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Abstract
Purpose High-dimensional propensity scores (hdPS) can ad-
just for measured confounders, but it remains unclear how
well it can adjust for unmeasured confounders. Our goal was
to identify if the hdPS method could adjust for confounders
which were hidden to the hdPS algorithm.
Method The hdPS algorithm was used to estimate two hdPS;
the first version (hdPS-1) was estimated using data provided
by 6 data dimensions and the second version (hdPS-2) was
estimated using data provided from only two of the 6 data
dimensions. Two matched sub-cohorts were created by
matching one patient initiated on a high-dose statin to one
patient initiated on a low-dose statin based on either hdPS-1
(Matched hdPS Full Info Sub-Cohort) or hdPS-2 (Matched
hdPS Hidden Info Sub-Cohort). Performances of both hdPS
were compared by means of the absolute standardized differ-
ences (ASDD) regarding 18 characteristics (data on seven of
the 18 characteristics were hidden to the hdPS algorithm when
estimating the hdPS-2).

Results Eight out of the 18 characteristics were shown to be
unbalanced within the unmatched cohort. Matching on either
hdPS achieved adequate balance (i.e., ASDD <0.1) on all 18
characteristics.
Conclusion Our results indicate that the hdPS method was
able to adjust for hidden confounders supporting the claim
that the hdPS method can adjust for at least some unmeasured
confounders.

Keywords Confounding by indication . High-dimensional
propensity scores . Unmeasured confounders . Omitted
confounders

Introduction

The high-dimensional propensity score (hdPS) has been used
in different contexts and within multiple databases for the
control of confounding by indication and it has been shown
to be at least equivalent and potentially superior to the propen-
sity score in this regard [1–7]. Superiority of the hdPS is gen-
erally attributed to the greater number of covariates drawn
from the database to include in the final hdPS model [5].
However, the performance of the hdPS has not been assessed
when information regarding some of these potential con-
founders within the examined database is limited.

Our aim was to assess the impact of limited information
regarding potential confounders on the performance of the
hdPS. To achieve this goal, we compared the performance of
the hdPS in a scenario where the algorithm had full access to
all of the data contained within a database to its performance
in a scenario where only partial data were available to the
algorithm.

The administrative database situation in Quebec, Canada
provides an interesting setting in which to examine this issue.
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There are two distinct sets of medico-administrative databases
available in Quebec; the Régie de l’assurance maladie du
Québec (RAMQ) databases (physician and pharmacists bill-
ing data) and the Maintenance et Exploitation des Données
pour l’Étude de la Clientèle Hospitalière (MED-ECHO) da-
tabases (hospital discharge data). RAMQ and MED-ECHO
data may overlap. However, they differ on their source of
information (e.g., only the RAMQ databases provide outpa-
tient data) and may be more detailed in specific areas (e.g., the
MED-ECHO databases provide more detailed and more pre-
cise information regarding patients’ entry date/discharge date
and on in-hospital diagnoses and therapeutic and diagnostic
procedures) [8–10].

To test the performance of the hdPS under conditions of
limited information regarding potential confounders, we ex-
amined the association between the risk of diabetes and expo-
sure to high versus low statin doses [7, 11–16]. Assessing this
association in a Quebec incident statin user population may be
hindered by the presence of confounding by indication since
patients started on a higher statin dose have been shown to be
sicker and at higher risk for diabetes than those started on a
lower dose [7].

We compared the performance of the hdPS within two
scenarios: (1) the algorithm used in the hdPS estimation had
full access to all the data provided by both the MED-ECHO
and RAMQ databases, and (2) the algorithm had only access
to the data provided by the MED-ECHO databases.

One of the uses of hdPS is to select a matched sub-cohort
from the main cohort (all patients initiated on statins) where
the characteristics of patients who received treatment A (high
dose statins) are similar to the characteristics of patients who
received treatment B (low-dose statins) [5]. That is, we
assessed the performance of the hdPS on its ability to select
a balanced sub-cohort when it is used as a matching criterion
[7, 17–21]. The performance of the restricted information
hdPS was assessed by comparing the balance achieved with
this method to the balance achieved when all information was
available to the algorithm.

Methods

Data sources

The different data sources used within this study have been
described elsewhere [7]. Briefly, we obtained data on a cohort
of 800,551 new statin users from RAMQ. For this study, we
used data from both the RAMQ databases (i.e., demographic
database, medical services, and claims database and pharma-
ceutical database) and from the MED-ECHO databases (i.e.,
hospitalization—description database, hospitalization—diag-
noses database, and hospitalization—intervention database).
Patient records were linked across all databases by use of a

unique identification number which was encrypted to protect
patient confidentiality. Access to data was granted by the
Commission d’accès à l’information and the protocol was ap-
proved by theCentre hospitalier de l’Université deMontréal’s
ethics’ committee.

Full cohort

The Full Cohort used within this study has been described
elsewhere [7]. Briefly, it was comprised of 404,129 patients
newly initiated on a statin (either simvastatin, lovastatin, prav-
astatin, fluvastatin, atorvastatin, or rosuvastatin) between
January 1st, 1998 and December 31st, 2010. Patients were
defined as having been newly initiated on a statin if they
did not receive any statin dispensation in the year prior to
the date of first statin dispensation (hereby defined as the
cohort entry date).

Identification of exposure group

All patients were categorized into two groups based on the
strength of the daily statin dose of their first statin dispensation
[12]. Patients initiated on a daily dose of ≥10 mg of
rosuvastatin, ≥20 mg of atorvastatin or ≥40 mg of simvastatin
formed the high dose group and the remaining patients formed
the low dose group.

Identification of the study outcome

Onset of diabetes within 2 years follow-up was used as our
study outcome. Patients were defined as cases if they received
either a dispensation of a drug used in the treatment of diabetes
(WHO ATC A10) or a diagnosis of diabetes (ICD-9 code:
250.x; ICD-10 codes: E10.x—E14.x) within the 2 years fol-
lowing the cohort entry date; all other patients were consid-
ered to be diabetes-free.

High-dimensional propensity score method

Two distinct hdPS models were created and resulting hdPS
were calculated for all patients included in the Full Cohort.
Detailed description of the hdPS method can be found else-
where [5]. Both models were created using the default setting
of the SAS hdPS macro v.1 [22].

Six potential data dimensions were defined using the data
collected from the year prior to the cohort entry date: (1) drugs
dispensed in an outpatient setting, (2) physician claims for
procedures codes, (3) physician claims for diagnostic codes,
(4) specialty of the physician providing care, (5) hospitaliza-
tion discharge data for inpatient procedure codes, and (6) hos-
pitalization discharge data for inpatient diagnostic code.
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Full information model

The first hdPSmodel (hereby defined as hdPS full infomodel)
was created by selecting the top 500 covariates, as assessed by
the hdPS algorithm, contained within all 6 data dimensions. In
addition to these 500 covariates, the following known con-
founders were forced within the hdPS full info model: [12]
patients’ sex, age, poverty level status (yes versus no) at the
cohort entry date, year of entry within the cohort (as a cate-
gorical variable), and ≥1 hospitalization, ≥5 outpatient visits,
≥5 distinct drugs dispensed to the patient, all within the year
prior to the cohort entry date. The resulting hdPS full info
model was used to estimate each patient’s hdPS-1.

Hidden information model

The second hdPS model (hereby defined as the hdPS hidden
infomodel) was created by selecting the top 500 covariates, as
assessed by the hdPS algorithm, contained within the 2 data
dimensions provided from the MED-ECHO databases since it
was believed a priori that it would contain less potential co-
variates, therefore increasing the risk of unmeasured con-
founding (the 4 data dimensions provided by RAMQ were
hidden to the algorithm). In addition to these 500 variables,
the following covariates were forced within the hdPS hidden

info model: patients’ sex, age, and poverty level status (yes
versus no) at the cohort entry date, the year of entry within the
cohort (as a categorical variable) and ≥1 hospitalization in the
year prior to the cohort entry date. Within this model, hospi-
talization status (≥1 hospitalization yes vs no) was assessed
solely from data available within the MED-ECHO databases.
Outpatient medical resource utilization and outpatient drug
dispensation covariates, forced within the previous model,
were excluded from this list since they were based on infor-
mation solely available within the RAMQ databases. The
resulting hdPS hidden info model was used to estimate each
patient’s hdPS-2.

Creation of the matched sub-cohorts

Trimming was performed and patients located within non-
overlapping regions of the hdPS-1 distribution were excluded
[23–25], all other patients were eligible for inclusion within
the Matched hdPS Full Info Sub-Cohort. Low dose controls
were found for patients initiated on a high dose using a greedy,
nearest neighbor 1:1 matching algorithm. Matching occurred
if the difference in the logit of hdPS-1 between the nearest
neighbors was within a caliper width equal to 0.2 times the
SD of the logit of the hdPS-1 [26]. Patients selected by the
matching algorithm were included within the Matched hdPS

Fig. 1 Patient flow-chart within the study. hdPS high-dimensional propensity score
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Full Info Sub-Cohort. These two steps were reproduced using
hdPS-2 in order to create theMatched hdPS Hidden Info Sub-
Cohort.

Statistical analyses

Patients’ baseline characteristics within both sub-cohorts were
assessed using the information provided from the full data-
base. Absolute standardized differences (ASDD) were used
to compare patients’ baseline characteristics between patients
included in the high dose group versus those included in the
low dose group within both matched sub-cohorts [19, 21].
ASDD <0.1 are generally assumed to indicate good balance
between groups [21, 27].

Discrete data are presented in absolute values and percentages
and continuous data are presented as mean (± SD). All statistics
were performed using SAS version 9.3 (Cary, North Carolina).

Results

Description of the full cohort

Figure 1 shows the flow chart of patients from their inclusion
within the Full Cohort to their inclusion within the Matched
hdPS Full Info Sub-Cohort and theMatched Hidden Info Only
Sub-Cohort.

The Full Cohort is comprised of 404,129 patients, 264,947
patients (65.6 %) of which were in the low dose group while
the remaining 139,182 patients (34.4 %) were in the high dose
group; as mentioned previously, patients in the high dose
group were different and overall sicker than those in the low
dose group. Specifically, eight of the 18 examined patient
characteristics (i.e., sex, ≥5 outpatient medical visits, ≥1 hos-
pitalization, history of myocardial infarction, history of percu-
taneous coronary intervention, dispensation of beta-blockers,
dispensation of angiotensin receptor blockers [ARB], dispen-
sation of angiotensin converting enzyme inhibitors [ACEI])
were unbalanced (ASDD >0.1) within the Full Cohort [7].

Of the 404,129 patients included within the Full Cohort,
none were classified as diabetic at the cohort entry date.
Diabetes was identified in 12,978 patients (3.2 %) within the
2 years follow-up.

Description of the selected data dimensions

Table 1 shows the number of potential covariates, with and
without the assessment of recurrence, within each of the 6 data
dimensions considered within this study. The 4 data dimen-
sions provided from the RAMQ databases (n without assess-
ment of recurrence =2758 [71.6 %], n with assessment of
recurrence =5011 [81.0 %]) contained a greater number of
potential covariates than the 2 data dimensions provided from

MED-ECHO database (n without assessment of recurrence
=1096 [28.4 %], n with assessment of recurrence =1174
[19.0 %]).

Characteristics of the patients included
within the Matched hdPS Full Info Sub-Cohort

Using data contained within all 6 available high-dimensions,
we created the hdPS full info model which was used to esti-
mate patients’ hdPS-1. Three hundred and one patients
(0.0 %) had hdPS-1 located within non-overlapping regions
and were excluded from the analysis. Among the remaining
403,828 patients, we matched 116,014 patients (28.7 %) from
the high dose group to 116,014 patients (28.7 %) from the low
dose group based on their individual hdPS-1; selected
patients formed the Matched hdPS Full Info Sub-Cohort
(Fig. 1).

Table 1 Number of covariates available within each data dimension
provided from the two Quebec medico-administrative databases

Data dimension Number of potential
covariates available
within the data
dimensiona

Number of potential
covariates available
following the assessment
of recurrence of the
covariate within the data
dimension

RAMQ database

Outpatient
drug
dispensations

524 1320

Inpatient and
outpatient
diagnostic
codes

1202 1986

Inpatient and
outpatient
procedure
codes

993 1610

Speciality of
the physician

39 95

MED-ECHO database

Inpatient
diagnostic
codes

843 915

Inpatient
procedure
codes

253 259

The hdPS full infomodel was created from the information present within
all 6 data dimensions while the hdPS hidden infomodel was limited to the
information present within the 2 data dimension provided by MED-
ECHO

MED-ECHO Maintenance et Exploitation des Données pour l’Étude de
la Clientèle Hospitalière ; RAMQ Régie de l’assurance maladie du
Québec
a Any covariate not present within at least 100 patients is excluded by the
hdPS algorithm and was therefore not included within this table
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Patients included within the Matched hdPS Full Info Sub-
Cohortwere on average 64.6 years old (SD 11.2) and 116,688
of them were males (50.3 %) (Table 2). Balance (ASDD <0.1)
was obtained in all 18 examined patient characteristics
(ASDD ranged from 0.001 to 0.023 with an average of 0.008).

Characteristics of the patients included
within the Matched hdPS Hidden Info Sub-Cohort

Using data from the 2 data dimensions selected from the
MED-ECHO databases, we created the hdPS hidden info
model to estimate each patient’s individual hdPS-2. Sixty-six
patients (0.0 %) had hdPS-2 located within non-overlapping
regions and were excluded from the analysis. Among the re-
maining 404,063 patients, we matched 119,376 patients
(29.5 %) from the high dose group to 119,376 patients
(29.5 %) from the low dose group based on their individual
hdPS-2; selected patients formed the Matched hdPS Hidden
Info Sub-Cohort (Fig. 1). About half of the patients included
within this sub-cohort were male (n = 120,238 [50.4 %]) and
the average age was 64.5 years old (SD 11.2) (Table 3).

Balance within this sub-cohort was obtained for all 18 exam-
ined patient characteristics (ASDD ranged from 0.004 to
0.075 with an average of 0.027), including those which were
hidden to the hdPS algorithm (ASDD for the hidden covari-
ates ranged from 0.011 to 0.075 with an average of 0.036).

Relative performance of the two matched sub-cohorts

ASDD obtained within both matched sub-cohorts are shown
within Fig. 2. The Matched hdPS Full Info Sub-Cohort was
shown to achieve better balance on 16 of the 18 examined
patient characteristics, the two remaining characteristics were
equally balanced within both matched sub-cohorts.

Discussion

Our results show that matching on the hdPS hidden info model
achieved balance on all 18 examined patient characteristics. This
result shows that the hdPS algorithm was able to adjust for im-
balance regarding patient characteristics, some of which were

Table 2 Demographic
characteristics and comorbidity
status of the Matched hdPS Full
Info Sub-Cohort at baseline

Low dose group
n (%)

High dose group
n (%)

Absolute standardized
differences

116,014 (100.0) 116,014 (100.0)

Age, mean (SD)a 64.6 (11.2) 64.6 (11.2) 0.002

Male sexb 58,194 (50.2) 58,494 (50.4) 0.005

At least 5 medical outpatient visitsb 66,453 (57.3) 66,390 (57.2) 0.001

At least 1 hospitalizationc 28,265 (24.4) 28,604 (24.7) 0.007

Myocardial infarctionc 7558 (6.5) 7995 (6.9) 0.015

Stroke 3620 (3.1) 3897 (3.4) 0.013

Hypertension 48,268 (41.6) 48,474 (41.8) 0.004

Dyslipidemia 37,486 (32.3) 37,841 (32.6) 0.007

Peripheral vascular disease 2293 (2.0) 2671 (2.3) 0.023

Congestive heart failure 5198 (4.5) 5479 (4.7) 0.012

Coronary artery bypass graft 1670 (1.4) 1661 (1.4) 0.001

Percutaneous coronary interventionc 4590 (4.0) 4846 (4.2) 0.011

Dispensation of loop diuretics 7139 (6.2) 7256 (6.3) 0.004

Dispensation of calcium blockers 26,510 (22.9) 26,716 (23.0) 0.004

Dispensation of beta-blockersb 33,901 (29.2) 34,389 (29.6) 0.009

Dispensation of angiotensin receptor
blockersb

20,345 (17.5) 20,876 (18.0) 0.012

Dispensation of angiotensin converting
enzyme inhibitorsb

24,472 (21.1) 25,289 (21.8) 0.017

At least 5 different drugs dispensed 66,600 (57.4) 66,820 (57.6) 0.004

Comorbidity status, drug dispensations, and medical utilization rates were assessed in the year prior to the cohort
entry date. Absolute standardized differences are defined as the between group difference as a proportion of the
pooled standard deviation of the two groups
a At the cohort entry date
b Identifies baseline characteristics which had 0.10< ASDD ≤0.20 within the unmatched populations [7]
c Identifies baseline characteristics which had ASDD >0.20 within the unmatched populations [7]
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unavailable to the hdPS algorithm. Among these, some were
very important variables regarding outpatient medical visits and
drug dispensations which can be highly associated with both the
choice of treatment and the risk of diabetes.

As expected the hdPS algorithm had access to a greater num-
ber of potential covariates to build the hdPS full info model
(n = 3854 potential covariates) than when building the hdPS
hidden info model (n = 1096 [28.4 %] potential covariates).
This difference implied that 431 (86.2 %) covariates selected
within the hdPS full info model were no longer available for
selection and had to be replaced by the algorithm when it built
the hdPS hidden info model.

The main strength of our study is that it provides support to
the claim that the hdPS is able to adjust for at least some
unmeasured confounders. In their original paper,
Schneeweiss and colleagues [5] hinted that some of the covar-
iates selected by the hdPS algorithm may not be direct con-
founders but may actually be proxies of unmeasured con-
founders. Although adjusting for a perfect proxy of an unmea-
sured confounder is equivalent to directly adjusting for this
confounder [28], it remained unclear if the hdPS could truly

adjust for a confounder not present within the examined data-
base. Four important known confounders (i.e., ≥5 medical
outpatient visits, dispensation of beta-blockers, dispensation
of ARB, and dispensation of ACEI; all shown to be unbal-
anced within the full cohort) [7] were not available to the hdPS
hidden info model. Our results show that this model was able
to achieve balance within all examined patient characteristics,
including the four previously mentioned (Table 3). Such a
result is of significant value since the PS technique may not
adjust for variables not included within the PS model [29].
However, we were unable to identify which covariates select-
ed by the hdPS algorithm were used as proxies for these four
confounders.

Our study has limitations. First, since our study shows that
hdPS was able to control for measured confounders which were
unavailable to the hdPS algorithm in the restricted data setting, it
is reasonable to think that the algorithm is also able to control for
some unmeasured confounders. Of note, the ability of hdPS to
control for unmeasured confounders may be specific to these
covariates/databases and to this specific population and may
not be true in other settings.

Table 3 Demographic
characteristics and comorbidity
status of the matched hdPS
hidden info sub-cohort at baseline

Low dose group
n (%)

High dose group
n (%)

Absolute standardized
differences

119,376 (100.0) 119,376 (100.0)

Age, mean (SD)a 64.5 (11.2) 64.6 (11.1) 0.012

Male sexb 59,870 (50.2) 60,368 (50.6) 0.008

At least 5 medical outpatient visitsb,d 69,706 (58.4) 67,866 (56.9) 0.031

At least 1 hospitalizationc 28,176 (23.6) 29,679 (24.9) 0.029

Myocardial infarctionc 7427 (6.2) 8605 (7.2) 0.039

Stroke 3515 (2.9) 3961 (3.3) 0.021

Hypertension 49,608 (41.6) 49,833 (41.7) 0.004

Dyslipidemia 38,734 (32.5) 38,328 (32.1) 0.007

Peripheral vascular disease 2248 (1.9) 2742 (2.3) 0.029

Congestive heart failure 4977 (4.2) 5804 (4.9) 0.033

Coronary artery bypass graft 1550 (1.3) 1717 (1.4) 0.012

Percutaneous coronary interventionc 4541 (3.8) 5324 (4.5) 0.033

Dispensation of loop diureticsd 6852 (5.7) 7604 (6.4) 0.026

Dispensation of calcium blockersd 26,961 (22.6) 27,501 (23.0) 0.011

Dispensation of beta-blockersb,d 32,994 (27.6) 37,067 (31.1) 0.075

Dispensation of angiotensin receptor
blockersb,d

20,479 (17.2) 21,877 (18.3) 0.031

Dispensation of angiotensin converting
enzyme inhibitorsb,d

24,286 (20.3) 26,996 (22.6) 0.055

At least 5 different drugs dispensedd 68,169 (57.1) 69,442 (58.2) 0.022

Comorbidity status, drug dispensations, and medical utilization rates were assessed in the year prior to the cohort
entry date. Absolute standardized differences are defined as the between group difference as a proportion of the
pooled standard deviation of the two groups
a At the cohort entry date
b Identifies baseline characteristics which had 0.10< ASDD ≤0.20 within the unmatched populations [7]
c Identifies baseline characteristics which had ASDD >0.20 within the unmatched populations [7]
d Identifies covariates which were hidden to the hdPS algorithm within the hdPS hidden info model
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Second, we only examined a limited number of patient
characteristics. Although balance was achieved within both
sub-cohorts regarding all 18 examined patient characteristics,
we cannot guarantee that this balance would be achieved in
other patient characteristics or in other unmeasured
confounders.

Finally, we did not examine the relative performance of the
two matched sub-cohorts in regards to the measure of associ-
ation which would have been obtained in an eventual etiolog-
ical study. To do so would require the existence of a Bgold
standard^, providing the nature and magnitude of the Btrue^
association, to which we could compare our results [2–5].
Despite this fact, we consider that the quality of the match is
a good marker of the performance of the hdPS method within
this study since only this approach could illustrate that the
hdPS method truly adjusted for the seven hidden confounders
[7, 17–21].

In conclusion, our results show that, within the confines of our
study, the hdPS was able to adequately adjust for confounders
which were hidden to the algorithm. Such results support the
claim that the hdPS can adjust for at least some unmeasured
confounders and further support its use in future observational
studies.
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