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With anti-PD-1 antibodies serving as a representative drug, immune checkpoint inhibitors
(ICIs) have become the main drugs used to treat many advanced malignant tumors.
However, immune-related adverse events (irAEs), which might involve multiple organ
disorders, should not be ignored. ICI-induced myocarditis is an uncommon but life-
threatening irAE. Glucocorticoids are the first choice of treatment for patients with ICI-
induced myocarditis, but high proportions of steroid-refractory and steroid-resistant
cases persist. According to present guidelines, tumor necrosis factor alpha (TNF-a)
inhibitors are recommended for patients who fail to respond to steroid therapy and suffer
from severe cardiac toxicity, although evidence-based studies are lacking. On the other
hand, TNF-a inhibitors are contraindicated in patients with moderate-to-severe heart
failure. This review summarizes real-world data from TNF-a inhibitors and other biologic
agents for ICI-induced myocarditis to provide more evidence of the efficacy and safety of
TNF-a inhibitors and other biologic agents.

Keywords: cardio-oncology, immune-related adverse events, ICI-induced myocarditis, biologic agents, TNF-
alpha inhibitor
1 INTRODUCTION

Immune checkpoint inhibitors (ICIs) restore the immune response of T cells to tumor cells, and immune
checkpoint blockade is currently a well-established treatment for a wide range of solid tumors. The
approved ICIs on the market include programmed death-1 checkpoint inhibitors (PD-1i), PD ligand-1
checkpoint inhibitors (PD-L1i), cytotoxic T-lymphocyte-associated protein-4 inhibitors (CTLA-4i), and
recently approved lymphocyte activation gene-3 inhibitor (LAG-3i) (1, 2). Novel immune oncology
targets, including T cell immunoglobulin and ITIM domain (TIGIT) (3), T cell immunoglobulin and
mucin domain molecule 3 (Tim-3) (4), B and T lymphocyte attenuator (BTLA) (5), CD47 (6), and other
molecules, are now under comprehensive and in-depth investigation and are undergoing clinical trials
for combination with PD-1/PD-L1 based therapies to overcome the issue of drug resistance and
disease progression.

Although these drugs represent a major milestone in the area of cancer treatment, they are
associated with a variety of immune-related adverse events (irAEs) that may affect almost all organs,
lead to drug discontinuation, and finally mitigate overall therapeutic efficacy (7). Among the affected
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organs, ICI-induced myocarditis is not the most common type,
with an incidence of 0.27% to 1.14% (8, 9). However, ICI-
induced myocarditis is one of the most feared irAEs because
the mortality rate is approximately 40% (10). According to the
recommendations of the American Society of Clinical Oncology
(ASCO), European Society for Medical Oncology (ESMO),
Society for Immunotherapy of Cancer (SITC), and National
Comprehensive Cancer Network (NCCN), steroids are the
initial treatment for ICI-induced myocarditis. When patients
are refractory or become resistant to steroids, steroid pulse
therapy and the addition of immune suppressive agents,
including infliximab, mycophenolate, antithymocyte globulin,
intravenous immunoglobulin, abatacept or alemtuzumab
should be considered. According to the guidelines, infliximab
is associated with heart failure and contraindicated in patients
with moderate-severe heart failure (11–14).

Biologic agents have been widely used in various autoimmune
disorders due to their targeted inhibition of signaling to alleviate
the systemic side effects of steroids and improve efficacy. Tumor
necrosis factor-a (TNF-a), interleukin-17 (IL-17), interleukin-6
(IL-6), interleukin-4 (IL-4) antibodies and other drugs have been
proven useful in treating rheumatoid arthritis (RA), psoriasis,
cytokine release syndrome (CRS), atopic dermatitis (AD) and
other autoimmune diseases (15–18). ICI-induced myocarditis is
also provoked by the excessive activation of the immune system,
ASCO, ESMO, SITC and NCCN all have suggested the choice of
biological agents. However, the guidelines are based on expert
consensus without strong evidence, and as mentioned in
the guidelines, these recommendations might be based
on the experience of cardiac transplant rejection (11, 12).
More importantly, infliximab is contraindicated in patients
with moderate-severe heart failure, but is simultaneously
recommended in patients with ICI-induced myocarditis, the
latter of whom commonly suffer from severe heart failure.

Therefore, we searched for studies focusing on TNF-a
antibodies and other biological agents that were prescribed to
patients with ICI-induced myocarditis, aiming to provide more
clinical information for the selection of biological agents, time of
intervention, efficacy and safety.
2 TNF-Α ANTIBODIES

2.1 Cellular Signaling Mediated by TNF-a
and Its Receptors
The TNF superfamily consists of 19 ligands and 29 receptors.
Among them, TNF-a represents one of the most potent
proinflammatory cytokines (19). In humans, TNF-a is present
in the membrane form (mTNF-a) or soluble form (sTNF-a). If
the extracellular domain of mTNF-a is cleaved by TNF-a
cleaving enzyme (TACE; ADAM17), it is released as sTNF-a
(20). TNF-a functions by binding to two structurally distinct
membrane receptors, TNFR1 or TNFR2. TNFR1, which contains
an intracellular death domain (DD), is expressed on almost every
cell type. The expression of TNFR2 can be induced and is limited
to cells of the immune system, endothelial cells, and nerve cells
Frontiers in Immunology | www.frontiersin.org 2
(21). TNFR1 is mainly activated by sTNF-a, whereas mTNF-a
shows greater affinity for TNFR2 (22).

The stimulation of TNFR1 or TNFR2 activates distinct
cellular signaling responses. After binding to its ligand, TNFR1
recruits TNFR-associated death domain (TRADD), TNF-a
receptor associated factor 2 (TRAF2), receptor-interacting
protein (RIP) kinase, and inhibitors of apoptosis proteins
(IAPs). The TNFR1/TRADD/TRAF2/RIP/IAPs complex
activates MAPK- and inhibitor of kappa B kinase (IKK)-
dependent pathways. MAPKs, mainly c-Jun N-terminal kinase
(JNK) and p38 isoforms, activate activation protein-1 (AP-1) and
other transcription factors. IKKs transduce the signal through
the activation of NF-kB (19, 23). Alternatively, the sequential
recruitment of TRADD, Fas-associated death domain (FADD),
and caspase-8 leads to the activation of caspase-3, which
ultimately induces apoptosis (24). In comparison, TNFR2 does
not contain a DD and is unable to bind TRADD and initiate the
subsequent apoptosis pathway. However, without TRADD,
TNFR2 also activates the MAPK and NF-kB pathways (19,
23). TNFR2 induces signal transduction through the PI3K/
Akt-dependent pathway and modulates downstream effectors
(25). The crosstalk between TNFR1 and TNFR2 may be
mediated by TRAF2 degradation after prolonged activation,
which negatively regulates the pathways of the immune
response but enhances TNFR1-induced apoptosis (26, 27).
Notably, mTNF-a is capable of reverse signaling mainly
via TNFR2. Although the mechanism is not well understood,
mTNF-a can activate the MAPKs JNK and p38 and downstream
transcription factors in the nucleus (28, 29) (Figure 1).

2.2 Effect of TNF and Its Antagonists on
Primary Tumors
TNF was named due to its early promise as a powerful anticancer
cytokine, but its role in cancer became quite paradoxical in
subsequent research. TNF was first reported to be a factor having
the ability to destroy the tumors (30). High doses of TNF caused
major destruction of the vascular bed and induced haemorrhagic
necrosis in both syngeneic and xenograft tumor models in mice
(31, 32). However, systemic TNF injection led to symptoms
similar to high doses of endotoxin (32, 33). Therefore, a local
approach of isolated limb perfusion (ILP) was created (34).
However, TNF does not kill malignant tumor cells directly,
and a local TNF injection alone is ineffective (35).
TNF must be used in combination with chemotherapy to
increase tumor feeding arterial permeability and to increase
tissue concentrations of chemotherapy; meanwhile, its
metabolic inhibitors inactivate the downstream survival and
inflammatory pathways to induce tumor apoptosis (36, 37).

In contrast, accumulating evidence has shown that both
cancer cells and the tumor microenvironment produce TNF in
an autocrine or paracrine manner. Many cancer cells
constitutively secrete picogram quantities of TNF, and host
cells, such as myeloid cells, also produce TNF (38, 39). Cancer-
related inflammation, of which TNF is a major mediator,
promotes tumor development and progression. In malignant
cells, TNF causes DNA damage and promotes survival and
July 2022 | Volume 13 | Article 922782
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proliferation (19, 40). In myeloid cells, TNF leads to the
generation of a tumor-associated macrophage phenotype, that
is associated with immune escape and tumor promotion (41, 42).
In the tumor microenvironment, continuous low concentrations
of TNF contribute to angiogenesis, which promotes primary
tumor growth and metastases, leukocyte infiltration, and pleural
effusion (36, 43). TNF also induces resistance to chemotherapy
(44) (Figure 2). Accordingly, TNF was gradually viewed as a
target for cancer treatment. In clinical trials, TNF-a antibodies
were not highly effective, while they were safe for use in patients
with cancer. Phase I and II clinical trials using the TNF-a
antibodies infliximab or etanercept for the treatment of
advanced cancer revealed 20% disease stabilization or better
response (45–48). Therefore, TNF-a antibodies seem to exert
no effect on increasing the risk of tumor growth in patients
with cancer.

2.3 TNF-a Biologics in the Non-
Inflammatory Condition, Ischemic
Cardiomyopathy Induced Heart Failure
irAE is a new disease area that has emerged in recent years following
the wide use of ICIs (7). Before the appearance of high-grade
evidence supported by solid clinical trials, guidelines recommended
Frontiers in Immunology | www.frontiersin.org 3
the use of the TNF-a antibody infliximab to treat ICI-induced
myocarditis. However, these guidelines specifically highlight the risk
of heart failure caused by TNF-a antibodies (11, 12). This issue is
quite interesting and confusing, since patients with ICI-induced
myocarditis inevitably have cardiac dysfunction, and moderate-
severe heart failure would be common, especially if the patients are
at the disease stage when steroids are not sufficient (49). After its
first approval by the Food and Drug Administration (FDA) in 1998,
clinicians have accumulated a wealth of experience in the use of this
TNF-a antibody (50). Therefore, we reviewed the history of TNF-a
antibodies in drug development for heart failure and RA as a
reference to identify the reason for such a warning in the
recommendations and its applicability to ICI-induced myocarditis,.

At the end of the 20th century, the plasma level of TNF-a was
found to be elevated in patients with heart failure, and TNF-a
contributed to systolic dysfunction, hypertrophy, and myocardial
apoptosis in the failing heart (51, 52). Based on these findings,
several TNF-a antibodies were initiated in clinical trials as
treatments for patients with heart failure. In the Phase I dose
escalation trial of etanercept in 18 patients with NYHA class III
heart failure, 4 mg/m2 and 10 mg/m2 etanercept resulted in
significant improvements in quality-of-life scores, 6-minute
walking distance, and ejection fraction at 14 days after
etanercept injection compared to the placebo (53). However, in
the Phase III RECOVER and RENAISSANCE trials, etanercept
FIGURE 2 | The relationship between TNF and tumour. TNF was first
discovered as an anti-tumour factor (28). However, it mainly caused major
destruction of the vascular bed rather than killing the malignant cells directly,
and its clinical efficacy was limited (29, 32, 33). In recent years, growing
evidence showed that both cancer cells and tumour microenvironment
produce TNF in an autocrine or paracrine manner. In malignant cells, TNF
could cause DNA damage, help survival and proliferation (17, 38). In myeloid
cells, TNF led to the generation of tumour-associated macrophage
phenotype, which was associated with immune escape and tumour
promotion (39, 40). In tumour microenvironment, continuous low
concentrations of TNF contributed to angiogenesis, which promoted primary
tumor growth and metastases, leukocyte infiltration, and pleural effusion (34,
41). TNF could also induce resistance to chemotherapy (42).
FIGURE 1 | Cell signaling pathways activated by TNF. TNFR1 forms a
complex with TRADD, TRAF2, RIP, and IAP, leading to the activation of NF-
kB (17). JNK and p38MAPK are also in the downstream of TNFR1 and
TRAF2, leading to the activation of AP-1 and other transcription factors (21).
The recruitment of TRADD, FADD, and caspase-8, activates caspase-3,
which in turn induces apoptosis (22). TNFR2 can also activate MAPK and NF-
kB pathways (17, 21). TNFR2 can also realize signal transduction through
PI3K/Akt-dependent pathway (23).
July 2022 | Volume 13 | Article 922782
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showed no benefit over the placebo in improving the clinical
status. The risks of death and chronic heart failure-related
hospitalization were even higher. The trials were terminated
due to the lack of benefit and potential cardiac safety issues (54).
Similarly, in the Phase III ATTACH trial of another TNF-a
antibody, infliximab, the percentage of death and heart failure-
related hospitalization were not improved, although plasma
levels of C-reactive protein (CRP) and IL-6 decreased after
each injection. Even in the high dosage group treated with 10
mg/kg infliximab, the risks of death and heart failure-related
hospitalization were significantly elevated (55).

Regarding the reason for treatment failure in these trials, the
majority of patients with heart failure had ischaemic
cardiomyopathy (61%-63% in the RECOVER and
RENAISSANCE trials, and 60%-71% in the ATTACH trial) at
baseline, and the inflammatory process was likely not the core
reason for heart failure in this patient group. Additionally, a
physiological dose of TNF-a might exert a protective effect on
hypoxic injury in the heart, whereas overinhibition of TNF-a
would eliminate this effect (56). Etanercept may prolong the
exposure of cardiac tissue to TNF-a by binding to circulating
TNF-a and retaining it in the circulation, ultimately leading to
cardiac toxicity (57). Similarly, infliximab causes cell lysis in the
presence of complement (58). Additionally, a transient but
significant increase in TNF-a levels was observed after each
infliximab injection, although the authors claimed that the
detected TNF-a was not biologically active (55).

2.4 TNF-a Biologics in the Inflammatory
Condition, RA
In contrast, TNF-a antibodies have been used to treat millions of
patients with RA, but their association with cardiovascular events
has not been confirmed. Compared to normal subjects, the risk
of cardiovascular events is approximately 1.5-2-fold higher in
patients with RA (59). According to the US National Data Bank
for Rheumatic Diseases, heart failure was significantly less
common in anti-TNF-treated patients (2.8%) than in patients
treated with disease-modifying antirheumatic drugs (DMARDs)
(3.9%) after adjustment for demographic characteristics (60). In
a German biologics register, TNF-a inhibitors (etanercept,
infliximab, or adalimumab) were shown to be more likely to be
beneficial than harmful with regard to the risk of heart failure in
patient with RA (61). In another Swedish regional register, the
incidence rate of the first cardiovascular disease event was lower
in anti-TNF-treated patients (14.0/1000 person-years) than in
those who were not treated (35.4/1000 person-years) (62). The
results from the British Society for Rheumatology Biologics
Register showed a reduction in the incidence of myocardial
infarction in patients with RA who responded to anti-TNF-a
therapy (3.5/1000 person-years in responders versus 9.4/1000
person-years in nonresponders) (63).

As mentioned above, anti-TNF-a therapy failed in clinical
trials and was even associated with a deterioration of heart failure
in patients who were mainly diagnosed with ischaemic
cardiomyopathy. Therefore, TNF-a antibodies should be
administered to patients with ICI-induced myocarditis with
Frontiers in Immunology | www.frontiersin.org 4
caution. However, a similar condition was not observed in
patients with RA, in which inflammatory activation might play
a more important role in the development of cardiovascular
disease, such as ICI-induced myocarditis, and the risk of
cardiovascular diseases was not increased after anti-TNF-a
therapy (64). We next asked what is the real-world usage of
TNF-a antibodies in patients with ICI-induced myocarditis.

2.5 TNF-a Antagonists for
ICI-Induced Myocarditis
ICI-induced myocarditis is one of the life-threatening irAEs,
although it is uncommon. The mortality of this adverse event is
approximately 50% (65). ICI-induced myocarditis was reported
to occur in 0.06-1.14% of ICI-treated patients. However,
subsequent studies suggested that the incidence was likely
underestimated because its diagnosis is challenging and data
from prospective trials are limited (66). According to previous
studies, ICI-induced myocarditis has various manifestations,
ranging from an increased serum troponin concentration
without obvious symptoms, to chest pain, shortness of breath,
arrhythmias, and heart failure (67). The combination of anti-PD-
1 and anti-CTLA-4 therapy has been identified as one of risk
factors associated with ICI-induced myocarditis (66).
Additionally, patients with pre-existing cardiovascular disease
tend to suffer more severe ICI-induced cardiovascular toxicity
(7). Moreover, patients with ICI-induced myocarditis patients
have a higher prevalence of traditional risk factors of
cardiovascular disease, such as diabetes and a higher body
mass index (9). Genetic background and additional cardiotoxic
drugs might also elevate the risk. For instance, germline deletion
of Pdcd1 in BALB/c mice results in dilated cardiomyopathy,
while C57BL/6 mice with Pdcd1 knockout present no cardiac
phenotype (68, 69). The detailed mechanisms of cardiotoxicity
caused by ICIs remain to be investigated. The T cell-mediated
immune response plays a role in the pathogenesis of ICI-induced
myocarditis (70). A histopathological study showed the
myocardial infiltration of CD4+ and CD8+ T lymphocytes and
macrophages and myocyte death (67). PD-1 and CTLA-4
blockade undoubtedly play important roles in regulating
autoimmune responses against myocardium. PD-1-/- mice have
diffuse deposition of immunoglobulin G on the surface of
cardiomyocytes, causing severe dilated cardiomyopathy and
sudden death by congestive heart failure (69). An anti-CTLA-4
antibody also promotes the activation of cardiac-reactive T cells
by reducing the number of regulatory T cells that constitutively
express CTLA-4 (65). In addition, Johnson and colleagues
hypothesized that lymphocytic infiltration of the myocardium
might be related to common targeted antigens between cardiac
myocytes and tumors. They showed that T cells infiltrating the
heart were identical to those in tumors and skeletal muscle using
T cell receptor next-generation sequencing (71). To date,
management of ICI-induced myocarditis is based on treatment
strategies extensively used for other ICI-induced adverse events,
including cessation of ICIs, supportive management and
glucocorticoids (70). However, steroids alone may not be
sufficient for ICI-induced myocarditis. Steroid failure has been
July 2022 | Volume 13 | Article 922782
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classified into steroid-refractory and steroid-resistant. Steroid-
refractory was defined as no improvement or aggravation of
related symptoms after the initial use of steroids, and steroid-
resistant refers to the recurrence of symptoms during steroid
tapering after an initial response (72). According to Wang and
colleagues, approximately two-thirds (16/24) of patients with
ICI-induced myocarditis were classified as corticosteroid-
resistant type due to rebounding troponin cTnT levels during
corticosteroid tapering (73). Even early- and high-dose steroids
may be not sufficient in some conditions, and the mortality rate
remains high in patients receiving steroids (74, 75). Conditions
including continuing or aggravation of heart failure, decreased
left ventricular ejection fraction, ventricular arrhythmia or
complete atrioventricular block, a lack of improvement in
troponin levels or the occurrence of other severe irAEs indicate
additional immunosuppressive therapy (76). Therefore, effective
therapeutic regimens after steroid failure have been explored. As
a drug with a long history and multiple indications approved in
autoimmune diseases, infliximab has been used to treat ICI-
induced myocarditis.

Since the New England Journal of Medicine first published
the use of infliximab for fulminant myocarditis after immune
checkpoint blockade in 2016, results from 18 patients using
TNF-a antibodies for ICI-induced myocarditis have been
reported (Tables 1 and 2) (71, 77–86). The average age of
Frontiers in Immunology | www.frontiersin.org 5
these patients was 68 years; 9 of them were male. The tumor
types included melanoma, urothelial carcinoma, ovarian
adenocarcinoma, renal cell carcinoma, and pulmonary
adenocarcinoma. Ten received PD-1 single-agent treatment,
and 8 of them received PD-1 and CTLA-4 combination
therapy. Symptom onset ranged from 1 week to 4 months after
the first ICI treatment, and they all manifested as grade 4 ICI-
induced myocarditis. Up to 7 patients experienced myocarditis
accompanied by myositis. TNF-a antibodies were generally
added within 3 days after steroid failure, and the dose of 5 mg/
kg was mainly adopted.

During the average follow-up of 123.2 days, 10 patients died,
and 4 of them died of cardiovascular causes. Three of the 4
patients underwent autopsy, and pathological findings revealed T
cells and macrophage infiltration and accumulation in the
myocardium tissue. Among the 12 patients for whom the irAE
status was reported after treatment, 8 of them experienced an
improvement in ICI-induced myocarditis (66.7%). In all patients
with available echocardiographic data, the EF was significantly
lower than 50%, and these patients should be classified as having
moderate-to-severe heart failure, but anti-TNF-therapy was still
adopted. In a previous study by Cautela and colleagues, the
authors raised a concern that infliximab was associated with a
greater risk of cardiovascular death (50%) than other intensified
immunosuppressive therapies (19%) when first-line steroid
TABLE 1 | Articles using anti-TNF-therapy for ICI-induced myocarditis.

Authors Year Patient Age Gender Tumour ICIs Onset Grade Other Organs

Johnson DB et al.
(71)

2016 1 63 M Melanoma Nivolumab+Ipilimumab 15
days

4 Myositis

Frigeri M et al. (77) 2018 2 76 F Pulmonary adenocarcinoma Nivolumab 7
cycles

4 N/A

Agrawal N et al. (78) 2019 3 67 M Melanoma Nivolumab 3
cycles

4 Optic neuritis

Saibil SD et al. (79) 2019 4 67 M Melanoma Nivolumab+Ipilimumab 13
days

4 Rhabdomyositis

Gallegos C et al.
(80)

2019 5 47 F Melanoma Nivolumab+Ipilimumab 3
months

4 N/A

Shah M et al. (81) 2019 6 73 M Urothelial carcinoma Nivolumab+Ipilimumab N/A 4 Myositis
Padegimas A et al.
(82)

2019 7 53 F Ovarian adenocarcinoma Pembrolizumab 4 days 4 Neurological
8 62 F Renal cell carcinoma Nivolumab 5

weeks
4 N/A

Giancaterino S et al.
(83)

2020 9 88 M Melanoma Nivolumab 22
days

4 N/A

Zhang RS et al. (84) 2021 10 62 2M, 2F 2 melanoma,1 renal cell carcinoma,1 ovarian
adenocarcinoma

3 Nivolumab,1
Pembrolizumab

N/A 4 N/A
11 N/A 4 N/A
12 N/A 4 N/A
13 N/A 4 N/A

Lipe DN et al. (85) 2021 14 70 M Urothelial carcinoma Pembrolizumab 25
days

4 Myositis

15 81 F Renal cell carcinoma Nivolumab+ipilimumab 92
days

4 Myositis

16 66 F Renal cell carcinoma Nivolumab+ipilimumab 132
days

4 Myositis

17 74 F Melanoma Nivolumab+ipilimumab 30
days

4 Myositis

Kadokawa Y et al.
(86)

2021 18 66 M Kidney cancer Nivolumab+ipilimumab 34
days

4 DIC,skin
July 2
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F, female; M, male.
N/A, not applicable.
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treatment failed (76). However, the present reported
cardiovascular mortality rate of 22.2% (4/18) was not higher
than the rate of 19% in a larger population. Therefore, the
existing evidence is not sufficient to conclude that TNF-a
inhibitors would accelerate or worsen heart failure in ICI-
induced myocarditis. In the Dutch Melanoma Treatment
Registry, the survival advantage to irAE was abrogated when
anti-TNF is administered for steroid-refractory toxicity, mainly
in the context of colitis (median overall survival 17 months in
anti-TNF ± steroids versus 27 months in steroids only). Second-
line immunosuppression other than anti-TNF was also used, but
the median overall survival was not reported and compared (87).
Therefore, it is hard to say whether the shortened survival is due
to over-inhibition of immune activation against tumor growth,
or negative effects solely caused by anti-TNF therapy.
Furthermore, only steroids is not enough in severe life-
threatening ICI-induced myocarditis.

Comparison between the patients who finally survived and
died from ICI-induced myocarditis progression or other causes
was shown in Table 3. Although the ejection fraction was within
the range of heart failure with mid-range ejection fraction
(HFmrEF) in all three group, the troponin level was
significantly higher in patients who died (1,539 ng/L in
survival group, 14,202 ng/L in all-cause mortality group,
21,461 ng/L in cardiovascular mortality group), indicating
Frontiers in Immunology | www.frontiersin.org 6
more severe cardiac injury in these patients. The onset time of
symptoms after initiation of ICI was shorter in patients who died
than in patients who survived (33 days versus 79 days). In
different studies, the median time to symptom onset after ICI
usage ranges from 16 to 65 days (88). The early onset of
myocarditis might be related to the more severely damaged
myocardium. Concurrent myocarditis and myositis is
commonly observed after ICI treatment. In a study of 60
patients with ICI-induced myocarditis, up to 46.7% (28/60)
had myositis, and 21.7% (13/60) had myasthenia gravis (MG)
concurrently (76). Additionally, among patients with MG, the
most common neuromuscular irAE, 16.2% and 8.8% of patients
had accompanying myositis and myocarditis, respectively.
Furthermore, the presence of all 3 toxicities was associated
with a significantly higher risk of death (62.5%) than
myocarditis alone (33.3%) (89). Similarly, 71.4% (5/7) of 7
patients with concurrent ICI-induced myositis and myocarditis
who were treated with TNF-a inhibitors died, a value that is
higher than 45.5% (5/10) of patients with myocarditis alone.
Previous research identified combination therapy of anti-PD-1
with anti-CTLA-4 as a risk factor for ICI-induced myocarditis
(66). In the TNF-a-treated patients, 75% who died of
cardiovascular events received combination therapy compared
with 50% of patients who survived. But the present sample size is
too small to perform a convincing statistical analysis.
TABLE 2 | Treatment strategies and outcomes in infliximab treated ICI-induced myocarditis patients.

Patient Treatment strategy Dosage Time
interval

Follow-
up

irAE
improvement

CV
mortality

All-cause
mortality

1 IV methylprednisolone 1 mg/kg for 4 days and infliximab 5mg/kg 0 day In-
hospital

N Y Y

2 Methylprednisolone 5mg/kg/d, plasmapheresis, IVIG 1g/kg D4, infliximab D6, D27,
D39

5mg/kg 2 days 5+
months

Y N N

3 IV methylprednisolone 1g for 3 days, prednisone 80 mg twice daily for 5 days, 2
infliximab infusions after recurrence

N/A N/A 4+
months

Y N N

4 Methylprednisone 200mg on D1, then 1000mg daily for 3 days, infliximab and IVIG
D4 after progression

5mg/kg 3 days D18 N Y Y

5 Methylprednisolone 500 mg iv twice daily 5 days, infliximab 2 infusions 10mg/
kg

0 day 1 week N Y Y

6 IV methylprednisolone 1 mg/kg twice daily with mild response, then infliximab
followed by 12 rounds of plasmapheresis, and subsequent IVIG

N/A A few
days

19
months

Y N Y

7 50 mg prednisone for 1 month then progressed, 1g methylprednisolone for 3 days
but recurred upon tapering, then infliximab

5mg/kg 3 days 9+
months

Y N N

8 IV methylprednisolone 1mg/kg worsened, then 2g methylprednisolone for 3 days and
1 dose of infliximab

5mg/kg N/A 2
months

Y N Y

9 Prednisone 40mg D1-4, methylprednisolone 125mg D5-6, 1g D7, then infliximab D9 5mg/kg 9 days 15 days N Y Y
10 Pulse dose steroids, then infliximab 5mg/kg 3 days 1 year Y N N
11 Pulse dose steroids, then infliximab 5mg/kg 3 days 3

months
N/A N Y

12 Pulse dose steroids, then infliximab 5mg/kg 1 year 1 year Y N N
13 Pulse dose steroids, then infliximab 5mg/kg 3 days 3

months
N/A N Y

14 High-dose glucocorticoids (1-2 mg/kg) then infliximab N/A N/A 5 days N/A N/A Y
15 High-dose glucocorticoids (1-2 mg/kg) then infliximab N/A N/A In-

hospital
N/A N N

16 High-dose glucocorticoids (1-2 mg/kg) then infliximab N/A N/A In-
hospital

N/A N N

17 High-dose glucocorticoids (1-2 mg/kg) then infliximab N/A N/A 26 days N/A N/A Y
18 IV prednisolone: D34-36 80mg; Methylprednisolone: D37-39 1000mg; D40-44

80mg; Infliximab: D40/D54 425mg
5mg/kg 6 days 1

month
Y N N
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In addition to second-line treatment in patients in whom
steroid failed, anti-TNF-therapy was also proposed to be used
earlier in first-line treatment or even for the prevention of ICI-
induced cardiotoxicity. Michel and colleagues documented that
TNF-a blockade may prevent the detrimental effect of anti-PD-1
therapy while preserving the anticancer efficacy in tumor-
bearing mice (90). In 2021, Bermas and colleagues proposed a
new perspective in the journal Circulation that a new and more
aggressive treatment paradigm for ICI-induced myocarditis
should be developed based on past experience in treating RA
(70). In patients with RA, the use of more aggressive DMARDs
early in the disease course, instead of starting with nonsteroidal
anti-inflammatory drugs, substantially improved RA outcomes
(91). In patients with grade 4 myocarditis, the authors
recommended initiating therapy with pulse steroids and
plasmapheresis and adding biological agents upfront as first-
line treatment (70). Two patients initiated infliximab upfront,
with no gap between pulse steroids and TNF-a therapy, without
waiting for the efficacy of steroids. However, they both died
shortly after treatment (71, 80). A 63-year-old man had
profound ST-segment depression, intraventricular conduction
delay, myocarditis and myositis 15 days after nivolumab
treatment. Although intravenous methylprednisolone at 1g for
4 days, and infliximab at 5 mg/kg were given in a timely and
simultaneous manner, the patient developed a complete heart
block and died of cardiac arrest in the hospital (71). The other
47-year-old woman developed supraventricular tachycardia 3
months after nivolumab treatment, but it was ignored. One
month later, she developed severe myocarditis and heart failure
and was treated with 1 g of intravenous methylprednisolone for 5
days, together with 10 mg/kg infliximab for 2 days. However, her
clinical course was complicated by cardiogenic shock, and she
finally palliated and died in the hospital (80). Considering the
high mortality rate of ICI-induced myocarditis, the treatment
paradigm should undoubtedly be improved, but further studies
are needed to determine whether the above modification
is appropriate.
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In summary, although infliximab does not increase
cardiovascular risk in RA patients, the current evidence is not
strong enough to support neither the conclusion that infliximab
is also safe in steroid-resistant and steroid-refractory ICI-
induced myocarditis, nor it will accelerate or worsen heart
failure. Further studies regarding TNF-a inhibitors are
necessary. If the concern about its cardiovascular risk can not
be solved, other newly developed immunosupressive biologic
agents should be investigated more in the future.

2.6 Biologic Agents of Other Targets in
ICI-Induced Myocarditis
CTLA-4 Agonists
CTLA-4 and CD28 are homologous receptors expressed by T
cells, sharing CD80/CD86, a pair of ligands expressed on the
surface of antigen presenting cells (APCs). However, they
mediate opposing functions in T cell activation. CD28
mediates T cell co-stimulation, while CTLA-4 serves to inhibit
T cell responses (92). Abatacept, a CTLA-4 immunoglobulin
fusion protein, binds to CD80/CD86 on APCs and leads to T cell
anergy (93). Its close relationship with the mechanisms of
immunotherapy makes it likely to reverse pathways activated
by ICI, and become a promising candidate for steroid-refractory
ICI-induced myocarditis.

In mouse models of ICI-induced myocarditis, the
intervention of abatacept led to a reduction in cardiac immune
activation and an increase in survival (94). Cases reporting the
administration of abatacept in ICI-induced myocarditis have
been published in recent years. It was first used in a 66-year-old
woman with metastatic lung cancer, who had concurrent
myositis and myocarditis after ICI treatment, and failed to
respond to highdose methylprednisolone and plasmapheresis.
After the administration of abatacept 500mg every 2 weeks, for a
total of 5 doses, her troponin T level rapidly decreased from
6,000 ng/L and symptoms of myocarditis and myositis
progressively decreased (95). Another 57-year-old renal cell
carcinoma male also had concurrent myositis and myocarditis
TABLE 3 | Comparison between survivors and non-survivors.

Survival (n=8, 44.4%) All-cause mortality (n=10, 55.6%) Cardiovascular mortality (n=4, 22.2%)

Average overall survival, days 216.7 89.1 11.8
Age, years 66.6 66.8 66.3
Male, % 33.3 62.5 75
CVD risk factors, n 2 2 1
Troponin, ng/L 1,539 14,202 21,461
Ejection fraction, % 40 44 46.5
Steroid pulse therapy, % 62.5 50 50
VT, n 2 1 0
Complete AV block, n 2 4 2
Cardiogenic shock, n 1 4 1
PD-1+CTLA-4 combination, % 50 62.5 75
Onset time, days 78.7 32.9 35
Myositis, n 2 5 2
Other organs involvement, n 3 0 0
Time before anti-TNF, days 3.5 4.5 3
High dose infliximab, n 0 1 1
AV, atrioventricular; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; CVD, cardiovascuar disease; PD-1, programmed death-1; TNF, tumor necrosis factor.
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after PD-1 and CTLA-4 treatment. Despite high-dose
glucocorticoids, the ICI-induced myositis and myocarditis
worsened. Abatacept and mycophenolate mofetil resulted in
normalized troponin I, decreased ventricular tachycardia, and
alleviated symptoms (96). Additionally, a 25-year-old thymoma
patient had cardiogenic shock after pembrolizumab treatment.
Methylprednisolone 1g/d and addition of mycophenolate-
mofetil had limited efficacy. Initiation of abatacept and
ruxolitinib reversed the disease course and the patient fully
recovered clinically, with ejection fraction restoring to 60% (97).

Therefore, use of abatacept in ICI-induced myocarditis is
worth expecting, especially considering its efficacy in concurrent
myositis and myocarditis. However, the risk of tumor relapse
should also be noted. Two patients experienced tumor relapse 3
months and 4 months after abatacept treatment, respectively (96,
97). The duration of follow-up was only 1 month in another
patient, the possibility of tumor relapse could not be excluded
(94). Like other immunosuppressant, further research is needed
to assess the optimal drug mix, dosage and duration of abatacept,
in order to mitigate the potential lethality associated with irAEs
while preserving antitumor beneficial effects. CD86 receptor
occupancy saturation might be a reference for the timing and
dosage of abatacept (97). Two prospective clinical trials have
been underway to assess the safety and efficacy of abatacept in
ICI-induced myocarditis (NCT05335928 and NCT05195645).

2.6.2 IL-6 Receptor Inhibitors
IL-6 is recognized as another proinflammatory cytokine that is
produced in the pathogenesis of various inflammatory diseases.
Formation of the IL-6/IL-6R/gp130 hexamer leads to the
initiation of Janus kinase (JAK)/signal transducers and
activators of transcription (STAT) signaling, a pathway
involved in many crucial biological processes, including cell
proliferation, differentiation, apoptosis, and immune regulation
(98, 99). IL-6-mediated STAT3 activation in the tumor
microenvironment and cancer cells is associated with tumor
cell proliferation, angiogenesis and metastasis (100, 101). In
addition to the JAK/STAT pathway, IL-6 can induce the
differentiation of pathogenic TH17 from naive T cells, and
inhibit the Foxp3+ regulatory T cells (102). Tocilizumab is a
humanized monoclonal antibody with a high affinity for human
IL-6 (103). In 2017, tocilizumab was approved by the FDA to
treat cytokine release syndrome (CRS) after chimeric antigen
receptor T-cell (CAR-T) immunotherapy, another immune
disorder occurring after T-cell activation (104, 105).
Additionally, its efficacy against irAEs has been preliminarily
documented. The first case was a 74-year-old woman who
suffered from sustained polymorphic ventricular tachycardia,
elevated N-terminal pro-B type natriuretic peptide (NT-
proBNP) and cardiac troponin I (cTnI) levels, and an impaired
ejection fraction (EF) of 40%, despite treated with steroid pulse
therapy and intravenous immunoglobulin therapy. Tocilizumab
was administered at a dose of 8 mg/kg; 4 weeks later, her cTnI
level decreased to normal, ventricular rhythm transferred to
sinus rhythm, and EF recovered to 60% (106). The other 57-
year-old male patient experienced complete atrioventricular
Frontiers in Immunology | www.frontiersin.org 8
block although steroid pulse therapy was administered. After
the tocilizumab injection, his symptoms, inflammatory
biomarkers, and cardiac biomarkers significantly improved
(107). For irAEs with other organ involvement, tocilizumab
also produced satisfying results. According to a systemic
review, 91 patients had used tocilizumab for various irAEs as
of 2021. Among these patients, 76 had irAE outcomes, and up to
87% (66/76) of them experienced irAE improvements (108).
Considering its excellent performance and safety profile,
tocilizumab might be a potential treatment option for ICI-
induced myocarditis with more evidence available.

2.6.3 CD52 Antibody
CD52 is expressed on peripheral mature immune cells, mainly
on T and B lymphocytes, while it is expressed at lower levels on
innate immune cells. Its antibody alemtuzumab leads to
antibody-dependent cell-mediated cytolysis, complement-
mediated destruction, and apoptosis of these cells (109).
Alemtuzumab, a CD52 antibody, is recommended in current
guidelines for the treatment of ICI-induced myocarditis.
However, so far treatment with alemtuzumab has only been
reported in one case. In a 71-year-old woman, alemtuzumab
achieved rapid resolution of ICI-induced cardiac immune toxic
effects after she failed to respond to pulse methylprednisolone,
mycophenolate mofetil, plasmapheresis, and rituximab therapies
(110). Meanwhile, the risk of infection, malignancies and
autoimmune disorders associated with alemtuzumab-induced
immune reconstitution should not be ignored (111, 112).

2.6.4 JAK Inhibitors
JAK inhibitors on the market are mainly small molecules rather
than biologics (113). JAKs are cytoplasmic tyrosine kinases that
phosphorylate tyrosine residues either on themselves or on
adjacent molecules such as STAT. The JAK family has 4
members (JAK1, JAK2, JAK3, and TYK2), and the STAT
family consists of 7 members. The JAK/STAT pathway
mediates the effects of a broad range of molecules, including
ILs, IFNs, colony-stimulating factors, growth factors and
hormones (114, 115). Therefore, JAK blockade will lead to
strong inhibition of the immune system, and the efficacy of
JAK inhibitors is widely recognized. Studies of their effects on
ICI-induced myocarditis have been performed. Tofacitinib was
used in 11 patients with corticosteroid-resistant ICI-associated
myocarditis patients: 7 recovered, 2 died of cardiac symptom
progression, and 2 died of infection (73). Another 2 patients with
ICI-induced myocarditis also recovered and were discharged
after tofacitinib treatment (116).

However, if the drug is not selective for certain JAK members,
safety issues might be present. For instance, in the postmarketing
ORALSurveillance trial conducted by Pfizer, the JAK1/3
inhibitor tofacitinib was associated with a higher incidence of
cardiovascular events and malignancies than TNF-a inhibitors
(NCT02092467). Cardiovascular risk seems to be the Achilles’
heel of JAK inhibitors, and it has received great attention from
regulatory agencies. Meanwhile, JAK loss-of-function mutations
were found responsible for primary and acquired resistance to
July 2022 | Volume 13 | Article 922782
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anti-PD-1 therapy in patients with solid tumor. IFNg binds to the
interferon gamma receptor (IFNGR1/IFNGR2) and activates
downstream signaling via JAK1/2, finally resulting in an
upregulation of MHC-I molecules and PD-L1 to the cancer cell
outer membrane. JAK mutations, causing a loss-of-function
phenotype, can lead to the absence of PD-L1 expression and
subsequent inefficacy of anti-PD-1/PD-L1 therapy (117, 118).
Therefore, JAK inhibitors should be used with caution in ICI-
induced myocarditis. In the future, the roles of different JAK
family members in ICI-induced myocarditis must be further
clarified, and inhibitors with better selectivity are warranted. JAK
inhibitors should be manipulated better to suppress its pro-
tumorigenic behavior and enhance its anti-tumorigenic aspects,
such as inhibiting tumor cell survival, proliferation and
invasion (119).

2.6.5 Other Untargeted Immunosuppressive Agents
Other untargeted immunosuppressive agents, such as
antithymocyte globulin (ATG), intravenous immunoglobulin
(IVIG), and mycophenolate are also recommended by current
guidelines for ICI-induced myocarditis, but are not the main
focus of this review. They are empirical strategies logically
recommended by the experts, since the histological lesions
observed in ICI-induced myocarditis are similar to those
observed during acute cardiac transplant cell rejection. Several
case reports with favorable outcomes support the use of them in
ICI-induced myocarditis (96, 120, 121). In a pooled analysis of
intensified immunosuppressive therapies for ICI-induced
myocarditis, neither ATG nor IVIG showed advantage in
overall survival (OR 5.4 and 1.5 for ATG and IVIG,
respectively). The all-cause mortality rate and cardiovascular
mortality rate were 16.6% (1/6) and 0% (0/6) for mycophenolate
(76). But the number of cases were still too limited to reach a
convincing conclusion. More studies of them are needed,
especially in combination with steroids in first-line treatment
Frontiers in Immunology | www.frontiersin.org 9
and with other biologic agents in second-line steroid-
refractory patients.
3 ONGOING CLINICAL TRIALS

Researchers have not clearly determined which biologic
antagonist would be optimized for ICI-related myocarditis,
especially in steroid-resistant or steroid-refractory patients.
According to the United States National Institutes of Health
registry ClinicalTrials.gov, several trials are underway and will be
informative (Table 4). Recently in April 2022, a randomized,
double-blind, and placebo-controlled study was registered to
evaluate the efficacy and safety of abatacept. The trial is a
phase 3 study with a sample size of 390 patients. It is
estimated to be completed in 5 years (NCT05335928).
Similarly, another phase 2 trial initiated in March 2022 aims to
assess different doses of abatacept in ICI-induced myocarditis
(NCT05195645). A trial initiated in 2016 aimed to compare the
efficacy of the TNF-a inhibitor infliximab plus prednisone with
methylprednisolone plus prednisone in individuals with ICI-
induced diarrhoea; however, it was withdrawn in 2018 due to
insufficient enrolment (NCT02763761). The IL-6 inhibitor
tocilizumab is being investigated as a treatment for steroid-
dependent irAEs to identify the percentage of participants who
discontinue steroid treatment (NCT04375228). In another arm
of this trial, the CD20 antibody rituximab was used. In addition
to T cell activation, ICIs activate B cells via regulatory T cells
(122). Rituximab has shown certain efficacy in B cell-dependent
irAEs such as MG and Sjogren syndrome (123), and this trial
may provide more insights into its efficacy against other irAEs.
Another trial of the JAK inhibitor tofacitinib in patients with
immune-related colitis who failed to respond to corticosteroids is
ongoing and aims to investigate the clinical remission of
diarrhoea (NCT04768504). CD24Fc treatment attenuates
TABLE 4 | Ongoing registered clinical trials.

Identifier Inclusion Arm Sample
size

Primary outcome Status Start
date

Completion
date

NCT02763761 Immune Related Diarrhea Arm A: Infliximab +
Prednisone

N/A Proportion of responders to less than or
equal to grade 1

Withdrawn 16-
Aug

17-Mar

Arm B: Methylprednisolone +
Prednisone

NCT04552704 Immune related adverse
events

Arm A: CD24Fc 78 Incidence of new adverse event; recovery
rate; time to recovery from grade 2 or 3

Active, not
recruiting

20-
Oct

22-Feb
Arm B: Placebo

NCT04375228 Steroid-Dependent
immune related adverse
events

Arm A: Rituximab 30 Percentage of paticipants to discontinue
steroid treatment

Not yet
recruiting

21-
Jun

24-Feb
Arm B: Tocilizumab

NCT04768504 Refractory immune-related
Colitis

Arm A: Tofacitinib 10 Clinical Remission of Diarrhea Recruiting 21-
Nov

23-Sep

NCT05195645 Severe or corticosteroid-
resistant ICI-myocarditis

Arms A-C: 10mg/kg, 20mg/
kg and 25mg/kg abatacept

21 Proportion of CD86 receptor occupancy
saturation ≥ 80%

Not yet
recruiting

22-
Mar

24-Sep

NCT05335928 ICI-induced myocarditis Arm A: Abatacept plus 390 Major adverse cardiac events Not yet
recruiting

22-
May

27-Apr

Arm B: Placebo
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inflammation associated with viral infections, autoimmunity,
and graft-versus-host diseases (124). A comparison of the
efficacy of CD24Fc with a placebo in treating irAEs is also
being investigated (NCT04552704).
4 SUMMARY

Although the risk of aggravating heart failure is a potential safety
concern, infliximab has been used in patients with ICI-induced
myocarditis with more reported cases than other biologic agents
(Table 1). It helps more patients with grade 4 cardiac irAEs to
achieve an improvement and survive (Table 2). The association
between TNF-a inhibitors and progressive heart failure does not
seem to be relevant in patients with ICI-induced myocarditis. But
the current evidence is not strong enough to draw a solid
conclusion, further studies are warranted. More severe
myocardium injury after ICI treatment might be a predictor
related to a poor prognosis, despite the use of anti-TNF-therapy
(Table 3). If the cardiovascular risk of TNF-a inhibitors in ICI-
induced myocarditis can not be eliminated, other biologic agents,
such as abatacept, tocilizumab and alemtuzumab are promising,
while data for their effects on ICI-induced myocarditis are still
Frontiers in Immunology | www.frontiersin.org 10
limited. Clinical trials including CTLA-4 agonists, anti-IL-6,
anti-CD24, anti-CD20 therapies and JAK inhibitors are
expected to provide more insights into whether better
interventions exist other than the TNF-a inhibitors currently
recommended in the guidelines.
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