ, Y, G)

1: Initialize all parameters

2: Calculate the ripple sets for each user u on Eqs (7)–(9)

3: For number of training iterations do: /Recommendation task

4: For t steps do:

5: Sample minibatch of positive and negative interactions from Y;

6: Sample e* S(v) for each item v in the minibatch

7: Calculate the gradients on the minibatch by back propagation according to Eqs (1)–(4) and Eqs (10)–(16)

8: End for

9: Sample the minibatch of true and false triples from G
10: Sample v* S(h) for each head h in the minibatch;

11: Update the parameters of F by gradient descent on Eqs (1)–(4), (17)–(20);

12: End for

https://doi.org/10.1371/journal.pone.0251162.t002
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users and books, and the KG for each dataset is built by mapping books to the correspond-

ing entities in Satori, DBpedia, or Freebase.

c. Last.FM [41] is the most popular dataset for music recommendation. The dataset comprises

information about users and their music listening records from the Last.FM online music

system.

Because MovieLens-1M and Book-Crossing contain explicit feedback data, we convert

their data to implicit feedback data; each item that is marked as 1 indicates that the user has

rated the item (the threshold of rating is 4 for MovieLens-1M, while no threshold is set for

Book-Crossing due to its sparsity), and each sample looked at by each user has a UN tag set to

0, this is a rating of the same size. An unwatched set is sampled for each user; each sample is

marked as 0 and is of the same size as the watched set.

A similar approach is used for the experimental process of the RippleNet model. We use

Microsoft Satori to construct the knowledge graph for each dataset. For MovieLens-1M and

Book-Crossing, we first select a subset of triples from the whole KG whose relation name con-

tains "movie" or "book" and whose confidence level is more significant than 0.9. Given the sub-

KG, we collect the IDs of all valid movies/books by matching their names with the tail of the

triples (head, film.film.name, tail) or (head, book.book.title, tail). For simplicity, items with no

matched or multiple matched entities are excluded. We then match the IDs with the head and

tail of all KG triples, select all well-matched triples from the sub-KG, and extend the set of enti-

ties iteratively up to four hops. The basic statistics settings for the three datasets is shown as

Table 3.

6.2 Baseline

To demonstrate the reliability of our algorithms, we use other models that incorporated

knowledge graph techniques as a baseline. These models and the Ripp-MKR model proposed

in this paper jointly use the same dataset to conduct experimental verification in the sense of

the AUC value and ACC value of the model.

MKR [35]: This model is the basis of the Ripp-MKR model proposed in this paper. We set

the number of high-level layers to K = 1, fRS is the inner product, and λ2 = 10−6, L =1, d = 8

and λ1 = 0.5. In this model, all attributes are added to the KGE unit, training is conducted in

the knowledge graph unit, and only project-user rating is used as the training input in the RS

unit. λ1 is the weight of L1 regularization and λ2 is the weight of L2 regularization. L is the num-

ber of low layers.

PER [36]: PER treats the KG as a heterogeneous information network and extracts meta-

path-based features to represent the connectivity between users and items. In this paper, we

use manually designed user-item-attribute-item paths as features.

DKN [26]: DKN makes use of entity embedding and word embedding as multiple channels

and combines them in a CNN for CTR prediction. In this paper, we use movie names as the

textual input for DKN. The dimension of word embedding and entity embedding is 64, and

the number of filters is 128 for window sizes 1, 2, and 3. Although DKN is an in-depth

Table 3. Basic statistics settings for the three datasets.

Dataset users items interactions KG triples

MovieLens-1M 6,036 2,347 753772 20195

Book-Crossing 17860 14910 139746 19793

Last.FM 1872 3846 42346 15518

https://doi.org/10.1371/journal.pone.0251162.t003
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recommendation model designed for news, it represents the combination of knowledge graph

and recommendation system.

Wide&Deep [21]: This is a deep recommendation model that combines a (wide) linear

channel with a (deep) nonlinear channel. We concatenate the raw features of users and items

as well as the corresponding averaged entity embeddings learned from TransR as input. The

dimensions of the user, item, and entity are 64, and we use a two-layer deep channel with

dimensions of 100 and 50 as well as a wide channel.

RippleNet [7]: This model is the basis of the Ripp-MKR model proposed in this paper. The

parameters we set for the dataset MovieLens-1M are as follows: d = 16, H = 2, λ1 = 10−7, λ2 =

0.01, and η = 0.02. The parameters we set for the dataset are as follows: d = 4, H = 3, λ1 = 10−5,

λ2 = 0.01, and η = 0.001. The hyperparameter settings for Last.FM are d = 8, H = 2, λ1 = 10−6,

λ2 = 0.01, and η = 0.02. λ1 is the weight of L1 regularization and λ2 is the weight of L2 regulari-

zation. H is the maximum hops.

6.3 Experiments setup

In Ripp-MKR, we set the number of high-level layers to K = 1, fRS is the inner product, and

λ2 = 10−6 for all three datasets, and other hyperparameters are given in Table 4. The settings of

the hyperparameters are determined by optimizing the AUC on a validation set. For each data-

set, the ratio of the training, validation, and test sets is 6:2:2. Each experiment is repeated three

times, and the average performance is reported. We evaluate our method in two experimental

scenarios: (1) In click-through rate (CTR) prediction, we apply the trained model to each piece

of interaction in the test set and output the predicted click probability. We use the AUC and

accuracy to evaluate the performance of CTR prediction. (2) In the top-K recommendation,

we use the trained model to select K items with the highest predicted click probability for each

user in the test set and choose Precision@K and Recall@K to evaluate the recommended sets.

6.4 Result

Figs 4 and 5 and Table 5 show the experimental comparison results of the Ripp-MKR model

and other baseline models on three different datasets. Evaluation indexes such as the AUC,

ACC, Precision@K, and Recall@K were demonstrated. Table 5 shows the results of the AUC

and accuracy in CTR prediction.

As shown in Table 5, PER performs poorly on movie, book, and music recommendations

because user-defined metapaths can hardly be optimal in reality. Moreover, because the text

length in the data set is relatively short, the DKN model results are also unsatisfactory on these

three data sets. This is because the DKN model is a recommender model involved in news rec-

ommendations. It mainly processes news titles with knowledge graph and conducts sequential

training, so it has strong pertinence and limitations, leading to unsatisfactory recommendation

results The performance of the Wide&Deep model is not as good as those of the MKR model

and the RippleNet model because this model only splices attributes and does not integrate

semantic analysis into training as side information like the other two models. For the Ripple-

Net and MKR models, the results are excellent. However, compared with the Ripp-MKR

model, there are still some deficiencies. The main reason is that the Ripp-MKR model is the

Table 4. Basic statistics settings for the three datasets.

MovieLens-1M d = 16, L = 1, H = 2, batch_size = 1024, λ1 = 10−6, λ2 = 0.01, λ3 = 10−8, hop = 2

Book-Crossing d = 8, L = 1, H = 1, batch_size = 16, λ1 = 10−6, λ2 = 10−5, λ3 = 10−7, hop = 2

Last.FM d = 4, L = 2, H = 2, batch_size = 256, λ1 = 10−6, λ2 = 0.01, λ3 = 10−7, hop = 2

https://doi.org/10.1371/journal.pone.0251162.t004
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fusion of the RippleNet and MKR models, which makes up for the deficiencies in the architec-

ture of these two models. We can reduce the RippleNet model’s sensitivity to the degree of

data sparseness by incorporating the idea of compress units. With the concept of ripple propa-

gation, the MKR model can dig deeper into the connections between items and improve the

logic of the knowledge map structure. In general, our Ripp-MKR performs best among all

methods on the three datasets.

Ripple-MKR also achieves outstanding performance in the top-K recommendation, as

shown in Figs 4 and 5.

The size of the ripple set in each hop is discussed next. We vary the size of a user’s ripple set

in each hop to further investigate RippleNet and Ripp-MKR’s robustness. The AUC results for

the two datasets are presented in Table 6.

The Ripp-MKR model has the same sensitivity to the ripple set’s size as the RippleNet

model, and the accuracy increases with increasing set size. With the increase in the ripple set’s

size, the performance of Ripp-MKR is improved at first because a more extensive ripple set

can encode more knowledge from the KG.

We vary the ratio of the training set of MovieLens-1M from 100% to 20% (while the valida-

tion and test set remain fixed) and report the results of the AUC in CTR prediction for all

Fig 4. The results of Precision@K in the top-K recommendation.

https://doi.org/10.1371/journal.pone.0251162.g004

Fig 5. The results of Recall@K in the top-K recommendation.

https://doi.org/10.1371/journal.pone.0251162.g005

PLOS ONE Ripp-MKR model

PLOS ONE | https://doi.org/10.1371/journal.pone.0251162 May 14, 2021 17 / 21

https://doi.org/10.1371/journal.pone.0251162.g004
https://doi.org/10.1371/journal.pone.0251162.g005
https://doi.org/10.1371/journal.pone.0251162


methods. The results are shown in Table 7. We observe that the performance of all methods

deteriorates with a reduction in the training set. The results show that in less training data, the

algorithm proposed in this paper is still superior to other models.

7 Conclusion and future work

This paper proposes Ripp-MKR, an end-to-end framework that naturally incorporates knowl-

edge graphs into recommender systems by combining joint training with alternating training.

Combined with the MKR model and the RippleNet model’s main ideas, the cross and com-

press unit of MKR is retained, and the ripples propagation idea is used to represent users’

features.

Ripp-MKR overcomes the limitations of the existing embedding-based and path-based

KG-aware recommendation methods by introducing preference propagation, which automati-

cally propagates users’ potential preferences and explores their hierarchical interests in the

KG. The embedding operation of the MKR model for users is disabled and realized through

the process of ripple propagation.

We conduct extensive experiments in three recommendation scenarios. The results demon-

strate the significant superiority of Ripp-MKR over strong baselines. For future work, we plan

to (1) integrate knowledge graph training methods and (2) design a model to better explore

users’ potential interests and improve the performance of the knowledge graph.

Table 5. The results of the AUC and accuracy in CTR prediction.

MODEL MovieLens-1M Book-Crossing Lat.FM

AUC ACC AUC ACC AUC ACC
PER 0.710 0.664 0.623 0.588 0.633 0.596

DKN 0.655 0.589 0.622 0.598 0.602 0.581

Wide&Deep 0.898 0.820 0.712 0.624 0.756 0.688

MKR 0.917 0.843 0.734 0.704 0.797 0.752

RippleNet 0.920 0.842 0.729 0.062 0.768 0.691

Ripp-MKR 0.922 0.845 0.740 0.712 0.799 0.756

https://doi.org/10.1371/journal.pone.0251162.t005

Table 6. The results of the AUC w.r.t. different sizes of a user’s ripple set.

MODEL 2 4 8 16 32

Ripp-MKR RippleNet Ripp-MKR RippleNet Ripp-MKR RippleNet Ripp-MKR RippleNet Ripp-MKR RippleNet

MovieLens-1M 0.9030 0.9030 0.910 0.908 0.916 0.911 0.917 0.918 0.922 0.920

Book-Crossing 0.7236 0.659 0.728 0.696 0.730 0.708 0.733 0.726 0.740 0.729

https://doi.org/10.1371/journal.pone.0251162.t006

Table 7. Results of the AUC on MovieLens-1M in CTR prediction with different ratios of training set r.

MODEL 20% 40% 60% 80% 100%

PER 0.607 0.638 0.663 0.688 0.710

DKN 0.582 0.601 0.620 0.638 0.655

Wide&Deep 0.802 0.815 0.840 0.876 0.898

MKR 0.874 0.882 0.897 0.908 0.917

RippleNet 0.851 0.862 0.878 0.901 0.920

Ripp-MKR 0.881 0.887 0.898 0.910 0.922

https://doi.org/10.1371/journal.pone.0251162.t007
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