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Abstract

Automatically identifying the forage is the basis of intelligent fine breeding of cattle and

sheep. In specific, it is a key step to study the relationship between the type and quantity of

forage collected by cattle and sheep and their own growth, cashmere fineness, milk quality,

meat quality and flavor, and so on. However, traditional method mainly rely on manual

observation, which is time-consuming, laborious and inaccurate, and affects the normal

grazing behavior of livestock. In this paper, the optimized Convolution Neural Network

(CNN): edge autoencoder network(E-A-Net) algorithm is proposed to accurately identify the

forage species, which provides the basis for ecological workers to carry out grassland evalu-

ation, grassland management and precision feeding. We constructed the first forage grass

dataset about Etuoke Banner. This dataset contains 3889 images in 22 categories. In the

data preprocessing stage, the random cutout data enhancement is adopted to balance the

original data, and the background is removed by employing threshold value-based image

segmentation operation, in which the accuracy of herbage recognition in complex back-

ground is significantly improved. Moreover, in order to avoid the phenomenon of richer edge

information disappearing in the process of multiple convolutions, a Sobel operator is utilized

in this E-A-Net to extract the edge information of forage grasses. Information is integrated

with the features extracted from the backbone network in multi-scale. Additionally, to avoid

the localization of the whole information during the convolution process or alleviate the prob-

lem of the whole information disappearance, the pre-training autoencoder network is added

to form a hard attention mechanism, which fuses the abstracted overall features of forage

grasses with the features extracted from the backbone CNN. Compared with the basic

CNN, E-A-Net alleviates the problem of edge information disappearing and overall feature

disappearing with the deepening of network depth. Numerical simulations show that, com-

pared with the benchmark VGG16, ResNet50 and EfficientNetB0, the f1 − score of the pro-

posed method is improved by 1.6%, 2.8% and 3.7% respectively.
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Introduction

The traditional monitoring method of grazing behavior of cattle and sheep mainly relies on

continuous and long-term artificial observation records. The data obtained is classified [1] and

counted manually to measure animal intake. This approaches are strongly subjective and high

labor intensive. Accurate and efficient identification of forage species is an important technol-

ogy to study the relationship among the species, quantity and growth of plants [2], feed types

and ecological balance [3] in the grazing behavior of cattle and sheep [3].

Data preprocessing steps are generally required before training a CNN model. Commonly,

the methods of data preprocessing include: color space conversion, standardization, scale

transformation, dimensionality reduction, image segmentation [4–6] and so on. Converting

color space from RGB to HSV is an effective way to extract green features of grass, which

ignores the natural disturbances and increases the robustness to light in image segmentation.

Additionaly, due to the number of species of each forage grasses is not uniform, most research-

ers use the balanced dataset or the cutout [7] method to process the unbalanced dataset [8, 9].

Therefore, the model improves the generalization ability and is not limited to some character-

istics [10].

Apart from the above data preprocessing methods, biomorphology plays an important role

in the identification of plant species, especially the edge and texture characteristics of grass

plants. In the past, researchers used gradient [11], line detection, Laplacian, Sobel [12], gabor

[13], Curvelet [14] to extract edges or texture features of grasses, the extracted features are

identified by machine learning algorithms. Forage has not only edge features, but also rich tex-

ture features. Only depending on the edge, texture or color features of forage for classification,

the high-level semantic information will not be effectively extracted by machine learning algo-

rithms although each forage has unique edge texture features. This will greatly reduce the gen-

eralization ability of network model.

Attention mechanism has made ground-breaking achievements in the field of image classi-

fication. By extracting inter-channel, inter-channel and space, long-range, it can improve the

convergence speed of network model, reduce network model parameters and increase network

accuracy [15–18]. These attention mechanisms belong to soft learning mechanisms, which

makes the adaptive learning of network model a significant feature for the final classification

effect. The autoencoder network can be used as a tool to extract high-dimensional features

[19], and it also has the function of attention mechanism to obtain more information about

the main characteristics of grasses by CNN [20–22]. In this paper, the modified U-Net [23] is

adopted as the autoencoder network. By fusing the abstract global information of grasses with

the features of the backbone feature extraction network, a hard attention mechanism for the

overall features of grasses is added.

In order to make a better use of biomorphic information of grazing images, hard attention

mechanism is used to improve classification efficiency. In addition, a Sobel operator is

employed to extract edge features of grazing images and a pre-training autoencoder network

serves to extract abstract global features. Subsequently, the obtained grazing features are com-

bined with the basic CNN algorithm, namely, edge autoencoder network(E-A-Net). The algo-

rithm utilizes multi-scale edge features [24] to prevent the low-level characteristics of forage

grasses edge from disappearing. The autoencoder network effectively extracts the abstract

global features to prevent the CNN from focusing only on the significant features of forage

grasses and ignoring the overall features.

There are three main innovations in this paper 1: This is the first time to study the forage

grass dataset about Etuoke Banner. 2: We propose an edge feature extraction network, which

utilizes the rich edge information of herbage to assist the extraction of main feature to improve
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the classification accuracy. 3: The pre-trained autoencoder network is employed to assist the

main feature extraction network to classify.

Related work

Traditional machine learning algorithms have been widely used in computer vision [5, 25–27],

and achieved good results. We sorted out the current popular machine learning and deep

learning methods about forage recognition. Since most of the grass data sets are built for them-

selves, the experimental results of different algorithms for different data sets can not be com-

pared objectively, the grass recognition technology will be elaborated according to the time

line, as shown in Table 1.

CNN

Vo Hoang Trong et al. [31] proposed a yielding multi-fold training (YMufT) strategy to train a

Deep Neural Networks (DNNs) model on an imbalanced dataset. This strategy reduces the

bias in training through a min-class-max-bound procedure (MCMB), which divides samples

in the training set into multiple folds. The model is consecutively trained on each of these

folds. They carried out a series of experiments on several datasets, and the results show that the

proposed algorithm has high accuracy. Shahbaz KhanI et al. [28] proposed an optimized semi-

supervised learning approach, offering a semi-supervised generative adversarial network for

crops and weeds classification at early growth stage. In this method, only a few labeled data

can be used to complete the weed classification by using the Generative Adversarial Networks

(GAN). The proposed system is evaluated extensively on the Red Green Blue (RGB) images

obtained by a quadcopter in two different croplands (pea and strawberry). This method

achieves 90% accuracy when 80% of training data is not labeled. It has a remarkable effect for

the future development of agricultural intelligence, but the GAN depends on a large number

of data sets to generate realistic training data, and for the two classification, 90% accuracy is

not high enough.

Yanlei Xu et al. [29] proposed a weed recognition method using depthwise separable CNN

based on deep transfer learning. In this method, convolution neural network is used to extract

grass features, global pooling is used to replace full connection to extract feature vector, and

xgboost is used as classifier instead of full connection layer to complete classification. Although

this method achieves high accuracy, xgboost belongs to the older tree algorithm, and the

newer machine learning classification algorithms may obtain higher accuracy. Besides, the

data set is an unbalanced data set, which affect the generalization ability of the model.

Table 1. Convolutional neural network related.

Author Year Classification Dataset Model Accuracy

Shahbaz KhanI [28] 2021 2 Farm Developed proposed system 0.90

Yanlei Xu [29] 2021 12 PlantSeedlings dataset Xception [30] 0.9963

Vo Hoang Trong [31] 2021 12 PlantSeedlings dataset MobileNet [32] 0.9970

Xue Yan [33] 2020 6 Farm CNN 0.945

Kun Hu [34] 2020 8 DeepWeeds dataset Graph weeds net 0.981

Vo Hoang Trong [35] 2020 12 Cropped plants V2 dataset CNN 0.9877

Adnan Farooq [36] 2019 4 Hyperspectral dataset CNN 0.9472

Alex Olsen [37] 2018 8 DeepWeeds dataset ResNet50 [38] 0.957

Mads Dyrmann [39] 2016 22 Six different datasets CNN 0.862

https://doi.org/10.1371/journal.pone.0259783.t001
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Xue Yan et al. [33] employed traditional machine learning algorithm to extract edge, color

and texture for classification, and compared with Deep Convolutional Neural Network

(DCNN) algorithm. Results had demonstrated DCNN algorithms obtain the highest accuracy.

It can be concluded that the deep learning algorithms have stronger feature extraction ability

than traditional algorithms. In addition, the model structure is relatively simple. It can achieve

higher accuracy in the recently proposed image classification algorithms.

Kun Hu et al. [34] proposed a novel graph-based deep learning architecture, namely Graph

Weeds Net(GWN), which aims to recognize multiple types of weeds from conventional RGB

images collected from complex rangelands. The algorithm combines graph convolution neural

network, LSTM algorithm and image classification algorithm to complete the classification of

eight kinds of weeds [37]. Although the final classification effect is improved, the complexity

of the network model is also increased.

Vo Hoang Trong et al. [35] developed a novel classification approach via a voting method

by using the late fusion of multimodal DNNs. The score vector used for voting is calculated by

Bayesian conditional probability method or determining the priority, so that the score vector

obtained from the classification model can get more weight in the final classification. This

method can improve the accuracy of the network model, however, the model’s complexity will

increase exponentially with the increase of the number of model parameters.

Adnan Farooq et al. [36] used patch-based classification approache, CNN and histogram of

oriented gradients (HOG) methods are evaluated and compared. It is finally concluded that

CNN has better feature extraction ability for images and the accuracy of CNN is more easily

influenced by the input image size. Alex Olsen contributes the first large, public, multiclass

image dataset of weed species from the Australian rangelands, allowing for the development of

robust classification methods to make robotic weed control viable. The DeepWeeds dataset

consists of 17,509 labeled images of eight nationally significant weed species native to eight

locations across northern Australia. They used the benchmark deep learning algorithm to

train and identify the data set, and finally achieved 95.7% accuracy.

Mads Dyrmann et al. [39] presented a method that is capable of recognizing plant species

in colour images by using a CNN. By changing light conditions and soil types to increase the

complexity of the dataset, 22 kinds of weeds and crops, a total of 10413 images were taken.

And 86.2% accuracy is achieved on the network designed by themselves, but the processing

time of a single plant is 27 ms, which is not strong for the real-time detection of weeds.

Traditional machine learning

In Table 2, the related technologies of using machine learning to identify grasses are summa-

rized. Shanwen Zhang [40] proposed a LWMDP based weed recognition method. In this

method, Grabcut is firstly used to remove the most background, FMC is utilized to fast seg-

ment the weed image, and then LWMDP is employed to reduce the dimension of the seg-

mented weed image, finally SVM is adopted to recognize weed species. This method not only

Table 2. Traditional machine learning related.

Author Year Classification Dataset Model Accuracy

Shanwen Zhang [40] 2019 8 South China crop field SVM 0.9235

Adel Bakhshipour [41] 2018 4 experimental sugar beet fields SVM 0.9967

David Hall [42] 2015 10 Flavia Combined system 0.973

Luı́s A.M. Pereira [43] 2012 3 São Paulo State University MS-SVM-RBF 0.8715

Asnor Juraiza Ishak [44] 2009 2 Natural lighting conditions GFD and GW 0.94

https://doi.org/10.1371/journal.pone.0259783.t002
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is effective, but also eliminates the interference of background information. However, due to

the binarization operation, dimension reduction loses a lot of details of grasses uncontrollably.

Adel Bakhshipou et al. [41] adopted Fourier descriptors and moment invariant features to

extract different shape characteristics of weeds. After fusing these several features, they utilized

SVM as classifier and obtained the highest accuracy, about 95.00%. This method mainly relies

on the shape features of weeds, but ignores the details of weeds, such as texture, color differ-

ence and so on. If the useful feature information is ignored, the final classification effect will be

reduced.

David Hall et al. [42] used deep convolutional neural network (ConvNet) features and

introduced a range of condition variations to explore the robustness of these features, includ-

ing: translation, scaling, rotation, shading and occlusion. Evaluations on the Flavia dataset

demonstrate that in ideal imaging conditions, combining traditional and ConvNet features

yields state-of-the-art performance with an average accuracy of 97.3%±0.6%.

Luı́s A.M. Pereira et al. [43] established the image data set of aquatic weed leaves, applied

five kinds of shape analysis and six kinds of supervised machine learning technology for com-

parative analysis, and finally achieved 96.41% accuracy on the data set by using the Optimum-

path Forestsuan algorithm. These two methods have limited effect on the recognition of leaves

in the natural environment because they use the leaves collected separately.

Asnor Juraiza Ishak et al. [44] used the combination of Gabor wavelet (GW) and gradient

field distribution (GFD) technology to extract a new set of feature vectors for weed classifica-

tion. The overall classification accuracy is 94% using this technique, while 84% using only the

features of GW algorithm. Compared with GW algorithm, GFD algorithm improves the objec-

tive accuracy, but it can identify fewer kinds of objects, so it may not be suitable for multiple

object data sets.

From the above grass classification dataset and algorithms, it can be seen that for the com-

plex weed dataset, the DCNN algorithm with stronger learning ability is generally used, while

for the relatively simple weed data sets, the machine learning algorithms are typically used.

Generally, the machine learning algorithm has simple models and is suitable for processing

simple low dimensional data. For image data, it is generally necessary to reduce the dimension

by binarization, and then use machine learning algorithms for classification. However, the

growth environment of weeds is very complex, so using deep convolution neural network to

classify them is a more reliable strategy. For DCNNs, the main problem is that with the deep-

ening of the network, the shallow features will disappear inevitably. ResNet [38], a network

with residual connections, alleviates this problem to some extent. But inevitably, some features

that are helpful to classification will disappear in the process of convolution. To alleviate this

problem, we propose an edge autoencoder network. The extracted edge information and over-

all feature information are enhanced and input to the basic CNN to improve the accuracy of

the algorithm.

Materials and methods

Overall framework

The overall forage grasses classification method is shown in Fig 1. Firstly, we construct a herb-

age dataset. Several operations like data enhancement, data equalization and image segmenta-

tion are employed to preprocess the collected data. The segmented image is input into the pre-

trained coding network, backbone feature extraction network and edge extraction network

simultaneously. The whole features extracted by autoencoder network and the edge features

extracted by edge extraction network are input into the backbone feature extraction network,

which are used for classification.
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Datasets

The forage grasses images used in the experiment were collected from Erdos City, Etuoke Ban-

ner, Inner Mongolia Yiwei White Cashmere Goat Co, Ltd. and No.1 Branch factory. The lon-

gitude and latitude of data acquisition are 39˚10025.842000N and 107˚54035.838000E. The forage

grasses data were collected in two times and photographed on June 17, 2020 and October 7,

2020. Due to the shortage of forage grasses collected for the first time, the forage grasses dataset

was supplemented and enriched for the second time. The photos were taken by mobile phone.

The photo pixel was 4000 × 3000, the photo format was RGB, and the shooting position was

10cm-40cm away from the forage grasses. A total of 3889 photos were collected. Their types

were as follows Fig 2:

Data preprocessing

The resolution of the original images is 4000 × 3000. Since high resolution will lead to a slow

training process and consume a lot of GPU resources, the dataset is resized to 224 × 224. In the

process of photographing and collecting the images, the sample data has a long tail phenome-

non due to the scarcity of some forage grasses species. In order to alleviate the impact of this

phenomenon on the training process, we carry out some operations to balance data. The distri-

bution of forage grasses species is statistically visualized in the blue histogram in Fig 3 below: it

can be seen that the number of forage grasses species is seriously uneven [8]. In this paper, the

cutout data enhancement method is adopted [7]. It can not only enhance the dataset, achieve

the purpose of balancing the dataset, but also improve the generalization ability of the network

model [8]. The number of each species after data enhancement is shown in the yellow histo-

gram as Fig 3.

After the model is trained, the class activation thermogram [45] is visualized. It is found

that because forage grasses usually have different backgrounds, CNN can identify forage

grasses species rather than forage grasses information from the image background for some

kinds of forage grasses, which decreases the generalization ability of the network model. In

order to solve this problem, image segmentation algorithm based on the threshold value is

adopted. Since illumination has a strong impact on the image recognition in outdoor condi-

tions and the HSV color space is robust to the change of illumination, it is more suitable to

describe the color image information under the change of illumination. Therefore, firstly, the

RGB image is converted to HSV color space, and the grass and background image is separated

Fig 1. Forage grasses identification process.

https://doi.org/10.1371/journal.pone.0259783.g001
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Fig 2. Photos of herbage species.

https://doi.org/10.1371/journal.pone.0259783.g002

Fig 3. Quantity before and after data balance for each type of forage grasses.

https://doi.org/10.1371/journal.pone.0259783.g003
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by segmentation method based on a threshold value [6]. Afterwards, the processed herbage

dataset is randomly divided into 60% training set, 20% validation set and 20% test,

respectively.

Method

A novel edge autoencoder network is proposed in this study. More concretely, the algorithm is

divided into three parts: the first part is the backbone feature extraction network, the second

part is the edge extraction network based on a Sobel operator, and the third part is the pre-

trained autoencoder network. The edge extraction network based on a Sobel operator is

mainly used to extract the edge texture information of forage grasses [12]. The residual con-

nection between the edge information and the characteristic information of forage grasses

extracted from the main network plays a role in preventing the edge information of forage

grasses from disappearing in the deep network. The pre-trained autoencoder network is used

to fix the weight of the autoencoder network during the overall network training [20–22] and

obtain the overall characteristics of forage grasses through the coding part. This operation

guarantees the network pays attention to the overall characteristics of forage grasses, which

forms a hard attention mechanism to improve the network’s ability of memorizing the overall

characteristics as well as the classification accuracy. The overall structure of E-A-Net is shown

in Fig 4.

The network part of edge extraction. Edges are the basic features of an image, and they

enrich characteristic information. They often exist between target and background, which is

not only important for image segmentation [46] but also useful for image classification [12,

14] and target detection [47]. Based on this, the edge extraction network containing Sobel

Fig 4. E-A-Net network structure.

https://doi.org/10.1371/journal.pone.0259783.g004
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operator is added to the backbone feature extraction network to focus on extracting edge

information.

In this paper, four Sobel operator modules with 3 rows and 3 columns are used to detect the

size of the pixel values of the feature map in 45˚, 90˚, 180˚, 315˚ edge direction respectively.

The convolutional results of the Sobel operator and the feature map can be calculated as:

fz ¼ s� q ð1Þ

The pixel value of the feature map fz obtained by convolution of four Sobel operators in differ-

ent directions is used to obtain the feature map. s is the original image, and q is the convolution

kernel of Sobel operator. z represents four convolution kernels in different directions. After

five maxpooling operations, the size of the feature map is sampled from 224 × 224 to 7 × 7.

The feature map and the feature map with the same size as the backbone network are spliced

in the channel direction, and the extracted multi-scale edge feature information is fused into

the backbone feature extraction network [24, 47].

The network part of the autoencoder network. Unlike the previous Squeeze-and-Excita-

tion Networks [15] and Convolutional Block Attention Module (CBAM) [16], autoencoder

network acquires attention mechanisms in a way that is not limited to inter-channel or inter-

pixel attention, but uses the overall characteristic of an object as an attention mechanism.

Based on this, the embedded layer of the autoencoder network is fused into the backbone

CNN to provide a focus on the characteristics of the object itself. The detailed structure of the

autoencoder network is show in Fig 5.

The autoencoder network selected in this paper uses the modified structure of U-Net [23].

In the coding part, the network adopts a convolutional layer with a convolutional kernel size

of 4 × 4, a step size of 2 and a Relu activation function instead of the original convolutional

pooling layer reference. In the decoding part, the coded vector is deconvoluted with a convolu-

tional kernel size of 4 × 4 and a step size of 2 to reconstruct the image features, and then these

features are fused with a 1 × 1 convolution [48]. The final output of the network is regarded as

the decoded image.

Suppose that the dimension of input layer and output layer of the autoencoder network is

n, the dimension of hidden layer ism, and the number of samples is N, then the sample set is:

S ¼ fxig
N
i¼1

ð2Þ

Fig 5. Detailed structure of autoencoder network.

https://doi.org/10.1371/journal.pone.0259783.g005
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The autoencoder is a network that reconstructs the input signal x with convolution opera-

tion, encodes it into a high-dimensional vector, decodes and restores the original input signal

x according to the high-dimensional vector. The encoder network and decoder network in the

above figure are both composed of the convolutional layers, which transform the input signal

into an abstract high-dimensional vector y. The decoder network decodes the input signal into

k, which is similar to the original signal according to the abstracted f. Suppose that the encod-

ing network function is f, the decoding network function is g, the weight matrix for linear

transformation is w, and the offset is b. Then the output of the encoder is:

k ¼ f ðxÞ ¼
Pn

i¼1
f ðwixi þ bÞ ð3Þ

The linear element Relu is chosen as the activation function of the encoder. Because it has

the characteristic of sparse activation, and the derivative of input part greater than zero is con-

stant, Relu will not cause gradient dispersion.

The decoder is the reverse operation of the encoder, and the function of the encoder is to

reconstruct the intermediate vector. The function expression of the decoder:

y ¼ gðkÞ ¼
PN

i¼1
gð~wif ðxiÞ þ bÞ ð4Þ

The input data x is predicted to obtain the output data y. If the output data y is basically

similar to the input data x, then autoencoder will retain the important information of most sig-

nals. Therefore, the autoencoder network is considered well trained. In general, the mean

square error function is used to measure the difference between the input data x and the out-

put data y:

Lðx; yÞ ¼ MSELossðx; yÞ ¼
1

n

Xn

i¼1

ðxi � yiÞ
2

ð5Þ

When the training sample is S, the overall loss function of the autoencoder network is as fol-

lows:

JautoencoderðyÞ ¼
X

x2S

Lðx; gðkÞÞ ð6Þ

Finally, the loss of the CNN is iteratively calculated by gradient descent algorithm, so that

the parameters x and b of the autoencoder network can be continuously updated through

back-propagation, which is completed by the training of the autoencoder network.

Because the original image can be reconstructed by the network according to the abstracted

features, it indicates that the encoded y has all the important information of the original signal

x. Therefore, it is effective to use this information as the classification basis of CNN. The net-

work designed in this paper is to splice the feature map of CNN before the full connection

layer and the middle feature layer of the autoencoder network to utilize the effective feature

information.

The whole algorithm part. The image x with the size of (224, 224, 3) is input into the

trained autoencoder network, edge extraction network and backbone CNN in turn. Let the

first J functions of the edge detection network beM1,M2, . . .. . .MJ. When the image s passes

through the edge extraction network, the feature information is extracted respectively C1, C2,

. . .. . .CJ:

C
1
¼
Pn

i¼1
M1ðw1ixi þ bÞ ð7Þ

C
2
¼
Pn

i¼1
M2ðw2iC1 þ bÞ ð8Þ
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. . . . . . :

CJ ¼
Pn

i¼1
MnðwJiCn� 1 þ bÞ

ð9Þ

The first j functions of the edge detection network are represented as G1, G2, . . .. . ..Gj. These

extracted features are spliced with other extracted features on the channel, and the latter fea-

tures come from the first j convolutions of the backbone CNN:H1,H2, . . .. . ..Hj, the channel

splicing operation is represented by [].

H1 ¼
Pn

i¼1
G1ðw1ixi þ bÞ ð10Þ

H2 ¼
Pn

i¼1
G2ðw2i½H1;C1� þ bÞ ð11Þ

. . . . . . :

Hj� 1 ¼
Pn

i¼1
Gj� 1ðwðj� 1Þi½Hj� 2;Cj� 2� þ bÞ

ð12Þ

Hj ¼
Pn

i¼1
Gjðwji½Hj� 1;Cj� 1� þ bÞ ð13Þ

The outputs of three networks, K,Cj,Hj are used to splice the feature map in channel dimension

to obtain feature extracted from multiple networks. Obtained feature is input into 1 × 1 convo-

lution for information fusion between channels to obtain the final network output.

Results and discussion

Experimental equipment

The software platform used in this experiment is anaconda3, with Tensorflow and keras

frameworks. The processor is Intel Core i5 9300CPU @2.4GHz. RAM size is 16, operating sys-

tem is 64-bit, graphics card model is NVIDIA GeForce GTX1660Ti, and video memory size is

6G.

Data processing

GAN [49] is tried to enhance the dataset. Due to the small amount of data, the resulting photos

are very similar and low quality. The cutout is used as an alternative to enhance the dataset.

The acquired image after data enhancement is shown in Fig 6. Some characteristics of the for-

age grasses are obscured, which is helpful for network to learn more about the characteristics

forage grasses, not just one part. So cutout [7] ultimately not only balances dataset but also

improves the generalization ability of the network [10].

Pre-training of autoencoder network

The size of the image used in the autoencoder network pre-training process is 224 × 224. The

normalization operation is performed to prevent the gradient explosion [38] in the training

process, which makes the model difficult to fit. A total of 500 epochs of autoencoder network

pre-training are performed. The settings used are as follows: the image batch size is 32, the net-

work optimizer is Adam [50], the learning rate is 0.0001, and the tensorboard is used to visual-

ize the weight changes during the network training process.

It can be seen from Fig 7 that the loss value of autoencoder network in training set and vali-

dation set decreased sharply in the first 50 rounds of training, and decreased slowly after 100

rounds. The loss value of the final validation set reached 0.003721473. After 500 epochs of
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training, the autoencoder network model can restore the original image well. The weight file

corresponding to the minimum loss value is selected to reconstruct the autoencoder network.

After feeding the processed dataset into the network model, the class thermogram is acti-

vated [45]. The thermogram is shown in Fig 8. Because different forage grasses may exist in

different growing environments and their backgrounds are not well used, the CNN learns

more about the background information of this part of the forage grasses pictures in the classi-

fication process, thus the true information of the forage grasses is ignored, and the generaliza-

tion ability of the trained model is poor. Image segmentation algorithm based on a threshold

value is used to extract herbage features, remove background information and make the net-

work model more focused on learning herbage characteristics. The image of the dataset after

cutout and background segmentation is shown in Fig 8 below:

Training strategy of E-A-Net

Firstly, the size of the data is adjusted to 224 × 224 for E-A-Net. Then, the resized data is aug-

mented and normalized. After that, the input data is fed to the autoencoder network, backbone

Fig 6. Data processing results: The first row is the original data, the second is the cutout enhanced data, and the

third is the background segmentation data.

https://doi.org/10.1371/journal.pone.0259783.g006
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feature extraction network and edge extraction network at the same time. In the training pro-

cess of E-A-Net, extra special operations are needed by the autoencoder network, to be more

specific, when entering into the autoencoder network, the network needs to read the autoenco-

der weights that have been trained separately, the autoencoder network is freezing, and it only

needs to obtain the embedded layer feature map that is part of the output of the encoding and

inputs it into the main feature extraction network. Finally, the network is trained for 200

Fig 7. Loss curve of autoencoder network.

https://doi.org/10.1371/journal.pone.0259783.g007

Fig 8. Comparison of active thermograms before and after background removal.

https://doi.org/10.1371/journal.pone.0259783.g008

PLOS ONE Classification of forage images

PLOS ONE | https://doi.org/10.1371/journal.pone.0259783 June 10, 2022 13 / 23

https://doi.org/10.1371/journal.pone.0259783.g007
https://doi.org/10.1371/journal.pone.0259783.g008
https://doi.org/10.1371/journal.pone.0259783


epochs with a batch size of 4. The used optimizer is Adam [50] and the learning rate is 0.0001.

The tenorborad is also used to monitor the weight change and the characteristic map transfor-

mation of the convolutional layer in the network training process in real-time.

Training result of E-A-Net

The experiment results are compared with three baseline networks, VGG16, ResNet50 and

EfficientNetB0 and improved E-A-VGG, E-A-ResNet50 and E-A-EfficientNetB0.

As can be seen from Fig 9, E-A-VGG16 and E-A-ResNet50 are faster than VGG16 [51] and

ResNet50 [38] in learning speed. The process of E-A-EfficientNetB0 [52] training network on

a forage grasses dataset is more accurate both training set and the validation set than in the

original classification network, and the result curve is more stable in the validation set.

The above 12 curves can more accurately show the accuracy changes of different models

during the training process. We can see that after 100 rounds the accuracy waveform of the

network model tends to be smooth and rises slowly. Therefore, we select the last 100 accuracy

values and 7 indicators to study the performance of the algorithm. The train and validation

results analysis are as Table 3:

In training set, E-A-VGG16 has the highest accuracy compared with other algorithms,

0.998856. EfficientNetB0 has the worst performance, 0.914344. Compared with other algo-

rithms, E-A-ResNet5 has the minimum standard deviation at 0.001631, while EfficientNetB0

has the maximum standard deviation at 0.038122. Therefore, it can be concluded that E-A-

ResNet50 has a gentle learning and small fluctuation in the training set. This conclusion can

Fig 9. Training validation curve.

https://doi.org/10.1371/journal.pone.0259783.g009

Table 3. Train and validation results analysis.

Count Mean std Median Min Max Difference

VGG16 [51] train 100 0.981587 0.005450 0.982298 0.965738 0.992691 0.011104

VGG16 [51] valid 100 0.938200 0.021919 0.941204 0.817593 0.992691 0.032170

E-A-VGG16 train 100 0.995430 0.002451 0.996110 0.984668 0.992691 0.003426

E-A-VGG16 valid 100 0.962222 0.006415 0.962963 0.943519 0.992691 0.012778

ResNet50 [38] train 100 0.982360 0.005039 0.983212 0.969849 0.992691 0.011244

ResNet50 [38] valid 100 0.951850 0.018886 0.956481 0.875000 0.992691 0.031483

E-A-ResNet50 train 100 0.995386 0.001631 0.996574 0.991092 0.992691 0.003015

E-A-ResNet50 valid 100 0.971361 0.003905 0.971296 0.961111 0.992691 0.010119

EfficientNetB0 [52] train 100 0.860690 0.038122 0.870375 0.775468 0.992691 0.053654

EfficientNetB0 [52] valid 100 0.866204 0.045947 0.870833 0.719444 0.992691 0.089352

E-A-EfficientNetB0 train 100 0.940998 0.013105 0.945523 0.897899 0.992691 0.017431

E-A-EfficientNetB0 valid 100 0.947398 0.010777 0.950463 0.911111 0.992691 0.014639

https://doi.org/10.1371/journal.pone.0259783.t003
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also be verified by the waveform fluctuation of E-A- ResNet50 compared with other algo-

rithms. Meanwhile, according to the maximum and median, we can estimate the accuracy

improvement of the network model after 150 rounds. We can draw the conclusion that the

accuracy improvement of EfficientNetB0 is up to 0.053654, and the improvement of E-A-Re-

sNet50 is at least 0.003015. This shows E-A-ResNet50 has strong learning ability.

In validation set, E-A-ResNet50 has the highest accuracy compared with other algorithms,

0.981481. EfficientNetB0 has the worst performance, 0.955556. Compared with other algo-

rithms, E-A-ResNet50 has the minimum standard deviation with 0.003905 while Efficient-

NetB0 has the maximum standard deviation with 0.045947. It can be seen that E-A-ResNet50

has stable effect and high accuracy in the validation set. According to median and maximum,

the accuracy improvement of network model after 150 rounds can be estimated. The accuracy

of E-A-ResNet50 is 0.010119, while that of EfficientNetB0 is the highest, 0.089352. In short, we

can get a consistent conclusion: E-A-ResNet50 has a strong learning ability, and in the first

150 rounds of training, it has basically completed the parameter learning.

Meanwhile, we also find a phenomenon which is inconsistent with the other two models.

For EfficientNetB0 and E-A-EfficientNetB0, their accuracy in the validation set is generally

higher than that in the training set, which proves that the algorithm has good generalization

ability. Compared with the other four algorithms, these four algorithms’ accuracy are generally

higher in the training set than that in the validation set, which indicates that these four algo-

rithms have slight overfitting. Therefore, we choose the most accurate weight in the validation

set to make the final evaluation of the above six models on the test set.

From the visual feature map of the edge extraction network in Fig 10, it is observed that the

edge extraction network extracts and retains the grass edge features very well, and the pixels of

the edge part have higher values. The class activation feature map [45] shows that the edge

information extracted by the edge extraction network plays an important role in the final

E-A-Net classification process.

From Fig 11(b), it can be seen that most of the main characteristics of forage grasses are

retained by the autoencoding network. The stitching of the channels with the backbone feature

extraction network can make up for the deficiency that most of the neural networks have blank

feature maps on the feature channels of the deep convolutional layer due to the deepening of

the network level. From Fig 11(c) and 11(d), it is concluded that the main network model with

an edge extraction network is more widely involved in the final classification decision.

Test result of E-A-Net

The test result are shown in Fig 12. Restults show that E-A-ResNet50 improves the classifica-

tion accuracy of forage grasses 15 from 25% to 95%, E-A-EfficientNetB0 improves the classifi-

cation accuracy of forage grasses 17 from 39% to 100%. It can be seen that the original

E-A-Net has better learning ability than the original convolutional network and can effectively

avoid the problem of poor recognition accuracy of a certain forage grasses.

To measure a model performance in a comprehensive way, the five indicators of the test set

are used to valuate model performance: precision, recall, f1 − score, params and cost. The test

results are as Table 4:

Precision: refer to the proportion of positive samples in positive examples determined by

the classifier.

precision ¼
TP

TP þ FP
ð14Þ
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Fig 10. The influence of edge information on model recognition. (a) Feature maps output by a Sobel operator, (b)

Feature maps of the first three pooling layers of the network extracted for edges, (c) Extracting network feature map for

class-activated edges.

https://doi.org/10.1371/journal.pone.0259783.g010
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Fig 11. The influence of autoencoding network on the overall model. (a) Image input to autoencoder network, (b) Result of last two

convolutional layers and last pooling layer of autoencoder network, (c) Class activation E-A-Net autoencoder network partial

characteristic diagram, (d) Class activation basic neural network thermogram.

https://doi.org/10.1371/journal.pone.0259783.g011
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Recall: refer to the ratio of predicted positive cases to the total positive cases.

recall ¼
TP

TP þ FN
ð15Þ

Fig 12. Confusion matrix diagram: Where the horizontal axis of the confusion matrix is the real type and the vertical axis is the prediction type.

On the first line is the confusion matrix for VGG16 [51], ResNet50 [38], and EfficientNetB0 [52] networks, and on the second line is the confusion

matrix for E-A-VGG16 and E-A-ResNet50, E-A-EfficientNetB0 networks.

https://doi.org/10.1371/journal.pone.0259783.g012

Table 4. Test result.

precision recall f1-score params cost

VGG16-Backbone

VGG16 [51] 0.95 0.95 0.95 14.7 × 106 0.0457s

E-A-VGG16 0.96 0.96 0.96 18.1 × 106 0.0502S

ResNet50-Backbone

ResNet50 [38] 0.93 0.91 0.91 23.6 × 106 0.0521s

E-A-ResNet50 0.94 0.93 0.94 39.7 × 106 0.0549s

EfficientNetB0-Backbone

EfficientNetB0 [52] 0.94 0.92 0.93 73.2 × 105 0.0453s

E-A-EfficientNetB0 0.96 0.96 0.96 85.3 × 105 0.0481s

https://doi.org/10.1371/journal.pone.0259783.t004
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F1 − score: it is the harmonic average of precision rate and recall rate, with the maximum of

1 and the minimum of 0.

f 1 � score ¼
1

n

Xn

i¼1

Pi � Ri
Pi þ Ri

ð16Þ

Params is a standard to measure the amount of network model parameters.

Cost is the time consumed to predict a picture:

cos t ¼
Tn
n

ð17Þ

F1 − score is used as the final standard to evaluate the model performance. E-A-VGG16,

E-A-ResNet50 and E-A-EfficientNetB0 are increased by 1.6%, 2.8% and 3.7% respectively than

VGG16 [51], ReNet-50 [38] and EfficientNetB0 [52]. E-A-VGG16, E-A-Resnet50 and E-A-Ef-

ficientnetB0 have more 3.4 × 106, 16.1 × 106, 12.1 × 105 parameters than VGG16, ReNet-50

and EfficientNetB0 respectively. In terms of the processing speed for a single image,

E-A-VGG16, E-A-ResNet50 and E-A-EfficientNetB0 than VGG16, ReNet-50 and Efficient-

NetB0 increased by 0.0045s, 0.00528s, 0.0028s respectively. Results show that although there

are more parameters in these three improved networks, the accuracy is greatly improved, espe-

cially in the EfficientNetB0. Only 1.21 × 106 parameters and 0.0028s of single image operation

time are added, but the test accuracy is improved by 3.7%. Therefore, the fusion of the features

extracted from the edge extraction network and the features extracted from the autoencoder

network into the main features extraction network can effectively improve the accuracy of the

network model and the generalization ability.

From the above experimental results, it can be concluded that although E-A-EfficientNetB0

has lower accuracy in the training set and verification set than that of E-A-VGG16, E-A-Re-

sNet50, VGG16 and ResNet50, in test set it has the same effect as E-A-VGG16, and is higher

than the other four algorithms in each index. Compared with E-A-VGG16, E-A-Efficient-

NetB0 has fewer parameters and shorter processing time for a single image. Therefore, E-A-Ef-

ficientNetB0 has better performance on forage data sets, which proves the effectiveness of our

proposed edge autoencoder network.

Conclusion and future work

Conclusion

To sum up, the following conclusions are drawn from this study:

1. An edge autoencoder classification network is proposed. It combines the rich and signifi-

cant edge information of herbage with the herbage features extracted by the autoencoder

network. The proposed method is tested against the herbage dataset of forage grasses in

Inner Mongolia and Etuoke Banner. Restults show that the proposed method outperforms

the existing benchmarking models. This network can prevent edge features and global fea-

tures from disappearing with the deepening of network depth.

2. Segmentation of herbage image with complex background can effectively make the network

pay more attention to the characteristics of herbage.

3. The number of parameters are increased in the autoencoder network and edge extraction

network, which decreases the processing speed of the network model. In the future, the net-

work will be integrated into wearable devices for sheep. Knowledge distillation, pruning
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and quantitative algorithms will be explored to further optimize the model, so as to improve

its speed.

Future work

Forage recognition technology can be used in intelligent animal husbandry projects in the

future. Therefore, there are still many aspects to be improved in this experiment, and there is

still much work to be done in the future. I will list some areas that can be improved in the

future.

1. Expansion of dataset: the leaf texture, shape and color of herbage are not exactly the same

even for the same kind of herbage. Besides, the color of herbage in May is light green, that

in August is dark green, and that in October is a little yellow. Therefore, in order to obtain a

more robust herbage recognition model, it is an important, lasting and time-consuming

work to expand the forage dataset.

2. Model simplification: our algorithm improves the accuracy of the model to a certain extent,

but also increases model’s parameters. Knowledge distillation can transfer knowledge from

one network to another. These two networks can be isomorphic or heterogeneous. It can be

used to transform a network from a large network to a small network, and keep the perfor-

mance close to that of a large network. In the future, we will design a simplified network

model so as to increase the reasoning speed of the network model on the premise of ensur-

ing the accuracy.

3. Production of wearable devices: for the purpose of accurately counting the amount and spe-

cies of forage, we will make a wearable forage recognition device in the future. According to

the sound sensor, we can use the chewing signal of cattle and sheep to control the camera.

When the chewing signal is found, we can turn on the camera to obtain the species of for-

age. The chewing signal is used to count the number and species of forage.
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