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Various deep learning-based architectures for molecular generation have been proposed for de novo drug
design. The flourish of the de novo molecular generation methods and applications has created a great
demand for the visualization and functional profiling for the de novo generated molecules. An increasing
number of publicly available chemogenomic databases sets good foundations and creates good opportu-
nities for comprehensive profiling of the de novo library. In this paper, we present DenovoProfiling, a
webserver dedicated to de novo library visualization and functional profiling. Currently,
DenovoProfiling contains six modules: (1) identification & visualization module for chemical structure
visualization and identify the reported structures, (2) chemical space module for chemical space explo-
ration using similarity maps, principal components analysis (PCA), drug-like properties distribution, and
scaffold-based clustering, (3) ADMET prediction module for predicting the ADMET properties of the de
novo molecules, (4) molecular alignment module for three dimensional molecular shape analysis, (5)
drugs mapping module for identifying structural similar drugs, and (6) target & pathway module for iden-
tifying the reported targets and corresponding functional pathways. DenovoProfiling could provide struc-
tural identification, chemical space exploration, drug mapping, and target & pathway information. The
comprehensive annotated information could give users a clear picture of their de novo library and could
guide the further selection of candidates for chemical synthesis and biological confirmation.
DenovoProfiling is freely available at http://denovoprofiling.xielab.net.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The main objective of drug discovery is to identify a molecule
with desired biological properties [1]. Primarily, high throughput
screening (HTS) techniques allow a large size of chemical library
testing [2,3]. However, HTS is expensive and with low hit rates,
and this technology could be wildly used only in large pharmaceu-
tical companies. Computational-based virtual screening methods
can reduce the size of testing molecules. Various ligand-based
[4,5] and structure-based [6] virtual screening methods have been
proposed. However, the cost and time consuming for developing a
new drug are still demanding [7].

De novo drug design is one of the most promising and scalable
approaches to address this issue, particularly, with the advances
of deep learning techniques [8–10]. In the early stage, evolutionary
algorithms are used for de novomolecular generation [11], which is
commonly based on the combinations of molecular fragments
derived from a drug-like library. Over the past years, artificial
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intelligence algorithms, such as deep learning, reinforcement
learning, and transfer learning are proposed in the field of molecule
generation, inspired by the wide applications of those methods to
generate text, images, video, and music [12,13]. Recently, several
architectures for molecular generation, such as recurrent neural
networks (RNN) [1,14,15], variational autoencoders (VAE) [16],
and generative adversarial networks (GANs) [17] have been devel-
oped and proven successfully in generating target-focus molecule
library. Furthermore, scaffold-constrained molecular generation
methods [18,19] are developed for lead optimization. Yang et al.
also developed linker constraints molecular generation methods
using deep conditional transformer neural networks for
fragment-based drug design (FBDD) [20]. Zhavoronkov et al. devel-
oped a deep generative model with reinforcement learning and
discovered potent discoidin domain receptor 1 (DDR1) inhibitors
[21]. Yang et al. developed a generative model using long short-
term memory (LSTM) neural network and identified a highly
potent inhibitor against p300 [22]. These successful cases demon-
strated that the deep learning-based de novo molecular design
could accelerate the drug discovery process.

The flourish of the de novo molecular generation methods and
applications has created a great demand for the visualization and
functional profiling for the generated molecules. Generally, the
generative models could generate a large chemical library based
on sampling criteria and could output with various formats. The
following issues, particularly for medicinal chemists, are to visual-
ize, analyze, and select the candidates among the generated mole-
cules. Owing to the development of combinatorial chemistry and
high-throughput screening technologies, chemical structures and
bioactivity data have rapidly accumulated in the past years and
are becoming available in public repositories [23,24]. There are
various well-established cheminformatics and bioinformatics
databases available for drug discovery, which provide comprehen-
sive information for bioactive compounds, drugs, targets, path-
ways, and diseases, such as PDB database [25], PubChem [26],
DrugBank [27], ChEMBL [28], and BindingDB [29]. An increasing
number of publicly available databases creates good opportunities
for comprehensive profiling of the de novo library.

Dealing with chemical libraries is a common practice in drug
discovery. Thus, various cheminformatics tools have been devel-
oped for chemical library processing and data analysis. Well-
known tools for dealing with chemical library are ChemicalToolbox
[30], DataWarrior [31], WebMolCS [32], ChemMine [33], CART
[34], MONA [35], and CSgator [36]. Those tools mainly focus on
specific functionality, such as large library visualization, structure
search, or clustering analysis. Even more, some tools are desktop
applications, which limited the application. Web-based tools ded-
icated to de novo generated molecule profiling are rare.

In this work, we present the DenovoProfiling, a webserver for de
novo generated molecule library profiling. We aim to provide a
user-friendly public webserver, which supports the structure and
chemical space visualization, ADMET prediction, molecular align-
ment, drugs profiling, target & pathway profiling. Cheminformatics
tools and databases were integrated to provide comprehensive
annotations for the de novo generated molecules. We believe that
DenovoProfiling could be an efficient tool for the user to capture
the knowledge of de novo generated molecules. DenovoProfiling
is freely available at http://denovoprofiling.xielab.net.
2. Materials and methods

2.1. Framework

The framework of DenovoProfiling was outlined in Fig. 1. We
integrated the well-known public database PubChem, ChEMBL,
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DrugBank, and employed open-source cheminformatics toolkits
as well as other tools to provide comprehensive information for
user-submitted de novo chemical library. The profiling process is
fully automatic, in which the user only needs to submit its de novo
library files with multiple formats are supported. DenovoProfiling
contains 6 modules: identification & visualization, chemical space,
ADMET prediction, molecular alignment, drugs mapping, and tar-
get & pathway.
2.2. Supported formats

Four widely used chemical formats were supported in Den-
ovoProfiling: SDF (structure-data file), SMILES (simplified
molecular-input line-entry system), InChI (International Chemical
Identifier), and CDX (ChemDraw Exchange). All those formats’ files
could be uploaded or be pasted and submitted to the web server,
except for the binary CDX format, which cannot be pasted. The
Open Babel [37] program was used for chemical file format
conversion.
2.3. Modules

Currently, DenovoProfiling provides 6 profiling modules. Each
module was functional individually and the user could select the
module of interest. The implementations for each module were
described as follows.

2.3.1. Identification & visualization
Identification & Visualization module aimed to check whether

the de novo structures are already existing and visualize the de
novo chemical structures. The submitted de novo molecules were
converted into InChIKeys using Open Babel [37]. Subsequently,
the InChIKeys were submitted to the PubChem using PubChemPy
(https://pubchempy.readthedocs.io), a python package for inter-
acting with PubChem. PubChem is the world’s largest collection
of freely accessible chemical information with over 109 million
compounds [26]. The PubChem compound IDs (CID) were retrieved
when de novo molecules were matched. ChemDoodle Web compo-
nent, a light-weight JavaScript/HTML5 toolkit for chemical graph-
ics, developed by iChemLabs was used for structure visualization
[38]. For non-SDF format, Open Babel was used to generate 2D
structures for structure visualization. Meanwhile, the drug-like
descriptors including molecular weight (MW), ALogP, number of
hydrogen bond acceptors (HBA), number of hydrogen bond donors
(HBD), number of rotatable bonds (RotBonds), and topological
polar surface area (TPSA) were calculated using PaDEL [39] and
plotted using Radar Chart.

2.3.2. Chemical space
Chemical space visualization is an efficient way to know the

structural similarity or properties similarity of the corresponding
molecules through the closeness of thepoints in this chemical space.
Eachmolecule is defined by a set of numerical descriptors or finger-
prints and a set of all molecules corresponded to the points in the
same coordinate-based space. Four important approaches including
similarity maps, principal components analysis (PCA), drug-like
properties distribution, and scaffold analysis were used in Den-
ovoProfiling. The chemical similarity heatmap was generated and
interactive, inwhich theuser couldmoveor click the cells of the sim-
ilarity matrix, and the corresponding structures are visualized
beside. The PubChem fingerprints and MACCS fingerprints are sup-
ported for similarity calculation. The principal component analysis
(PCA) was used to visualize the chemical space based on PubChem
fingerprints. The frequency distribution histogram of drug-like
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Fig. 1. The framework of the DenovoProfiling web platform.

Table 1
The collected 13 ADMET datasets and deep learning-based model performance.

Dataset Molecules AUC SD Reference

Caco2 Cell Permeability 1946 0.92 0.018 [45]
P-gp Inhibitors 4418 0.96 0.008 [46]
P-gp Substrates 2100 0.85 0.021 [47–49]
Biodegradability 1604 0.91 0.023 [50]
CYP1A2 Inhibitors 14,903 0.89 0.006 [51]
CYP3A4 Inhibitors 18,561 0.88 0.007 [51]
CYP2D6 Inhibitors 14,741 0.86 0.015 [51]
CYP2C9 Inhibitors 14,709 0.88 0.007 [51]
CYP2C19 Inhibitors 14,576 0.89 0.008 [51]
Human Liver Toxicity 2476 0.94 0.014 [52]
HERG 9636 0.95 0.006 [53]
Rat Acute Oral Toxicity 12,170 0.86 0.021 [53]
Carcinogenic Potency 833 0.84 0.044 [53]

Table 2
The datasets for testing the functionality of DenovoProfiling.

Index Dataset Molecules Source

1 Drug
Dataset

60 drug molecules randomly selected from
DrugBank[27]

2 Random
Dataset

500 de novo molecules randomly generated
using REINVENT[14]

3 Focused
Dataset

50 de novo molecules based on a scaffold
constrained molecular generation[18]
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descriptors mentioned in Identification & Visualization was also
plotted. Scaffold is an important concept for medicinal chemistry
whenmeasuring the novelty of a molecule. Generally, for medicinal
chemists, a scaffold defines the core structure essential for pharma-
cological activity, which is dataset dependent and could vary in the
different target systems. Bemis and Murcko proposed the Bemis-
Murcko (BM) scaffold framework [40], an objective, invariant, and
data set independent scaffold representation method. The BM scaf-
fold method dissects molecules into ring systems, linkers, side-



Fig. 2. Structure identification and visualization of de novo library using Random Dataset.

Fig. 3. Chemical space illustration using similarity heatmap based on Drug Dataset.
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chain atoms, and the framework. Scaffold-based classification
approach (SCA) [41], an atomic framework of BM scaffold [40] was
used here and widely applied in cheminformatics studies [42] and
drug discovery projects [43,44]. The scaffolds were generated for
de novo molecules and the number of molecules for each scaffold
was calculated and plotted.

2.3.3. ADMET prediction
Early estimation of ADMET (Absorption, Distribution, Metabo-

lism, Excretion, and Toxicity) in the discovery phase could reduce
Fig. 4. Chemical space illustration using principal com

Fig. 5. Distribution of drug-like prope
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the fraction of pharmacokinetics-related and toxicity-related fail-
ure in the clinical phases. 13 small molecules ADMET datasets:
Caco2, Cell Permeability, P-gp Inhibitors, P-gp Substrates,
Biodegradability, CYP1A2, CYP3A4, CYP2D6, CYP2C9, CYP2C19,
Human Liver Toxicity, HERG, Rat Acute Oral Toxicity, Carcinogenic
Potency were collected from literatures. For each dataset, the
structures of the molecules were salt removed and standardized
using canonical smiles. The dataset source and the corresponding
reference were summarized in Table 1. Caco2 Cell Permeability
dataset and P-gp Inhibitors dataset were collected from Wang’s
ponent analysis (PCA) based on Random Dataset.

rties based on Random Dataset.



Fig. 6. Scaffold statistics of chemical scaffolds of de novo library based on Random Dataset.

Fig. 7. Grid view of the chemical scaffolds of the de novo library based on Random Dataset.
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[45] and Chen’s report [46], respectively. P-gp Substrates dataset
were collected from reports of Poongavanam [47], Wang [48],
and Shaikh [49], Biodegradability and CYP dataset were provided
by Cheng, who published their dataset in his previous reports
4087
[50,51]. Human Liver Toxicity dataset were collected from our pre-
vious report [52], which compiled from three public databases,
including side effect resource (SIDER), OFFSIDES and Comparative
Toxicogenomics Database (CTD). HERG, Rat Acute Oral Toxicity,
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and Carcinogenic Potency dataset were collected from Ji’s report
[53]. Deep learning models were constructed using message pass-
ing neural network (MPNN) implemented in Chemprop [54]. For
each dataset, an 80%/10%/10% training/validation/testing random
split was employed and the area under the curve (AUC) for the test
set was used as a metric to evaluate the model performance. All
experiments were repeated 10 times with a different random seed.
The datasets and AUC values were summarized in Table 1. The AUC
Fig. 8. ADMET prediction snapshot based on Random Dataset. A: Table view of ADMET p
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values of these models range from 0.84 to 0.96. Other model per-
formance metrics: sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were also summarized
in Table S1. Y-randomization test was performed using 20 repeats
with random labels. The AUC values and balanced metrics, F1 and
Matthews correlation coefficient (MCC) of Y-randomization mod-
els were compared with the 10 repeated models with real labels
(Table S2). These metrics for 13 ADMET dataset decreased dramat-
rediction results for de novo library. B: ADMET prediction details for one molecule.
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ically, suggesting the constructed models are not randomly gener-
ated. These results mentioned above indicated a good prediction
performance and could be used for de novo library ADMET property
prediction. The applicability domain was defined using six
descriptors [51,55], Molecular Weight, LogP, TPSA, HBA, HBD,
Rotatable Bonds. Descriptors were calculated with RDKit
(https://www.rdkit.org), and the distribution of the descriptors
were analyzed using quantile R package and summarized in
Table S3 in the supporting information. For each descriptor, com-
pounds with values among 1%�99% values of the dataset were
regard as in domain, compounds with values less than 1% value
or great than 99% value were regard as out domain.
2.3.4. Molecular alignment
When a de novo molecular library was generated, a straightfor-

ward point was to align the focused library, in particular scaffold
focused library, to compare the structures of molecules. The molec-
ular alignment module was designed to satisfy this demand. The
minimum energy conformer for each molecule was obtained using
Open Babel Gen3D operations, which concluded geometry opti-
mization with the MMFF94 forcefield and conformational search
[56]. Weighted Gaussian Algorithm (WEGA) [57], developed by
the previous lab, was used here for molecular alignment. WEGA
is an efficient and accurate way for molecular alignment and calcu-
lating shape similarity. The shape, pharmacophore, and combined
approach in WEGA could be used in DenovoProfiling. The first
molecule was used as the template for alignment. After alignment,
the user could select the molecules of interest to see or download
the alignment results. The three-dimensional conformation align-
ment was rendered using 3Dmol.js [58].
2.3.5. Drugs mapping
A similar chemical structure may have similar property or activ-

ity. Drugs Mapping module was designed to fast retrieve the drugs
which are chemically similar to the de novo molecules. The struc-
tures and names of drugs were derived from DrugBank [27]. Inor-
ganic molecules, salts, and duplicates were removed using Open
Babel. The similarities between the de novo molecule against the
drugs were calculated. 2D similarity calculations are based on
the atom center fragment [59]. The Tanimoto coefficient was used
as a metric to quantify the similarity between two molecules. The
Fig. 9. Molecular alignment of the scaffold-focuse
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similar drugs with similarity over 0.5 against de novo molecules
were preserved.

2.3.6. Target & pathway
The bioactivities of targets and corresponding ligands were

derived from the ChEMBL database. Duplicates were removed
and compounds with multiple binding affinity data, the most
potent with minimal value were chosen. After data processing,
ligand structures, target, bioactivity data, and corresponding refer-
ences were obtained and saved in the MySQL database. The target
proteins and their bioactivity data for submitted de novomolecules
were queried by using the generated InChIKeys. The retrieved
results were summarized in an interactive table and a compound
target network using a dynamic, browser-based visualization
library(vis.js). The targeted proteins were further functional
enriched using python client of bioinformatics web service DAVID
[60]. The UniProt IDs of the targets retrieved from ChEMBL were
used as input for functional enrichment. The enriched KEGG path-
ways were provided and could be downloaded through an interac-
tive table. For each pathway, the pathway term, gene count,
percent, P-value, fold enrichment, Benjamini value, and false dis-
covery rate (FDR) are provided.

2.4. Web server implementation

DenovoProfiling is a publicly accessible platform, which can be
accessed through a web browser, such as Chrome (Highly recom-
mended). The D3 library of JavaScript (d3js.org/) was used to illus-
trate the scatterplots, radical plot, and heatmaps. Storage and
management of the submitted job data are implemented by
MySQL. The back-end server was developed by the Golang lan-
guage. The tools used for constructing the DenovoProfiling are
summarized in the online tutorial of the help page.

3. Results

To test the functionality of DenovoProfiling, we collected or
generated 3 datasets for different purposes (Table 2). The first
dataset (Drug Dataset) contains 60 drug molecules randomly
selected from DrugBank to check the corrected information
retrieved from different profiling database in DenovoProfiling. This
dataset aims to verify the utility of identification & visualization,
d de novo library based on Focused Dataset.

https://www.rdkit.org
http://d3js.org/


Fig. 10. Grid view of the drugs mapping. A: Drug Dataset results; B: Random Dataset results.
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chemical space, drugs mapping, target & pathway. The second
dataset (Random Dataset) contains 500 molecules randomly gen-
erated using REINVENT [14], an RNN architecture pre-trained on
more than one million bioactive structures from ChEMBL. We have
developed an interface of REINVENT as a de novo module in our
DeepScreening [61]. This dataset aimed to verify the utility of iden-
tification & visualization, chemical space, ADMET prediction, drugs
mapping, target & pathway. The third dataset (Focused Dataset)
contained 50 scaffold-focused de novo molecules based on a scaf-
fold constrained molecular generation approach [18] for verifying
the molecular alignment module.

3.1. Structure identification and visualization of de novo library

For a de novo generated library, the primary purpose was to
visualize the chemical structures and evaluate the structure nov-
elty. The Identification & Visualization module was designed to
satisfy this demand. Using the Random dataset as input, the snap-
shot of this module was shown in Fig. 2. The user could browse the
structures with mapped PubChem Compound ID (CID). The proper-
ties including molecular weight, LogP, HBA, HBD, number of
rotatable bonds, TPSA were given by clicking the upright plus but-
ton. The CID was provided at the bottom right and linked the Pub-
Chem which provideed more detailed compound information.

3.2. Chemical space exploration of de novo library

Chemical structures data are sophisticated, in particular for the
de novo generated molecular library, and expert knowledge is
highly required [62]. In this module, similarity maps, principal
components analysis (PCA), drug-like properties distributions,
and scaffold analysis were provided in DenovoProfiling. Using Drug
Dataset as input, the snapshot of similarity heatmap was shown in
Fig. 3. The generated similarity heatmap was interactive, in which
Fig. 11. Table view of drugs map
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the user could move or click the mouse to the target cell, and the
corresponding structures, name of molecules, and the similarity
value are visualized. Meanwhile, the distribution of the similarities
was also plotted. Using the Random Dataset (500 molecules) as
input, the snapshots of PCA results were shown in Fig. 4. Each point
represents a molecule, and the user could move the mouse to the
point, and the corresponding structure and molecule name
returned immediately. Meanwhile, the distribution of drug-like
properties was also plotted, as shown in Fig. 5. The scaffold is an
important concept in drug discovery and medicinal chemistry.
Medicinal chemists are seeking chemicals with novel scaffolds
for a specific biological target [42]. Using the Random Dataset as
input, the snapshots of the scaffold analysis were shown in
Fig. 6, the complexity and cyclicity of the scaffolds and statistics
of each scaffold were interactive illustrated with scatter plot and
histogram plot (Fig. 6). As shown in Fig. 7, the structures of scaf-
folds and their number of molecules were illustrated in the grid
table. The members of molecules for each scaffold could be
browsed by clicking the upright plus button. The interactive chem-
ical space exploration could help users capture the structure rela-
tions, descriptors landscapes of the de novo library conveniently.

3.3. ADMET profiling of de novo library

In silico prediction of ADMET properties is an important part of
computer-aided drug design in pharmaceutical R&D [63]. 13
ADMET dataset (Caco2 Cell Permeability, P-gp Inhibitors, P-gp Sub-
strates, Biodegradability, CYP1A2, CYP3A4, CYP2D6, CYP2C9,
CYP2C19, Human Liver Toxicity, HERG, Rat Acute Oral Toxicity,
Carcinogenic Potency) were collected and trained using message
passing neural networks and yield good prediction performance
models with AUC value ranging from 0.84 to 0.96. These deep
learning-based classification models were further used for ADMET
profiling in DenovoProfiling. The prediction scores were between 0
ping using Random Dataset.



Fig. 12. The identified targets in ChEMBL for Drug Dataset and the compound target network.
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Fig. 13. The identified targets in ChEMBL of de novo molecules and the compound target network.
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and 1 and the value over 0.5 indicates a positive prediction. The
ADMET prediction results for Random Dataset were shown in
Fig. 8. The user could browse the 13 ADMET properties in a table
view and click the molecule in the grid view to get detailed ADMET
prediction information. The prediction results also could be down-
loaded for further filtering in local though click the upright down-
load button. As shown in Fig. 8B, the first molecule in Random
Dataset shows good Caco2 cell permeability and could be P-gp sub-
strate, CYP2C9 inhibitor, and non-toxicity based on the prediction
results. In the ADMET prediction module, 13 types of ADMET prop-
erties were provided. However, machine learning based prediction
models relied on experimental data with the limitations. Experi-
mental data were from the molecular level, the cellular level, and
the animal level. These different levels of data may not point to
Fig. 14. The enriched KEGG pathways using the identified targets in
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the same outcome. Caco2 Cell Permeability and Carcinogenic
Potency were all cell-based models, which were limited to cellular
activity. P-gp Inhibitors, P-gp Substrates, CYP1A2, CYP3A4,
CYP2D6, CYP2C9, CYP2C19, and HERG are molecular level data,
which were limited to the single target activity. For Rat Acute Oral
Toxicity which was an in vivo toxicity indication. Human Liver
Toxicity dataset was based on clinical phenotype and multiple fac-
tors could be involved, rather than structures.
3.4. Molecular alignment of the scaffold-constrained library

Generally, medicinal chemist starts from drug target, and
attempt to generate a target-focused library or a scaffold-
constraint library for structural optimization. In this case, shape or
ChEMBL. A: Drug Dataset results; B: Random Dataset results.



Table 3
The time cost for each module (seconds).

Modules Drug
Dataset
(60 mols)

Focused
Dataset
(50 mols)

Random Dataset (500
mols)

Identification &
Visualization

8 6 10

Chemical Space 26 31 124
ADMET Prediction 61 58 87
Molecular Alignment 227 25 86
Drugs Mapping 32 25 73
Target & Pathway 24 18 19
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pharmacophore features-based molecular alignment was a good
apporach to compare the difference of the target-focused or
scaffold-constraint de novo library. The shape and pharmacophore
combined approach in WEGA was used in DenovoProfiling for
molecular alignment. Using Focused Dataset as input, as shown in
Fig. 9, DenovoProfiling correctly aligns all the structures to the first
structure of the library. The important features, carboxyl, hydroxyl,
and benzene ring were corrected recognized, and overlayed. The
user could browse the alignment results, and select the molecules
of interest to see the alignment result. Stick and line rendermethods
were supported. The user also cloud click the download button to
download all the alignment results for local analysis.

3.5. Drugs mapping of de novo library

De novo generated libraries usually are random and cover a lar-
ger chemical space. Though, Identification & Visualization, as men-
tioned above, identify the structures which have been reported.
The structural similar drugs against the de novo library were the
interest of medicinal chemists. They could fast capture the novelty
and pharmacological activities of the de novo compounds when
compared with the drug library. Firstly, we used the Drug Dataset
as input, DenovoProfiling calculated the similarity between the
submitted Drug Dataset and the drug library. The similar drugs
for each submitted molecule were returned. As shown in
Fig. 10A, the drugs were corrected recognized, and identified 363
similar drugs with similarity values over 0.5. Then, using Random
Dataset, DenovoProfiling identified 423 similar drugs with similar-
ity values over 0.5 (Fig. 10B). The grid view (Fig. 10) and the table
view (Fig. 11) are provided. For the randomly sampled 500 de novo
compounds, as shown in Fig. 11, compounds with a maximal drug
similarity over 0.9, and their DrugBank ID were also provided and
linked to the original database. Details of this drug information
could be obtained directly.

3.6. Target and pathway profiling for de novo library

The modules we described before were structural annotations
for the de novo library. Functional profiling was another important
part of user concern for de novo library proofing. Firstly, we used
Drug Dataset as input, DenovoProfiling retrieved 365 bioactivity
data for the 60 drugs. As shown in Fig. 12, the bioactivity data such
as Ki, Kd, IC50, and EC50, and corresponding references are
extracted. All those results can be analyzed via a user-friendly
table view (Fig. 12). Those results were also can be downloaded
for local analysis. The compound target relations were further
illustrated using a compound target network (Fig. 12). We further
used the Random Dataset as input, DenovoProfiling retrieved 14
bioactivity data for the 500 de novo molecules (Fig. 13). The targets
are further enriched to pathways and KEGG pathways are summa-
rized in the table (Fig. 13). DenovoProfiling enriched 115 pathways
and 5 pathways for the Drug Dataset and Random Dataset, respec-
tively (Fig. 14).

3.7. Time consuming benchmark test and job management

We submitted these 3 datasets for each module and counted
the time consuming for the server to return results. Notably, the
first module visualization & identification was required and other
modules were optional. The time cost for each module were sum-
marized in Table 3. DenovoProfiling could returns the profiling
results from several seconds to several minutes. The chemical
space module could take longer time in similarity calculations.
The molecular alignment module is time consuming owning to
the conformation generation. The ADMET prediction module is
library-size depended. The results of the submitted job were saved
4095
in DenovoProfiling for 15 days. The user could use job ID to access
the profiling results within its validity period.

4. Conclusions

De novo drug design is one of the most promising and scalable
approaches to accelerate the drug discovery process. Deep
learning-based de novo molecular generation has shown powerful
performance in generating de novo target-focused or property-
focused libraries. Fast profiling the de novo generated molecules
becomes a practical issue in the de novo drug design. To address
this issue, we developed DenovoProfiling, a web-based profiling
server for de novo generated molecules. DenovoProfiling supports
structure identification and visualization, chemical space explo-
ration, ADMET profiling, molecular alignment, drugs profiling,
and target & pathway profiling. These functional modules provide
structural and functional annotations for de novo molecules gener-
ated from various methods. DenovoProfiling provides comprehen-
sive profiling and visualizations tools for de novo molecule library
by integrating traditional cheminformatics approaches and state-
of-the-art deep learning technologies. However, several potential
weaknesses of the present study should be acknowledged. Various
de novo molecular generation tools could be integrated into this
platform, and user could generate de novo molecules using differ-
ent methods. Meanwhile, machine learning based bioactivity pre-
diction models could be integrated for evaluating the potency for
the generated molecules. Some modules use default values to
make it more convenient for users, but resulting in less choice
for advanced users. These functional modules could be our future
development directions. Overall, we believe this web-based tool
could facilitate de novo drug design and accelerate drug discovery.
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