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ABSTRACT
Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, 

we summarize cellular and molecular mechanisms of OM ulceration in response 
to chemical therapies in animal models. We discuss evidenced anti-inflammatory 
and anti-oxidant drugs which have not been ever used for OM, such as synthetic 
peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, 
mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic 
electrospun. These approaches have been promising to allow the production of drug-
loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration. 

INTRODUCTION

Mucositis refers to lesions caused along the 
gastrointestinal tract by antineoplastic agents while 
stomatitis includes a broad range of inflammatory 
conditions in the oral cavity only [1]. Despite differences 
between these terms, some researchers interchange 
their use when refers to OM, which is one of the most 
symptomatic and troublesome side effects of antineoplastic 
treatment [2]. The first clinical symptom of OM usually 
appears after one week of combined radio-chemotherapy 
as a reddish erythema of the oral mucosa, which evolves 
lately into ulcerations. In its severe form, OM results in 
deep and diffuse ulcerations causing pain and, possibly, 
loss of function [2]. 

Prolonged ulcerations along the cumulative doses 
of radio-chemotherapy causes: impairment in food 
intake; increased need for hospitalization, opioid use and 
feeding tube or parenteral nutrition; delays in treatment; 
risk factor for sepsis; and decreased quality of life along 
treatment [1, 3]. In addition to inflammation and formation 
of ulcerations in the oral mucosa, chemicals often cause 

side effects such as bone marrow suppression, renal, liver, 
cardiac muscle cells and intestinal toxicity. Upon injury, 
molecular mediators stimulate transcription factors that 
regulate the expression of pro-inflammatory cytokines that 
activate resident cells, local vascular cells and immune 
system cells in the site of injury [4–6]. Consequently, 
clinical symptoms including swelling, heat, redness, pain 
and loss of function may occur. 

OM has five distinct cytopathological phases 
considering the model developed by Sonis [2, 7] 1st, 
initiation; 2nd, damage response; 3rd, signaling and 
amplification; 4th, ulceration; and 5th, re-epithelialization. 
These phases were primarily based on morphological 
tissue modifications involving several biological mediators 
(Figure 1). In this regard, reactive oxygen species (ROS) 
contribute to OM initiation generating oxidative stress 
through a variety of biological processes, being the 
membrane lipid peroxidation, one of the most relevant 
[8]. As a response to ROS damage, antioxidant enzymes 
such as superoxide dismutase and catalase and antioxidant 
molecules, including ascorbic acid and glutathione, are 
produced locally [7–11]. Glutathione promotes free radicals 
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scavenging, detoxification of xenobiotic and carcinogens, 
redox reactions and modulation of cytokines expression 
in injured tissues [12]. ROS induce changes in ceramide 
pathways related to the expression of specific matrix 
metalloproteinase (MMP) in submucosa cells [7, 11]. 
MMPs contribute to matrix degradation and interruption 
of signal transduction in epithelial progenitor cells causing 
epithelium layers breakdown [11–13].

In the second phase, TNF-α and IL-1β significantly 
increased in OM ulceration activates the protein complex 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NFκβ) and its translocation into the nucleus 
inducing gene expression of several pro-inflammatory 
cytokines [14]. 

Radio-chemotherapy in the oral mucosa decreases 
the expression of anti-apoptotic proteins β-cell 
lymphoma-2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), 
β-cell lymphoma-extra-large (Bcl-XL) and Bcl-w and A1, 
while increases the expression of the pro-apoptotic protein 

p53 [2, 7, 8, 15, 16].  These proteins regulate mitochondrial 
membrane permeability and caspase activation causing 
damages to DNA and proteins [17, 18]. In the third phase 
of the OM development, cell signaling promotes oxidative 
stress [7] (Figure 1). Fibroblasts and endothelial cells 
also release ROS to the extracellular milieu resulting in 
additional recruitment of neutrophils and monocytes to 
the site of injury amplifying the inflammatory response, 
which promotes additional epithelial injury and further 
ulcerative lesions [14, 15]. In the fourth phase, ulceration 
with pseudo-membrane formed by dead cell layers 
colonized by oral bacteria is a hallmark of severe OM 
caused by antineoplastic treatments that once invading 
small blood vessels lead to septicemia [19–21]. Bacteria 
cell wall products also attract monocytes/macrophages 
into the ulceration extending the inflammatory process 
[22]. In the last phase, re-epithelialization occurs after 
cancer treatment ceases. Growth factors, calcium and nitric 
oxide (NO) signaling as well as secretion of molecules by 

Figure 1: Molecular pathways in the phases of oral mucositis induced by cancer therapy. In the initiation phase, DNA 
damage in the basal epithelial cells and mesenchymal cells induced by anticancer treatment leads to reactive oxygen species (ROS) 
production and cell death. Injury response and amplification induced during radiotherapy and/or chemotherapy by necrotic molecules 
activate nuclear factor-κβ (NF-κβ) that regulates genes to IL-1-β, IL-6 and tumor necrosis factor α (TNF-α) pro-inflammatory cytokines 
that damage endothelial cells and fibroblasts. Endothelial membrane breakdown leads to extravasation of red blood cells and platelets 
to the site of injury resulting in clot formation. The recruitment of neutrophils and macrophages to the site of injury establishes the 
inflammatory process. Oral cavity bacteria and funghi colonize the clot containing dead cells onto the established ulceration. Bacteria cell 
wall products recruit macrophages towards the site of injury amplifying the damage. As soon as ROS production ceases, re-epithelialization 
occurs. Mesenchymal-epithelial cells interaction leads to growth factors release.  Vascular endothelial growth factor (VEGF), platelet 
derived growth factor (PDGF), transforming growth factor (TGF-α), fibroblast growth factor (FGF) and keratinocyte growth factor (KGF), 
collectively induce new blood vessels formation, keratinocytes proliferation and epithelial cells differentiation.
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submucosal cells stimulate differentiation and proliferation 
of stem cell to regenerate the epithelial barrier. Migration of 
keratinocytes to the edges of the ulcer occurs [11, 23, 24].

The scores of clinical evolution of OM are 
established by the World Health Organization (WHO) and 
the Common Terminology Criteria for Adverse Events 
(CTCAE), which present the most used criteria to describe 
the toxicity in humans [25]. These scores are related to 
the aforementioned molecular pathways described in 
animal models and are clinically illustrated in Figure 2. 
The WHO scale determines the objective, subjective and 
functional aspects related to the scores (0 to 4) in one 
scale. On the other hand, CTCAE version 3 punctuates 
the clinical findings and the symptoms in two distinct 
scales, both highlighting the grade 4 with life-threatening 
consequences and tissue necrosis [25]. 

Considering the most symptomatic phase of OM as 
a life-threating condition [4, 6], researchers are looking 
forward for innovative approaches. Here, we focus on 
the emerging experimental therapies showing cellular 
and molecular evidences in animal models that have 
not ever been used to treat OM ulcerations. We discuss 
data regarding the use of anti-inflammatory and anti-
oxidant drugs, synthetic peptides and the potential use 
of therapies with mesenchymal stem cells, amniotic 
membranes, natural or synthetic electrospun polymers 
loaded with anti-inflammatory agents (Table 1) for OM 
healing that might contribute for future human clinical 
trials in the area. 

Current approaches used to heal OM

Life expectancy is rising and the older population 
is growing. In the next years, cancers related to aging are 
expected to grow and the side effects of OM as well. A 
high percentage of patients with head and neck tumors 
suffer from adverse effects of OM. Currently, several 
interventions are used for OM treatment however there 
is no gold standard. Therapies currently used in humans 
that ameliorate OM include low-level laser therapy 
(LLLT) cryotherapy and palifermin, which is recombinant 
keratinocyte growth factor, KGF. Other interventions also 
with uncertain results included the use of with aloe vera, 
amifostine, glutamine, G-CSF, honey, laser, polymyxin/
tobramycin/amphotericin (PTA) paste or tablets, and 
sucralfate [26]. 

Although animal models have limitations, their use 
has been a relevant source of knowledge to understand 
critical morphophysiological processes when sampling 
is not possible in humans and to allow translation from 
bench to clinical trials [27]. In this regard, recent clinical 
practice guidelines for OM recommend therapies [28] that 
have been previously tested in experimental models such 
as low-level laser therapy (LLLT), amifostine, glutamine 
and various herb based agents [16, 29, 30]. 

In particular, LLLT, which is a type of 
photobiomodulation, promotes pain relief due to specific 
anti-inflammatory effects and accelerates wound healing 
contributing to manage deleterious effects of oral mucositis 

Figure 2: Evolution of human OM during chemoradiotherapy. (A) Initial aspect of  lower labial mucosa without any change; 
(B) Mucosa erythema; (C) Initial break in the mucosa represented by a discrete ulceration covered by a pseudomembrane; (D) Confluent 
ulcerations covered by a fibrinous pseudomembrane; and (E) Areas of necrosis. Informed consent was obtained from the patients to publish 
images related to diagnosis of oral mucositis.
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Table 1: Emerging approaches for OM treatment in experimental models 
Treatments Experimental models Main effects Ref.

S-nitrosoglutathione 
(GSNO)

5-FU induced OM in 
hamster

Reduced expression of iNOS in the site of OM [42]

Azilsartan (AZT) 5-FU induced OM in 
hamster

Reduced TNF-α and IL-1β Levels. Increased IL-10 Levels and Upregulated 
expression of VEGF, FGF, KGF, and TGF-α

[45]

Telmisartan (TELM) 5-FU induced OM in 
hamster

Reduced expression of COX2, MMP-9 and iNOS in the site of lesions 
Reduced gene expression of NF-κβ p65, TNF-α, IL-1β and TGF-β / Smad 2/3 
signalling.

[53]

Olmesartan (OLME) 5-FU induced OM in 
hamster

Reduced MIF along with MPO activity, malondialdehyde (MDA), iNOS and 
ERK1/2. Reduced gene expression of IL-1β, TNF-α, NFκβp65, MKP1 and 
ACE2. Increased expression of IL-10, FGF-2 and TGF-β in the site of lesion

[54]

Rosiglitazone (RGZ) 5-FU induced OM in 
mouse

Inhibited activation of NF-κβ and decreased expression of TGF-β, IL-1β and 
MMP-2 and  p53 apoptotic marker. Increased expression of collagen. 

[55]

Rosiglitazone (RGZ) Radiation-induced OM 
in mouse 

Increased cellular proliferation and regeneration of the  epithelial barrier
Prevented Oxidative stress induced by ROS. Increased TGF-β expression 
associated with anti-oxidant and anti-inflammatory actions

[56]

Salvia miltiorrhiza 
Bunge (SM)

5-FU induced OM in 
hamster

Promoted antioxidant effects against scavenging 2-diphenyl-1-picrylhydrazyl 
(DPPH) free radicals in vitro. Suppressed ROS production in CCL-138 cell 
line. Decreased number of apoptotic cells in the lesions. Reduced expression 
of NF-κβ and cleaved caspase-3 in vitro and in vivo. Decreased expression 
of IL-1β and TNF-α proinflammatory cytokines and decreased NF-κβ 
activation. 

[81]

Hesperidin (HSP) 5-FU induced oral 
stomatitis in hamster

Inhibited expression of TNF-α, COX2, inducible-NO-synthase and 
prostaglandin E2

[82]

Apigenin 5-FU induced OM in 
hamster

After 5 days, animals presented intense polymorphonuclear inflammatory 
infiltrate. After 10 days, treatment resulted in greater re-epithelialization 
and diminished inflammatory cell counting in the site of injury.  Apigenin 
exerted an antioxidant effect in OM compared to classic treatment with 
dexamethasone.

[83]

1-Palmitoy-2-
linoleoyl-3-acetyl-rac-
glycerol (PLAG)

5-FU induced OM in 
hamster and mouse

Increased number of circulating neutrophils and decreased expression of IL-
6, TNF, and IL-1β inflammatory cytokines. 
Reduced extravasation of neutrophils. Decreased ulceration, fibrosis, and 
festering wounds in PLAG-treated hamsters ameliorating the inflammatory 
process.

[84]

Human Gingiva-
derived Mesenchymal 
Stem Cells 

5-FU induced OM in 
mouse

Mesenchymal-epithelial transition and faster re-epithelialization in tongue 
ulcerations. 

[86]

Human bone marrow 
derived mesenchymal 
stem cells (hMSCs)

Radiation/chemical-
induced OM in mouse

hMSCs transfected with CXCR2 induced down regulation of TNF-α, IL-1β 
and IL-6 pro-inflammatory cytokines and decreased  recruitment of pro-
inflammatory cells into the site of lesion

[87]

Adipose derived 
mesenchymal stem 
cells (aMSCs)

Radiation-induced OM 
in mouse

5 doses of 2.5 million of cultured syngeneic aMSCs reduced 72% of OM 
duration 
Decreased expression of TNF-α, IFN-γ and IL1-β. Increased expression of 
IL-10.

[90]

ElectrospunKet-
loaded Eldragit 

acetic acid induced 
oral mucosa lesions in 
rabbits 

Reduced clinical severity of simulated mucositis. 
Suppressed inflammatory response and stimulated healing process in rabbits.

[106]

Amniotic membrane 
(AM)

5-FU-induced OM 
in rats

AM was biocompatible and stimulated tissue repair in the 5-FU-induced OM. 
Increased  cellular proliferation and neovascularization.

[113]

Chitosan-alginate film 
containing royal jelly 
(RJ) 

5-FU induced OM in 
hamster

MPO expression decreased in RJ-loaded chitosan-alginate film treated 
ulcerations; TNF-α and IL-1β proinflammatory cytokines decreased after 8 
days of RJ treatment. RJ treatment exerted anti-inflammatory and antioxidant 
action when associated to a polymer dressing material.

[115]

Electrospun hGH-
loaded Eudragit   
coated with chitosan 

acetic acid induced 
oral mucosa lesions in 
beagles

enhanced cellular proliferation and larger amounts of hGH released. [117]
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in cancer patients [31]. This phototherapy that was 
previously verified to be efficient in clinical trials for OM 
management has been applied as a preventive therapy due 
to its potential biological mechanism of action. It stimulates 
endogenous chromophores resulting in both photochemical 
and photophysical reactions when applying wavelengths 
between 600 and 1100 nm [32–34]. In fact, red or near 
infrared (NIR) light penetrates through cell membrane 
targeting mitochondria promoting light absorption by 
the enzymatic chromophore cytochrome c that induces 
the electron transport chain during ATP production. 
Consequently, ATP increase induces gene transcription 
and cell proliferation [33, 34]. LLLT has been indicated as 
preventive therapy for head and neck cancer patients and 
for receptors of bone marrow transplantation by guidelines 
of the mucositis study group of the Multinational 
Association of Supportive Care in Cancer and International 
Society of Oral Oncology (MASCC/ISOO) and by the 
MASCC/ISOO Clinical Practice Guidelines for the 
Management of Mucositis Secondary to Cancer Therapy 
[28, 29]. However, given the lack of protocols to treat 
OM ulcerative lesions using LLLT [35] or other treatment 
modalities [28, 29], experimental studies are still crucial to 
test new approaches to this very symptomatic condition, 
such as the studies discussed in the present review.  

Animal models for OM

OM is mainly developed due to head and neck 
cancer treatment with radiochemotherapies and mouse 
and hamsters have been the most used animal models to 
study its healing [3]. These models allowed the knowledge 
of the pathways of OM induced by anticancer treatments 
[3, 21, 27], in particular the understanding of epithelial 
repopulation, and the acceleration process of healing after 
drug applications, promoting ameliorations to head and 
neck and hematological cancer patients [36]. 

Although the molecular and cellular complexity 
of cancer is different between human and mouse, there 
are genomic and physiological similarities between them 
which support its use as models in biological research and 
pre-clinical studies [37]. In this context, the use of mice 
in pre-clinical studies of cancer research has been largely 
explored to characterize biological processes following 
radiotherapy and chemotherapy besides the effects of 
different drugs in the organism. However, differently, in 
the model of OM there is no malignant lesion in the oral 
cavity of animals, being only studied the development and 
repair of oral lesions induced by radiochemoterapy used in 
cancer treatment. 

Syrian hamsters and other rodents have been 
used to develop OM in response to radiation only, 
radiochemotherapy or to chemotherapy using 
5-Fluorouracil (5-FU), which is incorporated into the RNA 
and DNA using the same chemical route as uracil, causing 
harmful effects on cellular metabolism and viability [3, 

8–10, 38].  The hamster, owing to its vascularized cheek 
pouch is considered an excellent model to reproduce the 
lesion severity in the oral mucosa as occurs in humans with 
OM. In this regard, Sonis was the first to use this model to 
test therapies to accelerate OM healing in head and neck 
or hematological cancer patients [23]. Currently, other 
research groups have also used hamster animal model 
to evaluate development and pathways of OM following 
radiation, chemotherapy or chemoradiation [39, 40]. 

In this review, we selected studies published in the 
last years at PubMed and Web of Science database using 
the terms “oral mucositis” and “stomatitis”. Our exclusion 
criteria were: a) Research articles using experimental 
models without morphological analyses; b) Clinical 
trials articles, since they do not show morphological 
analyses; c) Experimental research articles that tested 
anti-inflammatory drugs, antioxidants, polymers and other 
therapies that have already been tested in clinical trials and 
have been recommended in clinical practice guidelines 
for OM.

Emerging approaches to heal OM in animal 
models

Mucoadhesive gel loaded with S-nitrosogluotathione 
(GNSO)

Mucoadhesive gel loaded with S-nitrosogluotathione 
(GSNO) antioxidant, the S-nitrosated derivative of 
glutathione (GSH), has a crucial role in the biological 
effects of NO [41]. GSNO stimulates blood flow 
increase and modulates the immune response during 
wound healing [41, 42]. Skeff and collaborators (2014) 
worked with a 5-FU-induced OM in hamster model to 
test the effects of GSNO on ulceration healing. Different 
concentrations of GSNO (0.5, 1.0 and 2.0 mM) were 
mixed with hydroxypropylmethylcellulose (HPMC) 
resulting in an adhesive gel applied twice a day up to 
14 days onto ulcerations 1 h before 5-FU administration 
[42]. Interestingly, 2.0 mM of GSNO induced a delayed 
OM regeneration [42]. The authors also showed that 0.5 
mM and 2.0 mM HPMC/GSNO reduced the expression 
of inducible nitric oxide synthase (iNOS) in the site of 
OM ulcerations suggesting a protective effect of GSNO 
against iNOS. It is known that pro-inflammatory cytokines 
induce NO and free radicals dependent of iNOS activity 
resulting in the activation of innate immune response [42]. 
Possibly, NO and reactive oxygen products reaction led 
to peroxynitrite formation [41]. The authors speculated 
that the therapeutic concentrations of GSNO should 
remain in the micromolar range, probably below 500 
μM [41]. Exceeding this concentration, iNOS-dependent 
cytotoxic NO would be expected although the cytotoxicity 
would vary among distinct types of tissues [43]. It is 
also important to highlight that hamsters have an oral 
microflora similar to humans [8]. Experimental research 
in hamster model revealed a 300-fold increase in bacteria 
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in the site of OM ulcerations, in comparison with the 
normal epithelium [3, 8, 42]. Skeff and collaborators 
(2014) showed an increase in the number of Gram-
negative bacteria in the group of 5-FU-induced OM [42]. 
However, periodontal pathogens including P. gingivalis 
and T. forsythia were reduced after treatment with 0.5 
mM HPMC/GSNO. These results indicate the potential 
of HPMC/GSNO treatment for OM, since P. gingivalis is 
considered one of the main pathogens in the oral cavity 
leading to delayed wound healing [42]. 
Angiotensin receptors blockers (ARBs)

ARBs known as Ang II receptor type 1 (AT1R) 
antagonists have been studied in the field of dentistry due 
to its anti-inflammatory effects [43]. Ang II, involved in 
the regulation of the cardiovascular system homeostasis, 
stimulates ATR1 resulting in upregulation of pro-
inflammatory cytokines, neutrophil infiltration, reactive 
oxygen species production and NF-κβ activation [44]. 
In experimental periodontitis, a chronic infectious and 
inflammatory disease, and gastrointestinal mucositis, 
ARBs suppress TNF-α-induced activation of the NF-
κβ classical pathway and gene expression of NF-κβ 
p65 subunit, which induces gene transcription of pro-
inflammatory mediators in vascular endothelial cells [43, 
45, 46]. In other diseases, ARBs show similar signaling 
pathway of 5-FU-induced pro-inflammatory cytokines 
[47–50]. In experimental models, ARBs suppress pro-
inflammatory cytokines in vitro and in vivo [50, 51]. 
Indeed, ARBs in experimental models of OM decrease 
inflammation and oxidative stress while increase the levels 
of IL-10 anti-inflammatory cytokine as well as of growth 
factors associated with granulation tissue formation and 
wound healing [45]. 

Azilsartan medoxomil (AZT) is another ARB 
approved by the US Food and Drug Administration 
for oral treatment of hypertension that has been tested 
in periodontitis as an alternative treatment to control 
inflammatory symptoms  in adults and elderly people 
[43]. In Wistar rats with periodontitis, AZT at 5 mg/kg 
daily for 10 days reduced neutrophil counting in the injury 
sites [43]. When using AZT at 1, 5 or 10 mg/kg orally 30 
min before the 5-FU and then daily for 10 days in hamster 
model for OM [45], 1 mg/kg was the only one that showed 
efficacy. While the control with saline scored 5, AZT 1 
mg/kg reduced significantly the number of neutrophils as 
well as local TNF-α, IL-1β and IL-10 expression, showing  
score of 2; and increased the expression of VEGF, FGF, 
KGF and TGF-α, all involved in the healing process [43–
45]. AZT proved to be biologically safe in combination 
with 5-FU-induced OM in hamsters and promising to be 
used with 5-FU-induced OM in primates before clinical 
trials in humans [45].

Telmisartan (TELM) is an ARB that inhibits Ang II 
action and presents a pleiotropic anti-inflammatory effect 
in regulating blood pressure and atherosclerotic lesions 

in patients [52].  Barbosa and collaborators (2018) tested 
the regulatory effect of TELM on the expression of NFκβ-
dependent inflammatory genes, using 5-FU-induced OM 
hamster models [53]. Histopathological and macroscopic 
analyses revealed that TELM administered orally at 5 and 
10 mg/kg prevented OM development induced by 5-FU 
in hamsters, showing reduced infiltration of inflammatory 
cells and hemorrhagic areas, vasodilation and absence of 
abscesses and ulcers, indicating score of 2. TELM at 1 
mg/kg had a score of 3 while the 5-FU-induced OM group 
that did not receive any treatment with TELM showed a 
score of 4 [53]. TELM at 10 mg/kg reduced the expression 
of cyclooxygenase 2 (COX2), MMP-9 and iNOS in the 
oral mucosa of hamsters previously treated with 5-FU, 
in comparison with the control with saline alone [53]. 
TELM at 5 or 10 mg/kg reduced gene expression of NF-
κβ p65, TNF-α, IL-1β and TGF-β/Smad2/3, highlighting 
its beneficial effects for experimental OM. At 10 mg/
kg, TELM increased mRNA expression of peroxisome 
proliferator activation factor γ (PPARγ) and reduced  
mRNA expression of  NFκβ p65 and STAT 1 induced by 
5-FU in the oral mucosa, as well as the immunoreactivity 
for NFκβ p65 and iNOS in the site of lesions [53]. These 
results indicate that TELM might exert a protective effect 
on OM induced by 5-FU treatment [53].

Olmesartan (OLME) is an ATR1 blocker that was 
shown to present antioxidant and anti-inflammatory 
actions in different experimental models [46]. OLME 
was previously tested in a methotrexate-induced 
intestinal mucositis model, demonstrating promising 
results [46]. OLME was administered by oral gavage at 
1, 5 or 10 mg/kg for 10 days in hamster model of 5-FU-
induced OM. At 1 or 5 mg/kg OLME treatment showed 
erythema, hyperemia, hemorrhagic areas and extensive 
ulceration with signs of cellular inflammation as well as 
a prevalence of neutrophils, edema, ulcers and abscesses. 
However, OLME at 10 mg/kg resulted in less severe 
lesions, with discrete erythema but no ulcers and faster 
re-epithelialization of OM ulcerations in comparison with 
lower concentrations used [54]. The authors hypothesized 
that OLME also prevented lipid peroxidation, increased 
glutathione (GSH) levels and superoxide dismutase 
(SOD) enzyme activities in the injury sites. At 10 mg/
kg, OLME possibly might downregulate the extracellular 
signal-regulated kinase (ERK1/2), which is activated by 
cellular oxidative stress besides reduce IL1β expression 
[54]. Moreover, OLME might downregulate mitogen-
activated protein kinase (MKP1), which binds to ERK1/2 
regulating cytokine gene expression [46]. OLME  reduced 
myeloperoxidase (MPO) activity, malondialdehyde 
(MDA), iNOS and ERK1/2 as well as the expression 
of TNF-α, IL-1β, NFκβp65, MKP1 and angiotensin 
converting enzyme 2 (ACE2)  as well the expression 
of macrophage migration inhibitory factor (MIF), 
which is associated with macrophages switch from M1 
proinflammatory to M2 proliferative phenotype  during 
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wound healing. The authors verified that OLME at 10 mg/
kg promoted the formation of granulation tissue in the 
injury site of 5-FU treated hamsters, which is consistent 
with the initial steps of wound healing process [54]. The 
expression of IL-10, FGF-2 and TGF-β in the site of lesion 
following OLME treatment at 10 mg/kg reinforced the 
hypothesis of macrophage switch from M1 to M2 at the 
site of OM [54]. Altogether, OLME treatment at 10 mg/
kg decreased the oxidative stress and inflammation and 
stimulated fibroblasts activity and collagen deposition, 
recovering 5-FU-induced OM of hamsters.

Rosiglitazone (RGZ)  

RGZ is an intracellular ligand for PPAR-γ 
transcription factor that exerts antioxidant and anti-
inflammatory activities. Currently, RGZ is used to 
control hyperglycemia in type II diabetes mellitus 
[55, 56]. Additionally, it has been reported that the 
thiazolidinedione family of PPARγ agonists, including 
troglitazone (TGZ), pioglitazone (PGZ) and RGZ, have 
antitumor effects [57, 58]. Recently, Fujita (2017) showed 
the antitumor effect of TGZ in pancreatic cancer cells 
in vitro and in vivo, suggesting that TGZ treatment is a 
potential approach for pancreatic cancer [58]. 

One of the ways that PPARs regulate inflammation 
is through a transrepression mechanism, where other 
transcription-factor, such as NF-κβ, is repressed to 
activate the expression of pro-inflammatory cytokines 
[55]. Consistent with the RGZ effects, Sottili and 
collaborators (2017) tested RGZ in a 5-FU-induced OM 
in mouse models. RGZ was administered at 5 mg/kg/
day by oral gavage, starting 24 hours before the 5-FU 
induction for 15 days [55]. The authors demonstrated that 
RGZ inhibited the activation of NF-κβ protein leading to 
a reduced expression of TGF-β and IL-1β cytokines in the 
site of lesions. In addition, RGZ significantly inhibited 
the expression of MMP-2 and restored the expression 
of collagen [55]. Regarding genetic modifications, RGZ 
decreased the expression of the apoptotic marker p53 in 
5-FU-induced OM group. These results indicated that 
RGZ might be a potent drug to modulate the molecular 
pathways of 5-FU-induced OM, thus suggesting its future 
application in oncologic patients [55]. 

Mangoni et al. [56] also investigated the effects of 
RGZ in the prevention of radiation-induced OM but in 
murine models. Radiation was applied at a single dosage 
of 16.5 Gy at the snout of animals. RGZ treatment at 5 mg/
kg/day was administered by oral gavage, starting 24 h 
before irradiation up to 12 or 23 days. Results showed 
an effective antioxidant effect on radiation-induced OM. 
Considering the macroscopic analyses, lower OM scores 
were recorded for RGZ treatment groups in comparison 
with the control group of animals. Morphological analyses 
showed reduced inflammatory cells infiltration and edema 
formation in the site of injury. In addition, RGZ stimulated 

cellular proliferation contributing for the regeneration of 
the epithelial barrier. Oxidative stress induced by ROS 
production was prevented by the increase of catalase 
in the group treated with RGZ. Moreover, RGZ-treated 
animals re-established the tissue expression of TGF-β in 
the site lesions. The authors concluded that RGZ exerted a 
protective effect at tissue level due to its anti-oxidant and 
anti-inflammatory action during the course of radiation-
induced OM [56].

Medicinal herb derivatives

WHO and worldwide regulatory agencies, including 
FDA, the Canada Vigilance Program, and ANVISA, 
are working towards setting up current standards and 
regulations for herbal medicinal products [59–63]. To have 
new efficacious NHP approved, preclinical studies using 
plant-derived extracts in animal models, including tests for 
OM induced by radio-chemotherapy are being performed 
[64–74]. 

Natural health products (NHP) have also been 
studied mainly because of their antioxidant, anti-
inflammatory and healing effects as well as anticancer 
activity [64, 75–78]. In this regard, Buccal Bullfrog (Rana 
catesbeiana Shaw) oil emulsion was successfully used 
as a mucoadhesive system to treat oral candidiasis [79]. 
In addition, curcumin diferuloylmethane, a polyphenolic 
compound isolated from the rhizomes of the dietary 
spice turmeric (Curcuma longa), has been studied in 
experimental models and clinical research particularly 
for cardiometabolic health and dementia due to its anti-
oxidant and anti-inflammatory properties [80]. 

Salvia miltiorrhiza (SM) has been used in Korea, 
China and Japan for the treatment of various diseases, 
including: coronary heart disease; cerebrovascular disease; 
Alzheimer’s and Parkinson’s diseases; chronic renal 
deficiency; hepatocirrhosis; cancer and bone loss [81]. 
Kim et al. treated  human pharyngeal cell lines (Detroit 
562, ATCC CCL-138) with different concentrations of SM 
(1, 5, 10, 50 or 100 μg/mL) alone or in combination with 
10 μM of 5-FU in vitro [81]. SM promoted antioxidant 
effects against scavenging 2-diphenyl-1-picrylhydrazyl 
(DPPH) free radicals and suppressed ROS production 
by CCL-138 cell line suggesting a protective effect on 
mucosal injury [81]. The treatment with different SM 
concentrations (100, 500 or 1,000 mg/kg) in hamsters 
previously treated with 5-FU for 14 days revealed a 
decrease in apoptotic cells in the lesions of SM-treated 
groups, as verified by terminal deoxynucleotidyl 
transferase (TdT) dUTP Nick-End Labeling (TUNEL) 
assay. SM also reduced NF-κβ expression and cleaved 
caspase-3 both in vitro and locally in vivo [81]. After 
14 days of SM treatment, local expression of IL-1β and 
TNF-α as well as of NF-κβ decreased in the 5-FU-induced 
OM in hamsters. In addition, SM increased granulation 
tissue formation and cell growth in vivo [81]. These data 
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indicate that SM might exert a protective effect against 
5-FU-induced OM cytotoxicity. 

Flavonoids help absorption and functional activity 
of vitamin C avoiding its oxidation and accelerated 
degradation [65]. Hesperidin (HSP), a flavonoid found 
in citrus fruits is an antioxidant molecule already tested 
in cancer models, Alzheimer, atherosclerosis diseases 
and others [82]. Yoshino and collaborators (2016) 
analyzed the activity of α-glucosyl hesperidin (HSP-G) 
in 5-FU-induced oral stomatitis in hamsters [82]. HSP-G 
treatment applied up to 21 days starting 5 days before 
5-FU-induction showed a decrease in the local expression 
of TNF-α, COX2, iNOS and prostaglandin E2 [82]. In 
parallel, human HSC-3 oral squamous carcinoma cell 
line treated with 5-FU before the addition of HSP-G at 
different concentrations (0.01, 0.1 or 1.0 mg) showed ROS 
scavenger reaction without interfering with the antitumor 
effect of 5-FU in vitro [82].

The bioflavonoid Apigenin also may exert chemo-
preventive effects due to its anti-inflammatory and 
antioxidant potential action and to reduce the expression 
of IL-1, IL-6, IL-8 and TNF-α pro-inflammatory cytokines 
[83]. Studies reported that flavonols and flavones may 
act by suppressing COX-2, which is involved in the 
production of prostaglandins and thromboxanes at the 
beginning of the inflammatory process in the site of injury 
[83]. 

Palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) 
is a lipid isolated from the antlers of Sika deer (Cervus 
nippon Temminck) currently used in oriental medicine 
and synthesized as monoacetyl-diglyceride [84, 85]. 
Lee and collaborators (2016) reported that PLAG at 50 
mg/kg/day regulated neutrophil transmigration in mice 
model [85]. This same group tested PLAG to prevent OM 
inflammation induced by anticancer treatment in hamster 
and mouse models [85]. Oral administration of PLAG 
at 250 mg/kg/day, after hamsters received scratching 
in the tongue or treatment with 5-FU, increased the 
number of circulating neutrophils and decreased IL-6, 
TNF and IL-1β expression in lesions. In addition, it 
reduced neutrophils extravasation and decreased volume 
and weight of cheek pouch ulcers in these animals [85]. 
Severe ulceration, fibrosis, and festering wounds were 
observed in the hamsters that received scratching or were 
treated with 5-FU in comparison with the group treated 
with PLAG, which ameliorate of the inflammatory 
process [85]. By day 13, 5-FU and scratching hamsters 
groups exhibited a 15% decline in body weight, which is 
characteristic of cachexia, a complication associated with 
both antineoplastic treatment and mucositis. PLAG-treated 
hamsters from the 5-FU-induced and scratching groups 
showed only 5% of decrease in body weight, indicating 
cachexia restoration [85]. The anti-inflammatory effect of 
PLAG associated with its role inducing regeneration in the 
site of injuries decreased OM scores indicate it may be a 
useful adjuvant for antineoplastic treatment.

Cell therapy 

Cell therapy using mesenchymal stem cells (MSCs) 
is a promising approach in the field of regenerative 
medicine [86]. MSCs can be isolated from bone marrow or 
sources, including from oral cavity tissues [87, 88]. Zhang 
and collaborators used gingival-derived mesenchymal stem 
cells (GMSCs) to treat 5-FU- induced OM in experimental 
Balb/c mice [88]. On the fourth day after 5-FU-induced 
OM, animals were treated with intravenous infusion 
of fluorescent-labeled GMSCs. Histological analyses 
in untreated mice evidenced epithelial surface atrophy, 
epithelium disruption and basal membrane loss in the 
tongue, which is characteristic of ulcerations while treated 
mice presented numerous labeled GMSCs and epithelial 
barrier recovery in their tongue. Labeled GMSCs in the 
epithelium suggested mesenchymal-epithelial transition 
and faster re-epithelialization of the tongue [88]. Shen and 
collaborators also produced OM lesions in tongue of mice 
following 16 Gy radiation exposures (a dose of 1.6 Gy/
min) through a 10-mm-diameter hole [89]. Lesions were 
treated with bone marrow derived MSCs. Oral ulcers were 
chemically induced by placing a 3 × 3-mm round filter 
paper soaked with 70% acetic acid on the buccal mucosa 
for 30 s. The ulcerations were treated using a construct 
MSCsCXCR2 obtained after MSCs were infected with 
a lentiviral vector encoding the CXCR2 chemokine 
receptor, which binds to CXCL2 that is upregulated in 
oral tissue submitted to radiation and chemotherapy. 
The presence of MSCsCXCR2 in the injuries decreased 
production of ROS and mRNA expression of TNF-α, 
IL-1β and IL-6 as well as decreased recruitment of pro-
inflammatory cells [89]. MSCsCXCR2 accelerated wound 
healing due to anti-oxidant and anti-inflammatory effects 
in the damaged area of OM [89]. Moreover, Maria and 
collaborators (2016) evaluated in a radiation-induced OM 
mouse model the effect of adipose-derived mesenchymal 
stem cells (aMSC), which are multipotent progenitor 
cells of the adipose tissue stromal vascular fraction with 
anti-inflammatory/immunomodulatory activities [90]. 
Experimental radiotherapy-induced OM in mice treated 
with aMSCs by intraperitoneal injections (5 doses of 2.5 
million of cultured syngeneic aMSCs) resulted in 72% 
reduction in OM duration associated with a decreased 
expression of TNF-α, interferon-γ and IL1-β and an 
increased expression of IL-10 in the oral mucosa. Weight 
gain, another improvement in mice with irradiation-
induced OM, was followed by hydration and nutritional 
status recoverage [90].

Tissue engineering approach

The use of natural or synthetic scaffolds free or 
with the addition of cells, biomolecules or nanoparticles 
have been applied for tissue regeneration [91–112]. For 
this end, advances in the application of biomaterials 
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including natural organic polymers, such as alginate and 
chitosan or inorganic polymers, as synthetic biomaterials, 
hydroxyapatite or polyesters, among others, are under 
investigation [91–99]. In the last years, biomaterials have 
been produced using the electrospinning technology to 
arrange fibers in a 3D fashion to mimic the extracellular 
matrix scaffold [98, 99, 103–105]. The electrospinning 
process is considered an innovative and versatile 
technique to produce biocompatible polymers in the 
shape of membranes, foams or tubes [99]. FDA approved 
scaffolds proven to be biocompatible. In addition, their 
biodegradability and nontoxic properties give support to 
their use as dressing materials to improve the healing of 
ulcerative lesions. Synthetic biomaterials may have great 
regenerative potential because they can be loaded with 
active molecules and/or cells [103–107]. The addition 
of progenitor cells or molecules onto these scaffolds is 
extremely promising for the field of tissue engineering and 
regeneration [102, 109–111]. 

An electrospun membrane, which may function 
as a synthetic scaffold biomaterial for dressing is shown 
in Figure 3. The membrane may be loaded with drugs, 
proteins, nanoparticles or cells [99, 101, 105–108, 111, 
112]. Drug-loaded materials exert better results to be 
applied locally, since the drug is delivered in higher 
amounts to the target tissue due to sustained drug release, 
improving its local effect and decreasing systemic 
absorption [106, 108]. Among various topical non-
steroidal anti-inflammatory drugs (NSAIDs), Ketoprofen 
(KET) has nontoxic property and exhibits stable 
interaction onto the oral mucosa lesions for regeneration 
[106]. Moreover, it blocked the synthesis of human 
PGE2 in vitro [106]. KET also inhibited monocytes and 
macrophages, cells that produce PGE2 [106]. 

Focusing on translation for treatment of cancer 
patients with OM, Reda and collaborators used 
electrospun KET-loaded Eudragit to accelerate the healing 
process of acetic acid induced oral mucosa ulcerations in 
rabbit models [106]. Electrospun KET-loaded Eudragit 
possess mucoadhesive properties due to many COOH 
groups, which contributes for hydrogen bond with the 

mucosal tissue [106]. This polymer potentially interacts 
with the mucosa after fluid uptake through the presence 
of numerous nanometer-sized interfibrilar pores causing 
mucoadhesion [106]. Eudragit composition of 20% (w/v) 
EL-NF loaded with 20% (w/v) KET reduced the clinical 
severity of OM since it suppressed the inflammatory 
response and induced the regenerative process of rabbits’ 
ulcerations [106]. Choi and collaborators (2015) showed 
electrospun Eudragit-loaded human growth hormone 
(hGH) membranes coated with chitosan produced for 
experimental ulcer treatment, suggesting future application 
in cancer patients [113]. In this study, electrospun anionic 
Eudragit L, composed of methacrylic acid and methyl 
methacrylate (1:1) was further coated with chitosan to 
control the dissolution rate of the electrospun carrier and 
the release rate of the drug. These membranes were used 
as dressing materials for oral ulcerations induced by acetic 
acid in beagle dog models. After 3 days of ulcer dressing, 
an identical second ulcer dressing was performed for 
4 days and then mucous membranes were cut out after 
7 days for histological analysis. Morphological analysis 
revealed enhanced cell proliferation due to the larger 
amount of hGH released from membranes-loaded with 
0.5% of hGH, in comparison with the amount of 1.0% 
hGH. The results evidenced a larger amount of hGH 
released from membranes with lower concentration of the 
hormone [113]. More recently, our group produced Poly 
(Lactic-Co-Glycolic Acid)-PLGA electrospun scaffolds 
for oral mucosa regeneration aiming future application as 
dressing material for oral ulcerative lesions in head and 
neck cancer patients [114]. 

Amniotic membrane (AM) 

AM is a natural scaffold used for growth, migration 
and adhesion of epithelial cells to accelerate the healing 
process of lesions due to its biocompatibility [115]. 
AM corresponds to the innermost layer of placenta. 
It is composed of a single epithelial layer, a basement 
membrane and an avascular stroma with growth 
factors, cytokines and some bioactive substances [115, 

Figure 3: Electrospun PLGA scaffold for tissue engineering application. (A) Randomly electrospun microfibers in the format 
of membrane or film, created by Dr. Raquel Pires Gonçalves and Dr. Marcos Dias Lopes at the Institute of Macromolecules Professor 
Eloisa Mano of the Federal University of Rio de Janeiro. Scale bar: 4.5 cm; (B) Scanning electron microscopy image of PLGA membrane 
showing randomly oriented microfibers. Scale bar: 2.5 μm; (C–D) Schematic representation of the polymeric membranes with adhered 
cells, drugs or proteins to be carried out to specific biological sites. Scale bar: 2.5 μm. Dr. Marcos Farina obtained the images using the 
scanning electron microscope (FEI Quanta 250 at 15KV, 2048 x 2048 pixels) at Federal University of Rio de Janeiro.
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116]. These factors contribute to its anti-inflammatory, 
anti-fibrotic, anti-microbial, anti-scarring and low 
immunogenicity properties as well as to promote 
neovascularization [116]. Lima and collaborators (2015) 
used rat models of 5-FU-induced OM to test AM or not, 
as a natural dressing biomaterial, during 14 or 21 days 
[116]. Immunostaining for PCNA and VEGF revealed 
increased cellular proliferation and neovascularization 
in the 5-FU-induced OM group treated with AM at days 
three and seven, the inflammatory and proliferative 
phases, respectively [116]. The inflammatory process 
was mild in the group treated with AM, where an increase 
in the number of CD4+ and CD8+ cells was found only 
in day seven. After 14 or 21 days of AM treatment, 
no difference was found in the number of CD4+ and 
CD8+ cells in the lesions of this group or in the control 
group without AM [116]. AM presented biocompatible 
properties and efficient dressing, stimulated cellular 
proliferation as well as promoted stable adherence onto 
lesions. Neovascularization was also stimulated and the 
wound healing process was accelerated proving that this 
natural scaffold might stimulate tissue regeneration and 
be used for clinical trials [116].  

Buccal adhesive polymer films loaded with 
natural products 

Alginate, a natural non-toxic polysaccharide 
found in some brown algae species has been widely 
used as scaffold for drug delivery in burns and 
ulcerative lesions [91]. Similarly, chitosan, purified 
from chitin found in fungi cell walls and exoskeleton of 
shellfishes and insects, has been applied as biomaterial 
for tissue engineering [91]. Watanabe and collaborators 
(2013) tested the healing effect of a chitosan-alginate 
film containing royal jelly (RJ) in a hamster model 
of 5-FU-induced OM and mild abrasion of the cheek 
pouch [117]. RJ is a natural product secreted by 
hypo-pharyngeal and mandibular glands of worker 
honeybees (Apis mellifera) composed of proteins 
with anti-inflammatory and anti-oxidant effects [117]. 
The healing process was examined by measuring the 
area of mucositis and MPO activity. Films containing 
10% and 30% of RJ significantly reduced ulcerations. 
Treatment with RJ reduced ulcerations and erythema at 
day 3 and 8, respectively. MPO and the TNF-α and IL-
1β proinflammatory cytokines were also significantly 
lower in the site of injury after 8 days of treatment. 
The expression of KGF was not observed when films 
containing 10% RJ were used.  In vitro, 10% of RJ 
significantly scavenged free radicals. Possibly, the 
polymer might contribute for the healing process due 
to the effective controlled release of RJ in the site of 
injury. The anti-inflammatory and antioxidant effects of 
chitosan-alginate film containing RJ reinforce its use as 
a promising dressing biomaterial [117].

DISCUSSION AND FUTURE DIRECTIONS

Although tissue engineering of oral mucosa has 
been less developed than skin [101], Blackwood [92] 
was able to produce biodegradable electrospun scaffolds 
for dermal and oral mucosa replacement and Kumbar 
[118] highlighted the progress of tissue engineering 
of dental, hard and soft tissues such as enamel, dentin, 
alveolar bone, periodontium, oral mucosa and salivary 
glands. In this regard, for regenerative medicine purposes, 
the electrospinning technique produces flexible three 
dimensional porous membranes with a suitable structure 
for wound dressing and also drug delivery [119]. As these 
membranes regard similarities with the skin and mimic 
the extracellular matrix milieu, reports in the area of 
regenerative medicine reveal that these fibers-constituted 
membranes have been used for periodontal diseases due to 
its physical structure, which allow the addition of drugs, 
growth factors, and cells [118–120]. 

Nazarnezhad et al. (2020) reported that biodegradable 
electrospun membranes with  the addition of  vascular 
endothelial growth factor; angiopoetin1 (Ang1); 
transforming growth factor-β (TGF-β1); fibroblast growth 
factor (FGF) and hepatocyte growth factor (HGF); matrix 
metalloproteinase (MMPs); plasminogen activator 
inhibitor-1 (PAI-1) or nitric oxide synthase (NOS) exert 
effects of: stimulating angiogenesis, permeability and 
leukocyte adhesion; stabilizing vessels and inhibiting 
permeability; stimulating extracellular matrix (ECM) 
production; stimulating angio/arteriogenesis; matrix 
remodeling, release and activation of growth factors; 
stabilizing nascent vessels and promoting angiogenesis and 
vasodilation, respectively [121]. These bioactive molecules 
may also contribute to the healing effect of OM. In addition, 
these bioactive molecules could be embedded in polymers 
microspheres and entrapped in mucoadhesive gels to be 
applied as dressing materials onto OM ulcerations. For 
instance, Skeff et al. (2014) used a mucoadhesive gel with the 
addition of S-Nitrosoglutathione to accelerate recovery from 
5-Fluorouracil-Induced Oral Mucositis [42]. On the other 
hand, Lima et al. (2015) applied only amniotic membrane, 
due to its natural biological components, as a biological 
dressing for OM ulceration healing in experimental model 
which stimulated tissue regeneration [116].

In the present review, we evidenced promising 
data for OM healing including the use of drug-loaded 
membranes or scaffold-loaded natural products or 
nanoparticles, or mucoadhesive gels loaded with 
microspheres as carriers of antioxidant agents. These 
data brings support to propose the production of novel 
membranes in combination with different growth factors 
and biomolecules, nanoparticles, natural products or drugs 
that favors tissue repair, following the requirements of 
regenerative medicine and tissue engineering applications. 
Novel combinations of distinct biological and chemical 
compounds or cells that are crucial elements to stimulate 
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injured sites and accelerate healing and regeneration 
should be tested in animal models aiming to optimize 
OM therapies. In conclusion, we highlighted the latest 
boosts for OM treatments tested in experimental models 
and expect that these therapies be applied in the near 
future in clinical trials to ameliorate the side effects 
of chemoradiotherapies in cancer patients resulting in 
improvement of their quality of life.
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