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Abstract

Background: Millions of cells are present in thousands of images created in high-throughput screening (HTS).
Biologists could classify each of these cells into a phenotype by visual inspection. But in the presence of millions of
cells this visual classification task becomes infeasible. Biologists train classification models on a few thousand visually
classified example cells and iteratively improve the training data by visual inspection of the important misclassified
phenotypes. Classification methods differ in performance and performance evaluation time. We present a
comparative study of computational performance of gentle boosting, joint boosting CellProfiler Analyst (CPA),
support vector machines (linear and radial basis function) and linear discriminant analysis (LDA) on two data sets of
HT29 and HeLa cancer cells.

Results: For the HT29 data set we find that gentle boosting, SVM (linear) and SVM (RBF) are close in performance but
SVM (linear) is faster than gentle boosting and SVM (RBF). For the HT29 data set the average performance difference
between SVM (RBF) and SVM (linear) is 0.42%. For the HeLa data set we find that SVM (RBF) outperforms other
classification methods and is on average 1.41% better in performance than SVM (linear).

Conclusions: Our study proposes SVM (linear) for iterative improvement of the training data and SVM (RBF) for the
final classifier to classify all unlabeled cells in the whole data set.

Background
The technology of high-throughput screening has facili-
tated many biological fields and has become a widely used
method in drug discovery. It assists scientists in conduct-
ing millions of chemical as well as genetic tests to study
biological paths. Cell biology is one of those fields which
are currently focusing on analysis of massive amounts
of cell image data produced by high-throughput screen-
ing [1-4]. Biologists study the morphology of these cells
and can classify their phenotypes by visual inspection
under a microscope. The microscopic study of a huge
amount of cell image data has triggered the need for auto-
matic methods to handle this huge amount of cell image
data.
Machine learning and data mining have the potential to

objectively and effectively analyze the massive amounts
of image data [5]. In recent years, many studies have
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shown advantages of using classification methods to clas-
sify images based on features derived from them [2,6-11].
Examples of classificationmethods are the Support Vector
Machine (SVM), the gentle boosting classifier, Linear Dis-
criminant Analysis (LDA), the K-nearest neighbor (KNN)
classifier, the multi-layered perceptron, Artificial Neural
Networks (ANNs) and the decision tree classifier [11-16].
Usually, there are three steps involved in classifica-

tion of cells as shown in Figure one by Jones et al. [7].
The first step is segmentation and feature calculation.
The second step concerns the training of classification
models on a training set and their performance evalu-
ation with cross-validation. The training set is a subset
of a few thousand cells visually classified by a biolo-
gist. The third step boils down to the classification of
whole screen using the best performing classifier from
step 2.
Typically, the second step is performedmany times in an

iterative feedback and machine learning approach as pro-
posed in [7]. In this approach, biologists classify a number
of cells, then train the classifier and inspect the classified
cells. If the classification method gives high error on some
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of the important phenotypes, the biologists classify more
cells of those phenotypes and again train the classifier.
Thus, segmentation, feature calculation, and phenotype
classification of all images (including unlabeled) are done
only once whereas classifier training is done many times.
Biologists are therefore helped by classification methods
that are fast and give high performance. Table 1 gives an
overview of software packages that are commonly used
for processing of images obtained in high-throughput
screening. There are numerous software packages avail-
able for cell detection, feature extraction and feature anal-
ysis [2,5,6]. These software tools identify cells from images
and measure features of identified cells. Different classi-
fication methods are used by these software packages as
shown in Table 1.
To the best of our knowledge, there is no study that com-

pares the performance of different classification methods
and their suitability in an iterative feedback and machine
learning setting for high-throughput screening of images.
In this paper we compare classification methods based on
accuracy and cross-validation time. We also explore how
performance and computational time vary with a different
number of phenotypes. We use two data sets of HT29 and
HeLa cancer cells that have different numbers of features
and phenotypes. We investigate which classifier is a good
choice in terms of performance and cross-validation time.
Cross-validation time is important because it is the time
needed to evaluate the performance of a classifier and
cross-validation needs to be done many times in training
a classifier in an iterative fashion. The next part describes
the data sets, the classification methods and the approach
used in this study. The last part consists of results and
discussion.

Method
Data description
For this study, we used two data sets. The first data
set contains HT29 colon cancer cells which was first

published by Moffat [3] and is available as image set
BBBC018v1 from the Broad Bioimage Benchmark Collec-
tion [25]. Cells were stained for DNA, actin and phospho-
histone proteins. DNA was stained with Hoechst 33342
fluorescent dye. Actin proteins were stained with a flu-
orescent phalloidins dye while phospho-histone proteins
were stained with a fluorescent tagged antibody [3].
Carpenter et al. [17] developed the open source soft-
ware package CellProfiler through which they identified
about 8.3 million cells in 40,000 images of the HT29
data set. Each cell has a set of 615 features which
are shape, intensity and texture features of the DNA,
actin and phospho-histone (ph3) channels. These fea-
tures consist of geometric (extension, eccentricity, axis
lengths, size and size ratio between cell and nucleus etc.),
Haralick (angular moments, contrast, correlation, vari-
ance and entropy etc.) and Zernike features. The HT29
data set contains linearly dependent features because
some features were derived from other features. This
linear dependency poses no problem for the SVM and
boosting classifiers, but is problematic for standard
LDA.
Figure one in Jones et al. [7] summarizes the cell iden-

tification and measurement of cell features for the HT29
data set. A subset of cells was presented to biologists who
classified the cells into one of 14 phenotypes (listed in
Table 2). Figures three and four in Jones et al. [7] show a
total of 2581 positive and 13,139 negative examples of 14
cell phenotypes. A cell is a positive example if it has a par-
ticular phenotype and it is a negative example if not. In
this study, we only used the positive examples. We found
55 cells that had two phenotypes associated with them
and removed these ambiguously classified cells. For exam-
ple, there were two cells labeled both as actin blebs (AB)
and crescent nuclei (CN). There were 2526 cells left after
removing the ambiguously classified cells. Table 2 shows
the 14 phenotypes with the number of cells for each of the
phenotypes.

Table 1 Open source tools for high-throughput screening

Tool [17] Language Classifier Advantage

WND-CHARM [18] C++ Weighted Nearest Neighbor Many image features

Enhanced CellClassifier [19] Matlab SVM Good classifier

FARSIGHT [20] C++ Supervised Spectral Clustering Programmer friendly

CellMorph, EBImage [21] R SVM Link to machine
learning algorithms

CellCognition [22] Python Hidden Markov Model Classifies movies

CellXpress [23] C++ R package for SVM Phenotypic profiling

Ilastik [24] Python Random Forest Interactive segmentation

BIOCAT [6] Java Nearest Neighbor, Random Forest, User friendly and extensible
SVM and Decision Trees
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Table 2 HT29 colon cancer cells with 14 phenotypes

Phenotypes Cells

Actin blebs (AB) 107

Actin dots (AD) 111

Anaphase -Telophase (AT) 182

Angular cell edges (ACE) 73

Crecent nuclei (CN) 185

Large spread cells (LSC) 201

Long projections (LP) 59

Metaphase (MP) 563

Motile (M) 190

Peas in a pod (PIP) 34

Perpheral actin (PA) 59

Phospho-Histone H3 dots (PHD) 264

Prometaphase (PMP) 345

Prophase (PP) 153

Total 2526

Each cell has 615 features.

The second data set contains HeLa cancer cells which
was created by Fuchs et al. [8] for testing the EBImage soft-
ware package. The cells were stained for DNA, actin and
tubulin. The data set contains a total of 2545 cells with
51 features for each cell. These 51 features consist of geo-
metric, Haralick and Zernike features calculated from the
intensity and textures of a cell using the EBImage pack-
age [21] as shown in Figure one (E,F) of Fuchs [8]. There
are 10 phenotypes as shown in Table 3.
Tables 2 and 3 show that each phenotype is repre-

sented by a different number of cells which makes the
data sets class imbalanced. TheHT29 data set suffers from

Table 3 HeLa cancer cells with 10 phenotypes

Phenotypes Cells

Actin fiber (AF) 170

Big cells (BC) 310

Condensed cells (C) 338

Debris (D) 219

Lamellipodia (LA) 258

Metaphase (MP) 186

Membrane blebbing (MB) 110

Normal cells (N) 542

Protrusion and elongation (P) 315

Telophase (Z) 97

Total 2545

Each cell has 51 features.

greater class imbalance than the HeLa data set. In case of
the HT29 data set, the phenotype with the largest num-
ber of cells (metaphase) is about 16 times bigger than the
phenotype with the smallest number of cells (peas in a
pod), while in the case of the HeLa cells the phenotype
with the largest number of cells (normal cells) is about 5
times bigger than the phenotype with the smallest number
of cells (telophase). Tomake sure that the relative frequen-
cies among phenotypes remain roughly the same across
all folds, we used 20-fold cross-validation with stratified
sampling on the class variables.

Classification methods
There is no single classification method which outper-
forms all other classification methods on all data sets. The
list of classificationmethods is large and everymethod has
its own strengths and limitations [12,13]. In this study we
include five classificationmethods: SVM (RBF), SVM (lin-
ear), gentle boosting, joint boosting (CPA) and LDA. We
choose SVM (RBF), because it has been used in [8,26] to
classify the HeLa data set. Joint boosting (CPA) is included
since it is part of the CellProfiler Analyst software applied
in [7] to analyze the HT29 data set. The other three classi-
fiers are included to check whether we can obtain similar
performance with simpler classifiers. We include gentle
boosting as a lean alternative to joint boosting (CPA)
and SVM (linear) as an alternative to SVM (RBF). We
include LDA because it is traditionally considered to be a
good benchmark classifier. The details of the implementa-
tion and tuning of the parameters of the classifiers are as
follows.

• Joint boosting (CPA): A multi-class version of gentle
boosting with shared regression stumps [15]. This
classifier learns to use common features shared across
the phenotypes. The classifiers for each phenotype
are trained jointly, rather than independently [15].
CellProfiler Analyst (CPA) has implemented the idea
of [15] without sharing features. In boosting, the
classifiers are built using regression stumps. The
learning time increases with increasing number of
regression stumps. The manual of CellProfiler
Analyst advises the use of 50 regression stumps
and [7] has also used 50 regression stumps for the
HT29 data set. In this study we also use 50 regression
stumps for joint boosting (CPA). Since, as we will see
below, the performance of joint boosting (CPA) with
the recommended 50 regression stumps falls short,
we also considered using the same method with 200
regression stumps. We will refer to those as joint
boosting (CPA-50) and joint boosting (CPA-200). For
joint boosting (CPA), we used CellProfiler Analyst 2.0
(r11710). This method uses the one-versus-all
strategy for multi-class classification.
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• Gentle boosting: Boosting methods such as
adaboost, real-adaboost, logit-boost and gentle boost
perform well on images or scenes cluttered with
objects [15,27,28]. Boosting methods build a good
classifier from many weak classifiers and are similar
to decision trees in building classification
rules [15,28]. We use 50 regression stumps for gentle
boosting. This method uses the one-versus-all
strategy for multi-class classification and also uses
multiple features with different thresholds and
different weights for each phenotype [27,28].

• Support vector machine with radial basis function
(RBF): Generally, the SVM (RBF) classifier is better in
performance and is tolerant to irrelevant and
interdependent features as compared to decision
trees, neural networks and K-nearest neighbor
classifiers [9,12,13,29,30]. SVM (RBF) is a useful
method when data is not linearly separable but is
slower because of the optimization of the hyper
parameters C and γ . The hyper parameter C is the
cost parameter which gives a trade-off between
training error and model complexity [31,32]. The
higher the value of the C, the higher cost for
non-separable examples [31]. The hyper parameter γ

is the inverse of the width of the radial basis function.
For selection of parameters C and γ , a grid search
was performed on values C ∈ [2−1, 20, . . . , 26] and
γ ∈ [2−5, 2−4, . . . , 21] for both data sets. A 5-fold
cross-validation was performed to select the hyper
parameters. In this study, the LIBSVM 3.17 library
[30] is used which implements the one-against-one
strategy for multiclass classification.

• Linear support vector machine (SVM linear): SVM
(linear) is an alternative to SVM (RBF) for large data
sets where with/without nonlinear mappings gives
similar performance [12,33]. SVM (linear) requires
only one hyper parameter C which reduces the
training and testing times. A 5-fold cross-validation
was performed to select the hyper parameter. The
search for the optimal hyper parameter C was
performed on values C ∈ [2−5, 2−4, . . . , 26] for both
data sets. In this study we used the Liblinear 1.94
library [33] which uses a one-vs-all approach for
multiclass classification. This library has different
versions of regularized linear classification. We used
the L2 regularized linear classification with the L2
loss function because it is computationally fast. The
performance was similar for the other loss functions.

• Linear discriminant analysis (LDA): LDA is a useful
method when features are linearly independent and
normally distributed. LDA tries to maximize the
separation between classes by estimating classes
boundedness as a linear combination of the features.
LDA does not require any parameter tuning. As the

HT29 data set contained linearly dependent features,
we used the Moore-Penrose pseudo inverse for the
covariance matrix which is provided in the Matlab
implementation of LDA.

For performance evaluation of each classifier 20-fold
cross-validation was performed. The performance (accu-
racy) of a classifier is defined as the number of correctly
classified cells divided by the total numbers of the cells.
For SVM (RBF), SVM (linear), gentle boosting and LDA
classifiers, the time elapsed by the 20-fold cross-validation
was recorded by using the tic/toc functions available in
Matlab. The tic/toc functions resemble the wall-clock
time. The cross-validation time also includes the time of
the tuning of the parameters required by a classifier. The
implementation of joint boosting (CPA) is in Python while
other classifiers are implemented in C++ and called from
Matlab using wrapper functions. The Python implemen-
tation of joint boosting uses the time function which is
similar to the tic/toc functions of Matlab. Features of both
data sets were normalized and then scaled between 0 and
1. The analysis was performed on a Macbook Pro, Intel
core i5 CPU with 2.4 GHz processing speed using Matlab
version R2013a installed on OS X 10.9.3 (13D65).

Approach
To find out how the performance and computational
complexity of the classification methods varies with the
number of phenotypes, we constructed smaller numbers
of phenotypes by merging the most confused phenotypes.
First we carried out an analysis by using the SVM (Lin-
ear), SVM (RBF), gentle boosting and LDA classifiers
with all 14 and 10 phenotypes of HT29 and Hela cells
respectively. For each of the data sets, the four confusion
matrices obtained from each classifier were averaged (see
Additional file 1). We added the upper and lower trian-
gular parts of the averaged matrix to obtain a symmetric
matrix of the total confusions among phenotypes. Each
row of the symmetric matrix was divided by the sum of
that row to a get a normalized symmetric matrix for each
of the data sets. These normalized symmetric matrices
were converted into dissimilarity matrices by subtracting
from one.
We performed hierarchical clustering with the unweigh-

ted average distance (UPGMA) method to merge phe-
notypes. Figure 1 shows the dendrograms obtained as a
result of clustering. For example, the phenotypes LSC and
PA in case of HT29 cells are most similar as shown in
the dendrogram in the left panel of Figure 1. We merged
these two phenotypes and labeled them as one phenotype.
After merging, we were left with 13 phenotypes for HT29
cells on which we performed the analysis using all clas-
sifiers. Then, we again merged the next two most similar
phenotypes which were the new merged phenotype
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Figure 1 Dendrograms of merging of phenotypes based upon the dissimilarity matrix obtained from the averaged confusion matrix of
four classifiers: gentle boosting, SVM (linear), SVM (RBF) and LDA.

obtained in the last merging and M, as shown in the den-
drogram of HT29 cells in the left panel of Figure 1. This
process of merging and analysis continued until we were
left with only two phenotypes. The merging of the phe-
notypes was the same for all of the classifiers. We did not
employ joint boosting (CPA) in constructing of the dis-
similarity matrix because CellProfiler Analyst (CPA) does
not provide easy access to the confusion matrix. For joint
boosting (CPA), we used the same fixed merging of phe-
notypes which was obtained from the other four classifiers
(Figure 1).

Results and discussion
Results
Figure 2 shows that the performance of classification
methods increases with a decrease in the number of phe-
notypes for both data sets. In case of 14 phenotypes of
HT29 cells, accuracies of SVM (RBF), SVM (linear), gen-
tle boosting, joint boosting (CPA-50) and LDA are 88.4%,
87.8%, 88.6%, 82% and 86.6% respectively. For HT29
cells, there is no noticeable difference in the performance
among SVM (linear), SVM (RBF) and gentle boosting.
LDA is slightly worse than SVM (linear), SVM (RBF) and
gentle boosting in case of more than 7 phenotypes. Joint
boosting (CPA-50) suffers from lower performance except
for two and three phenotypes. In case of 10 phenotypes of
HeLa cells, accuracies of SVM (RBF), SVM (linear), gen-
tle boosting, joint boosting (CPA-50) and LDA are 78.5%,
77.3%, 75%, 69.8% and 75.9% respectively. For HeLa cells
SVM (RBF) outperforms the other classifiers while there
is no noticeable difference in performance among SVM
(linear), gentle boosting and LDA classifiers as shown in
the upper right panel of Figure 2. Previously, HeLa cells
were classified with SVM (RBF) by Fuchs et al. [8] in which
the performance was about 78% for 10 phenotypes which
is about the same as SVM (RBF) in our analysis. Joint

boosting (CPA-50) is the worst in performance on HeLa
cells compared with the other classifiers.
Cross-validation is computationally intensive depend-

ing upon the number of parameters that need tuning, the
number of cells, the number of features and the num-
ber of folds of the cross-validation. The lower left and
right panels of Figure 2 show the time of 20-fold cross-
validation for the HT29 and HeLa cells respectively. The
cross-validation times of the SVM (linear) and SVM (RBF)
include the learning time of the hyper parameters. The
cross-validation time increases with the number of phe-
notypes as shown in Figure 2. Gentle boosting, joint
boosting (CPA-50), SVM (linear), SVM (RBF) and LDA
took on average 265, 4892, 246, 2155 and 20 seconds
respectively for 20-fold cross-validation with 14 pheno-
types on HT29 cells as shown in the lower left panel of the
Figure 2. In case of HeLa cells, the time taken by 20-fold
cross-validation with 10 phenotypes was 16, 334, 17, 134
and 2 seconds for gentle boosting, joint boosting (CPA-
50), SVM (linear), SVM (RBF) and LDA respectively as
shown in the lower right panel of the Figure 2.
To put the cross-validation time in perspective, we

timed the calculation for (1) image segmentation and fea-
ture extraction and (2) the time to label all cells in a
screen. The software packages and data related to the
HeLa data set are available on [34]. We took the data
from this site and reran it to find the time taken by seg-
mentation and feature measurements. It took about 4321
seconds to segment and calculate features of 32778 cells
in 516 images. Each image size was 670×510 pixels. Since
we had unlabeled data of the HeLa data set, we trained
the classifiers with optimal parameters obtained through
cross-validation and noted the time used by the classifiers
to label all unlabeled data. On about 1.6 million cells, it
took about 7, 11, 20 and 324 seconds by gentle boosting,
SVM (linear), LDA and SVM (RBF) respectively.
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Figure 2 A comparison of performance and cross-validation time with all features of the HT29 and HeLa data sets.

Joint boosting (CPA-50) has the worst performance of
all classifiers under consideration. To find an explanation
for the bad performance of joint boosting (CPA-50), we
increased the number of regression stumps from 50, as
used by [7] and advised by the CellProfiler manual, to 200.
In case of 14 phenotypes of HT29 cells, joint boosting
(CPA) with 200 regression stumps gives an accuracy of
86% in 19047 seconds. In case of 10 phenotypes of HeLa
cells, joint boosting (CPA) with 200 regression stumps
reaches an accuracy of 75% in 1631 seconds. We tried
even more regression stumps, but did not find any fur-
ther substantial performance improvement. In any case,
by increasing the number of regression stumps, the accu-
racy of joint boosting (CPA) does become close to the
other classifiers as shown by the line for joint boosting
(CPA-200) in Figure 2. The increase in number of regres-
sion stumps increases the performance evaluation time
considerably and makes joint boosting (CPA) an order of
magnitude slower than its competitors.

LDA is the fastest among all classifiers in cross-
validation but suffers from low performance especially
in case of more than seven phenotypes. Cross-validation
time is the same for SVM (linear) and gentle boosting,
but gentle boosting suffers from lower performance in
the case of the HeLa data set as shown in Figure 2. For
the HT29 data set, SVM (linear) has an overall simi-
lar performance as compared to SVM (RBF) and gentle
boosting. SVM (RBF) is a slow method which consumes
time in a grid search of hyper parameters and there is lit-
tle performance gain over other classifiers in the case of
HT29 cells. For HT29 cells, the average performance dif-
ference between SVM (RBF) and SVM (linear) is 0.42%.
On average across all number of phenotypes SVM (linear)
is about 15 times faster than SVM (RBF) in the case of
HT29 data set. For HeLa cells, SVM (RBF) is slower than
SVM (linear), gentle boosting and LDA, but has better
performance. For HeLa cells, the average difference in per-
formance between SVM (RBF) and SVM (linear) is 1.41%.
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On average across all number of phenotypes SVM (linear)
is about 12 times faster than SVM (RBF) in the case of
HeLa data set.
Results in Figure 2 suggest that SVM classifiers overall

give better performance on both data sets with different
number of phenotypes. To find how accuracy depends on
the number of cells for the SVMclassifiers, we subsampled
data sets by (1/2, 1/4, 1/8, 1/16) using stratified sampling
on phenotypes. We used stratified sampling meaning that
each subsampled data set had the same fraction of cells of
each phenotype as the full data set. We randomly selected
50 times cells in each of these subsamples and performed
20-fold cross-validation on the selected cells. Both data
sets show a decrease in performance with a decrease in
number of cells as shown in Figure 3. For HT29 cells, the
average performance difference between SVM (RBF) and
SVM (linear) is 0.84% across different sizes of training
sets. For HeLa cells, SVM (RBF) has a performance gain
of 1% over SVM (linear) across different sizes of training
sets. Interestingly, performance differences are smaller for
the subset of 1/8 and SVM (linear) has a small advantage
for the subset of 1/16.
Our study finds that the difference in performance is

small between SVM (linear) and SVM (RBF) but that
SVM (linear) is faster than SVM (RBF) on both data
sets. This finding leads us to investigate further which of
these two classifiers is suitable in the iterative approach
of training classifiers and their performance evaluation
using cross validation. To answer this question, we inves-
tigated whether the misclassified cells by SVM (RBF) are
a subset of the misclassified cells by SVM (linear). We ran
100 times 20-fold cross-validation on both data sets. We
call a cell misclassified if in 80 or more of the 100 runs
it was wrongly classified. For the HT29 data set, we find
that 75% of the cells misclassified by SVM (RBF) are also

misclassified by SVM (linear). For HeLa data set, we find
that 87% of the cells misclassified by SVM (RBF) are also
misclassified by SVM (linear). Since the fraction of cells
misclassified only by SVM (RBF) is relatively small, this
suggests that it is safe to use the faster classifier in the
iterative improvement of the classifier. Once biologists are
satisfied with the labeled phenotypes of the training data
and classifier, they can use SVM (RBF) to classify all unla-
beled cells in whole data set. In this approach, the iterative
phase would be fast with SVM (linear) and final label-
ing (testing phase) would have the performance gain with
SVM (RBF).
In Figure 4, panel (a) and (c) show exemplary cells of

the condensed (C) and protrusion-elongation (P) pheno-
types from the HeLa data set. Panel (b) in Figure 4 shows
some of the cells labeled as condensed cells but looking
like protrusion-elongation cells and always classified as
the protrusion-elongation phenotype by the SVM classi-
fiers. Similarly, some of the cells labeled as protrusion-
elongation cells look like condensed cells and are always
classified as the condensed cells by the SVM classifiers as
shown in panel (d) of Figure 4. This figure can be com-
pared with Figure 1(E) of [8]. Perhaps, the cells in panels
(b) and (d) are accidentally labeled incorrectly.
Sometimes, biologists focus attention on the “good”

or more “prototypical” cells when evaluating a certain
feature. Thus, the idea of dropping the difficult to clas-
sify cells and only focusing on more prototypical cells
would be helpful for biologists in studying a certain phe-
notype. We explore the trade-off between the number
of cells included (not dropped) and classification accu-
racy. The posterior probability of the phenotype of each
cell provides a measure of certainty provided by classi-
fiers [30,33,35]. By thresholding the posterior probabil-
ity, we exclude cells that the classifier considers close to
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Figure 3 A comparison of performance of SVM (RBF) and SVM (linear) on HT29 and HeLa data sets with different sizes of training sets.
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Figure 4Misclassification of condensed (C) cells and protrusion-elongation (P) cells by SVM (RBF). (a) Correctly classified condensed cells
(b) Condensed cells misclassified as protrusion-elongation cells (c) Correctly classified protrusion-elongation cells (d) Protrusion-elongation cells
misclassified as condensed cells.

the decision boundary and explore the trade-off between
the fraction of cells included and the accuracy. We used
only the SVM based classifiers for posterior probability
estimates because these classifiers are good choices as
suggested by the performance results. The LIBSVM
implementation of SVM (RBF) applies the sigmoid func-
tion described in [36,37] to estimate posterior probabili-
ties as a post processing step. We applied the same post
processing step to obtain the posterior probabilities for
SVM (linear).We drop those cells for which themaximum
posterior probability over the phenotypes is lower than
a particular threshold (plotted on the x-axis in Figure 5).
Figure 5 shows the results obtained by thresholding of
the posterior probabilities from the HT29 and HeLa data
sets with 14 and 10 phenotypes respectively. It reveals an
increase in the accuracy of SVM (linear) and SVM (RBF)
for both data sets. We increased the probability threshold
to that value where all cells of a certain phenotype become
excluded. Thus, the increase in performance is not due
to all cells of a phenotype being removed. These results
suggest that biologists can use the posterior probabilities

to focus only on more prototypical cells while studying
features of phenotypes of cells.

Discussion
Several other studies have evaluated classification per-
formance based on images obtained in high-throughput
screening [4,9,10,12,38,39]. Classification methods are
mostly applied for the classification of sub-cellular pro-
tein localization, cell phase, cell phenotype and cellular
compounds on data sets obtained in high-throughput
screening [12,39]. Previous studies have applied different
methods for classification of different number of pheno-
types with different number of features [9,10,12,38,39].
The geometric, Haralick and Zernike features are the
most commonly used features for image-based high-
throughput screening of cells in different software pack-
ages, but with different segmentation, feature selection
and classification methods [5,6,24]. Our study recom-
mends software packages to include both SVM (linear)
and SVM (RBF) classifiers to help biologists in performing
a fast and efficient analysis of high-throughput data.
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We imagine a partition of labor of analyzing a high-
throughput screen in three steps as presented by Jones et
al. (2009) in Figure 1 [7]. The first step consists of image
segmentation and feature calculation. This is a compu-
tation intensive step and took about 72 minutes for a
subset of the HeLa data set consisting of 516 images of 670
by 510 pixels with 232K cells. While computation inten-
sive, this step typically does not involve much manual
labor. An investigator can try several image segmenta-
tion algorithms and judge the quality of the segmentation.
Importantly, this step is independent of later steps.
The second step involves iterative training of a classifier.

Here an investigator is presented with a set of randomly
selected images and the investigator provides the pheno-
types (labels) to the computer. From this initial set, the
classifier is trained and its performance (accuracy) is com-
puted with cross validation. This performance is evaluated
by the investigator who can then decide to label more cells
either randomly selected by the computer or selected from
certain phenotypes in which the investigator is interested.
Either way, as this iterative training of the classifier might
be done many times, the classification algorithm should
be relatively fast, possibly at the expense of a reduction of
testing accuracy. As we have shown SVM (linear) to be 13
times faster than SVM (RBF) at the expense of a reduc-
tion in accuracy of 0.9% (average over both data sets and
all number of phenotypes), we propose the use of SVM
(linear) for this second step.
The third step is classification of the phenotypes of all

cells in the screen. Given its small but clear classifica-
tion accuracy benefit, we advocate the use of SVM (RBF)
as others [8-10,26,38]. As an extension, we investigated
whether a classifier’s notion of its own classification accu-
racy as the posterior probabilities can be used to screen for
“high quality” cells. Indeed, as we show in Figure 5, thresh-
olding the posterior probabilities improves the objective
accuracy. Thus, in case an investigator has the luxury of a
large number of cells of a particular phenotype in a partic-
ular experimental condition, he or she can decide to focus
on the cells that have the particular phenotype with more
certainty.
We did not draw any conclusion from the similarities

among phenotypes shown in Figure 1. Some previous
studies find cell-to-cell variations among cells of the same
phenotype [40]. In future studies it would be interesting
to explore the performance of more classification meth-
ods on other image-based high-throughput data sets with
more focus on the similarities between phenotypes and
the cell-to-cell variations among cells of the same pheno-
type.

Conclusion
In summary, our study advocates that among the consid-
ered classifiers and data sets in this study, SVM (linear) is

the appropriate choice for high-throughput screening data
sets in iterative training of the classifier while SVM (RBF)
is the appropriate choice for the final classifier to classify
all cells including unlabeled cells.

Additional file

Additional file 1: Contains confusion matrices obtained from each of
the classifiers for both data sets. These matrices were used in creating
hierarchical clusters shown in Figure 1.
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