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Abstract

Understanding the genetic effects on non-coding RNA (ncRNA) expression facilitates functional characterization of disease-associated
genetic loci. Among several classes of ncRNAs, microRNAs (miRNAs) are key post-transcriptional gene regulators. Despite its
biological importance, previous studies on the genetic architecture of miRNA expression focused mostly on the European individuals,
underrepresented in other populations. Here, we mapped miRNA expression quantitative trait loci (miRNA-eQTL) for 343 miRNAs in
141 Japanese using small RNA sequencing and whole-genome sequencing, identifying 1275 cis-miRNA-eQTL variants for 40 miRNAs
(false discovery rate < 0.2). Of these, 25 miRNAs having eQTL were unreported in the European studies, including 5 miRNAs with their
lead variant monomorphic in the European populations, which demonstrates the value of miRNA-eQTL analysis in diverse ancestral
populations. MiRNAs with eQTL effect showed allele-specific expression (ASE; e.g. miR-146a-3p), and ASE analysis further detected
cis-regulatory variants not captured by the conventional miRNA-eQTL mapping (e.g. miR-933). We identified a copy number variation
associated with miRNA expression (e.g. miR-570-3p, P = 7.2 × 10−6), which contributes to a more comprehensive landscape of miRNA-
eQTLs. To elucidate a post-transcriptional modification in miRNAs, we created a catalog of miRNA-editing sites, including 10 canonical
and 6 non-canonical sites. Finally, by integrating the miRNA-eQTLs and Japanese genome-wide association studies of 25 complex traits
(mean n = 192 833), we conducted a transcriptome-wide association study, identifying miR-1908-5p as a potential mediator for adult
height, colorectal cancer and type 2 diabetes (P < 9.1 × 10−5). Our study broadens the population diversity in ncRNA-eQTL studies and
contributes to functional annotation of disease-associated loci found in non-European populations.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/hmg/ddab361


Human Molecular Genetics, 2022, Vol. 31, No. 11 | 1807

Graphical Abstract

Introduction
Functional characterization of genetic variants is an
important challenge in elucidating the mechanisms
underlying the genetics of complex diseases. Although
genome-wide association studies (GWASs) have iden-
tified tens of thousands of disease-associated genetic
loci, most of them are located on the non-coding regions
and still remain to be functionally characterized. One
of the promising approaches to tackle this challenge
is identifying molecular quantitative trait loci (QTLs),
where genetic loci are associated with intermediate
molecular phenotypes, such as gene expression (eQTL),
protein levels (pQTL) and DNA methylation (meQTL). Of
these, eQTL mapping helps interpret disease-associated
genetic variants with their effect on gene expression and
prioritize the causal genes.

When compared with eQTL mapping of messenger
RNA (mRNA), eQTL of non-coding RNA (ncRNA) has
been understudied despite its importance. Among
several classes of ncRNA, microRNA (miRNA), small
ncRNA of 21–25 nucleotides, is known as a major
post-transcriptional regulator of gene expression (1–3).
MiRNAs are involved in the pathophysiology of various

diseases, such as cancers (4–7) and immune-related dis-
eases (8–11). MiRNA expressions are also heritable traits
and exhibit significant associations with genetic variants
[miRNA-eQTLs; (12–18)]. Previous studies reported
miRNA-eQTLs associated with complex human traits
(12,13). Although these lines of evidence firmly sup-
port the importance of miRNA-eQTLs in interpreting
functionally uncharacterized disease-associated loci,
previous studies were mainly conducted in individuals
of European ancestry (12,14–18). In particular, the
genetic drivers of miRNA expression variation in Asian
populations are unknown. Therefore, comprehensive
miRNA-eQTL studies in Asian populations are warranted.

Here, we report the first miRNA-eQTL mapping in the
Asian population. We conducted small RNA-sequencing
(sRNA-seq) of peripheral blood mononuclear cells
(PBMCs) and whole-genome sequencing (WGS) of the
141 Japanese individuals, investigating the association
between miRNA expressions and genetic variations. By
leveraging the sequenced variants, we further performed
(i) identification of the copy number variations (CNVs)
that were associated with miRNA expression and (ii)
detection of miRNA-editing events. Finally, by combining
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Figure 1. Manhattan plot of cis-miRNA-eQTLs. P-values are shown for cis-windows of the 343 miRNAs examined. The 40 significant cis-miRNA-eQTLs
are labeled and colored in pink. The eMiRNAs harboring genetic variants within the mature miRNA sequences are shown in green, all of which showed
significant allele-specific expression (see Fig. 3). The eMiRNAs harboring genetic variants within the primary miRNA sequences but not the mature
miRNA sequences are shown in blue. Diamonds indicate lead variants. Note that statistical significance was evaluated using the permutation procedures
(see Materials and Methods) and that the significance cutoff P-values were different depending on the miRNA.

the miRNA expression data with the large-scale GWASs
in Japanese individuals (mean n > 190 000), we per-
formed a transcriptome-wide association study (TWAS)
with diverse complex diseases and traits. Our results
demonstrate the value of population-specific miRNA-
eQTL analysis for functional characterization of disease-
associated genetic loci and identification of the potential
miRNAs mediating the disease biology.

Results
MiRNA-eQTLs in the Japanese population
We performed sRNA-seq on PBMCs from the 141
unrelated Japanese individuals, which allowed us to
capture all types of the miRNA transcripts in principle.
We quantified 343 autosomal mature miRNAs that were
expressed in > 70 individuals. We used those miRNA
expressions for subsequent miRNA-eQTL mapping. We
performed WGS of the study participants and identified
12 171 854 autosomal genetic variants [11 396 461 single-
nucleotide variants (SNVs) and 775 393 short insertions
and deletions (indels)] after quality control. Of the
12 171 854 variants, we used the 7 170 825 variants with
a minor allele frequency (MAF) ≥ 0.01 for the miRNA-
eQTL mapping. We performed cis-miRNA-eQTL mapping
using linear regression and permutation-based multiple
testing correction. We defined the cis-window as 1 Mb
up- and down-stream of the mature miRNA coding
region. We defined ‘eMiRNAs’ as miRNAs with at least
one significant eQTL variant at false discovery rate
(FDR) < 0.2 (18). We report the number of cis-miRNA-
eQTL variants as the number of all variant–eMiRNA
pairs with FDR significance. We identified 1275 cis-
miRNA-eQTL variants for 40 eMiRNAs at FDR < 0.2
(Fig. 1 and Table 1). Of these, 1011 cis-miRNA-eQTL

variants for 25 miRNAs were significant at FDR < 0.1.
The most significant association was between miR-146a-
3p and rs2910164 (P = 2.4 × 10−16, explained variance
= 38%). In agreement with previous studies on cis-
eQTL (19–21), we observed strong enrichment of eQTL
signals around transcription start sites (TSSs) when
using the most significantly associated eQTL variant
per eMiRNA (Fig. 2A) as well as when using all the eQTL
variants retained after linkage disequilibrium (LD)-based
clumping (r2 < 0.7; Supplementary Material, Fig. S1).
PBMCs consist of several cell types, such as T/NK cells, B
cells and monocytes, and each exhibits a distinct miRNA
expression profile (22). To assess whether the variation
in the cell type proportions in PBMCs significantly affects
the miRNA-eQTL mapping results, we compared miRNA-
eQTL effect estimates with and without adjustment
for cell type proportions estimated by CIBERSORTx
(23). We did not find apparent evidence that cell type
compositions in PBMCs affected the miRNA-eQTLs
(Supplementary Material, Fig. S2).

To confirm that our eQTL mapping results are con-
sistent with previous studies in European populations,
we compared the effect sizes between the previously
reported miRNA-eQTLs (12,17) and our results (Fig. 2B)
and found high correlations (Spearman’s correlation
= 0.87 and 0.74; P = 4.0 × 10−179 and 7.1 × 10−67,
respectively). Of the 40 eMiRNAs, we identified, 25 (63%)
were unreported in the two previous studies on Euro-
peans. The lead variants of the novel eMiRNAs showed
significantly lower MAFs in the European populations
than those in the East Asian populations of the Genome
Aggregation Database [gnomAD; (24); P = 8.3 × 10−3, the
Wilcoxon rank-sum test], but this was not the case for the
known eMiRNAs (P = 0.38; Fig. 2C). In particular, the lead
variants of the five novel eMiRNAs were monomorphic
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Table 1. Summary association results for 40 cis-miRNA-eQTLs

eMiRNA Lead variant Chr Position P-value MAF (in study) MAF (EAS) MAF (EUR)

miR-92b-3p rs16836028 1 154 447 505 2.0 × 10−5 0.011 0.016 0.000
miR-556-3p rs6427665 1 162 214 762 9.7 × 10−6 0.48 0.48 0.26
miR-181a-5p rs16844101 1 199 011 539 9.5 × 10−6 0.18 0.18 0.18
miR-26b-5p rs62182125 2 219 274 142 1.6 × 10−5 0.23 0.27 0.45
miR-16-2-3p rs148824756 3 160 119 084 3.6 × 10−5 0.021 0.024 0.002
miR-574-3p rs6531685 4 38 960 263 3.9 × 10−7 0.33 0.31 0.39
miR-146a-3p rs2910164 5 159 912 418 2.4 × 10−16 0.38 0.38 0.23
miR-93-3p rs375968286 7 100 389 520 4.3 × 10−5 0.028 0.007 0.000
miR-335-5p rs6947476 7 130 076 606 9.5 × 10−6 0.18 0.20 0.32
miR-335-3p rs12706931 7 130 078 291 6.0 × 10−7 0.38 0.39 0.49
let-7d-3p rs200404962 9 96 893 141 2.4 × 10−5 0.27 0.26 0.15
miR-23b-3p rs1564234 9 97 781 594 1.1 × 10−14 0.17 0.27 0.11
miR-27b-3p rs10993464 9 97 808 086 8.7 × 10−7 0.18 0.28 0.11
miR-3074-3p rs117435548 9 97 995 871 2.1 × 10−7 0.018 0.007 0.000
miR-23b-5p rs7047000 9 98 426 006 2.9 × 10−5 0.45 0.37 0.47
miR-1307-3p rs35435808 10 105 180 910 7.7 × 10−8 0.30 0.34 0.37
miR-130a-3p rs731384 11 57 408 382 1.0 × 10−6 0.096 0.11 0.29
miR-1908-5p rs174578 11 61 605 499 1.3 × 10−14 0.39 0.45 0.35
miR-20a-5p rs76518987 13 92 717 757 2.0 × 10−5 0.011 0.011 0.001
miR-3173-5p rs147808964 14 95 078 061 4.9 × 10−7 0.050 0.027 0.000
miR-342-3p rs75416067 14 100 421 429 5.2 × 10−7 0.36 0.37 0.23
miR-496 rs549766505 14 101 024 724 6.6 × 10−6 0.021 0.007 0.000
miR-323b-3p rs28366562 14 101 522 321 3.9 × 10−6 0.19 0.23 0.21
miR-627-5p rs7181577 15 42 485 444 3.3 × 10−15 0.060 0.084 0.082
miR-190a-3p rs2940333 15 62 757 544 1.6 × 10−8 0.39 0.46 0.20
miR-190a-5p rs12441323 15 62 816 101 6.9 × 10−8 0.46 0.43 0.45
miR-195-5p rs76819872 17 6 836 143 4.5 × 10−6 0.071 0.10 0.070
miR-144-5p rs10853129 17 27 191 960 7.8 × 10−11 0.45 0.31 0.30
miR-144-3p rs7214973 17 27 222 745 4.5 × 10−5 0.34 0.30 0.36
miR-152-3p rs145242009 17 46 396 778 5.2 × 10−6 0.018 0.002 0.000
miR-301a-3p rs2191245 17 56 242 752 5.7 × 10−5 0.13 0.13 0.21
miR-21-5p rs10853015 17 57 778 339 1.2 × 10−5 0.15 0.17 0.25
miR-3940-3p rs62106647 19 6 361 345 1.6 × 10−5 0.17 0.18 0.048
miR-641 rs746775867 19 40 788 494 2.0 × 10−5 0.011 0.009 0.000
let-7e-5p rs11670586 19 52 184 544 2.8 × 10−10 0.50 0.44 0.094
miR-125a-5p rs11670586 19 52 184 544 4.8 × 10−10 0.50 0.44 0.094
miR-99b-5p rs11670586 19 52 184 544 7.2 × 10−8 0.50 0.44 0.094
miR-1-3p rs60640728 20 61 145 810 2.4 × 10−14 0.21 0.22 0.21
miR-130b-5p rs425046 22 22 033 626 1.9 × 10−5 0.13 0.092 0.017
miR-548j-5p rs4822733 22 26 930 156 9.0 × 10−11 0.21 0.22 0.031

Novel eMiRNAs are highlighted in bold. MAF (in study), minor allele frequency in the study participants; MAF (EAS), minor allele frequency in the gnomAD (24)
East Asian populations and MAF (EUR), minor allele frequency in the gnomAD non-Finnish European populations.

in the European populations (Table 1). These findings
demonstrate that our analysis successfully identified
miRNA-eQTLs common in the East Asian populations,
including population-specific polymorphisms.

Next, to comprehensively delineate cis-regulatory
genetic effects on miRNAs, we leveraged sRNA-seq reads
covering heterozygous sites and analyzed allele-specific
expression (ASE) of miRNAs. ASE is the relative expres-
sion difference between the paternal and maternal
alleles within a given individual. Individuals who are
heterozygous for a cis-regulatory genetic variant may
exhibit ASE in which one allele is more highly expressed
than the other allele. Since trans-acting or environmental
factors equally influence both alleles, ASE analysis is
robust to such factors and an orthogonal measure to
detect cis-regulatory effects within an individual, in
contrast to the conventional eQTL detection between
individuals. Of the three variant–miRNA pairs that

passed the quality-control criteria (see Materials and
Methods), two variant–miRNA pairs showed significant
ASE in at least one individual (P < 0.05/3 = 0.017);
rs2910164 within miR-146a-3p and rs2620381 within
miR-627-5p (Fig. 3A). These variants were also identified
as significant eQTL variants in the conventional miRNA-
eQTL mapping. Rs2910164 is the lead variant of the
miR-146a-3p eQTL. Rs2620381 is in strong LD with the
lead variant of the miR-627-5p eQTL [r2 = 0.95 in the East
Asian populations of 1000 Genomes Project Phase 3 (1KG
Phase 3)]. The allele with fewer read counts observed
in ASE analysis consistently decreased expression
(Fig. 3B).

To improve statistical power for detecting cis-regulatory
effects, we performed ASE analysis with reads combined
across all the individuals heterozygous at the variant.
Sixteen variants were covered by at least one sRNA-seq
read from the individuals heterozygous at the variant.
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Figure 2. Characteristics of cis-miRNA-eQTLs in the Japanese population. (A) The number (the upper panel) and P-values (the lower panel) of the lead
variants of eMiRNAs are shown against the distance from each TSS. When more than one variant showed the minimum P-value for an eMiRNA, the
median distance across them is used. (B) Effect sizes in the previous miRNA-eQTL studies [(12,17); x-axis; Europeans] are compared with those in our
study (y-axis; Japanese). Pink dashed lines represent regression lines. The previously reported miRNA-eQTL variants that showed nominal P-value < 0.01
in our study are shown. (C) MAFs in the East Asian (EAS) and the European populations (EUR) are separately compared for the lead variants of the
known (n = 15) and novel (n = 25) eMiRNAs. P-values are calculated using the Wilcoxon rank-sum test. Boxplots represent the interquartile range (IQR),
and ends of whiskers represent the minimum and maximum values within 1.5 × IQR. The P-value was calculated using the Wilcoxon rank-sum test.

This combined analysis identified another variant–
miRNA pair with significant ASE, rs79402775 within
miR-933 (P < 0.05/24 = 2.1 × 10−3), which was not
identified as significant in the miRNA-eQTL mapping.
Our results demonstrate that ASE analysis expands a
list of candidate cis-regulatory variants altering miRNA
expression.

Influence of CNVs on miRNA expression
Previous miRNA-eQTL studies have focused on asso-
ciating SNVs or short indels with miRNA expression.
However, mRNA expression is not only correlated
with SNVs and short indels but also CNVs (25,26).
Moreover, the study using the GTEx dataset reported
that nearly half of structural variants were poorly tagged
by nearby SNVs or short indels and that WGS-based
structural variants analysis increased the power of eQTL
mapping (27). These insights motivated us to conduct
miRNA-eQTL analysis using CNVs to have a more
comprehensive view of the genetic regulation on miRNA
expression.

We performed genome-wide CNV calling using the
WGS data, identifying 7912 autosomal CNVs (3686
deletions, 2502 duplications and 1724 mixed dele-
tions/duplications). We tested associations between
miRNA expression and CNVs within 1 Mb up- and

down-stream of each miRNA (27), identifying one
significant miRNA–CNV association at FDR < 0.2; miR-
570-3p and the CNV chr3:195 418 040–195 433 076 (P
= 7.2 × 10−6, explained variance = 14%, Fig. 4). The
CNV chr3:19 541 804–195 433 076 completely overlaps
with a previously reported CNV chr3: 195 417 835–
195 445 776 in the 1KG Phase 3 (26). Both CNV regions
fully encompassed the miR-570-3p sequence. The copy
number of the CNV chr3:195 418 040–195 433 076 ranged
from 2 to 8, and the copy number and the expression
of miR-570-3p were positively correlated, although
the exact copy number of the miR-570 gene for each
individual was undetermined. Notably, miR-570-3p did
not exhibit any significant eQTL through an analysis
focusing solely on SNVs and short indels (minimum q-
value = 0.67 with rs12490110). Our results provide an
evidence that examining CNVs makes our understanding
of the genetic architecture of miRNA expression more
comprehensive.

MiRNA-editing detection with WGS-based
genetic variants
RNA-editing is a widespread post-transcriptional modi-
fication of RNA molecules (28,29). MiRNA plays the reg-
ulatory role using partial base pairing with the target
mRNA sequences (30). The bases 2–8 from the 5′-end
of the mature miRNA are the main determinants of
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Figure 3. Overlap of allele-specific expression and eQTL effect of miRNA. (A) The read counts of reference and alternative alleles in a given individual
are shown separately for each genotype of the variant within mature miRNA sequences. RefHom, homozygous reference; Het, heterozygote; AltHom,
homozygous alternate. (B) The normalized expression of miRNAs is shown separately for each genotype of the variant within mature miRNA sequences.
Each dot represents a normalized expression in a given individual. Boxplots represent IQR, and ends of whiskers represent the minimum and maximum
values within 1.5 × IQR.

target recognition and are known as ‘seed sequence’.
If an editing event occurs in the seed sequence of a
miRNA, it can alter binding affinity to the target genes
and thus change the set of target genes (31). To detect
high-confidence RNA-editing events, it is important to
rule out the possibility of falsely annotating an alterna-
tive allele of germline variants as an editing event. Lever-
aging the WGS-based germline variants present in the
study participants, we identified 16 miRNA-editing sites
while excluding false detection caused by the germline
variants (Table 2). Of the 16 miRNA-editing sites, 11 (69%)
were novel sites, and 6 (38%) were situated within the
seed sequences and expected to alter the binding affinity
to the target genes. We further validated the 16 miRNA-
editing sites using an independently generated sRNA-
seq dataset of the part of the study participants (n =
79). We confirmed that all the 16 sites were replicated
(FDR < 0.05; Supplementary Material, Table S1).

RNA-editing is classified into ‘canonical’ and ‘non-
canonical’ editing. Canonical editing consists of two
forms of well-characterized RNA-editing, adenosine-
to-inosine (A-to-I) editing (32) and cytidine-to-uridine
(C-to-U) editing (33). A-to-I editing is regarded as the
most common form of RNA-editing in mammals.
Non-canonical editing refers to the other forms of
RNA-editing. We observed an over-representation of

adenosine-to-guanosine (A-to-G) base substitution,
which reflects A-to-I editing (7 of the 16 editing sites;
Fig. 5A). The fraction of A-to-G in all the miRNA-editing
sites (44%) is similar to the previously reported values
(34–36).

Although most previous studies on miRNA-editing
focused on A-to-I editing (34–37), we also identified
non-A-to-I editing events, including C-to-U and non-
canonical editing. C-to-U editing showed a moderate
over-representation [3 of the 16 editing sites (19%);
Fig. 5A]. All the non-A-to-I editing sites detected in our
analysis were novel. We calculated the RNA-editing
level for each editing site as the ratio of reads with
the substituted base to the total reads covering the
site [(38,39); see Materials and Methods]. The novel
editing sites exhibited significantly lower editing levels
than the known sites (P = 0.013, the Wilcoxon rank-
sum test; Fig. 5B), suggesting that non-A-to-I editing
occurs at low editing levels and thus requires more
sRNA-seq reads than A-to-I editing for detection.
Previous studies reported that genetic variation affects
mRNA-editing efficiency (38,39), known as editing QTLs
(edQTLs). We investigated such edQTLs with our miRNA
transcriptome data but did not identify significant
associations (minimum q-value = 0.36 between G-
to-A editing of the 11th base of miR-379-3p and

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
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Table 2. Summary of the 16 canonical and non-canonical miRNA-editing events

Editing class miRNA Cytoband Position in
mature miRNA

Editing in
seed

Base
substitution

Adjusted P # detected
individuals

Mean-
editing
level

A-to-I miR-589-3p 7p22.1 6 Yes A → G 5.4 × 10−12 0† 0.046
miR-6503-3p 11q12.2 7 Yes A → G < 1 × 10−300 25 0.36
miR-411-5p 14q32.31 5 Yes A → G 1.0 × 10−55 3 0.033
miR-381-3p 14q32.31 4 Yes A → G < 1 × 10−300 21 0.17
miR-421 Xq13.2 14 No A → G 5.9 × 10−4 0† 0.0035
miR-652-5p Xq23 11 No A → G 2.1 × 10−11 0† 0.011
miR-505-5p Xq27.1 4 Yes A → G 0.037 0† 0.0032

C-to-U miR-425-5p 3p21.31 14 No C → U < 1 × 10−300 86 0.026
miR-487b-3p 14q32.31 14 No C → U 3.4 × 10−5 0† 0.0034

miR-652-3p Xq23 11 No C → U 1.9 × 10−18 1 0.013
Non-
canonical

miR-1843 1q25.1 16 No C → A 2.6 × 10−7 0† 0.012
miR-30d-5p 8q24.22 9 No U → C 6.4 × 10−7 0† 0.0052
miR-379-3p 14q32.31 11 No G → A 1.6 × 10−7 1 0.017
miR-324-5p 17p13.1 5 Yes U → C 7.3 × 10−4 0† 0.0025
miR-144-5p 17q11.2 15 No A → C 1.4 × 10−51 3 0.0023
miR-223-5p Xq12 14 No A → C 2.2 × 10−12 1 0.0030

Novel editing sites are highlighted in bold. Adjusted P, P-values calculated with sRNA-seq reads combined across all individuals and adjusted by the Benjamini–
Hochberg method. # detected individuals, the number of individuals in which a given miRNA-editing event was significantly detected (see Materials and
Methods). †The editing event was detected only when sRNA-seq reads were combined across all individuals.

Figure 4. Positive correlation between genomic copy number and miRNA
expression. The significant association between the genomic copy num-
ber of the CNV chr3:195418040–195 433 076 (x-axis) and the normalized
expression of miR-570-3p (y-axis). Each dot represents a normalized
expression in a given individual. Boxplots represent IQR, and ends of
whiskers represent the minimum and maximum values within 1.5 × IQR.

rs61628376 at 14q32.3; Supplementary Material, Fig. S3,
Supplementary Material, Table S2).

MiRNA transcriptome-wide association study
To identify disease-associated miRNAs, we performed
a TWAS using the miRNA expression data and the
summary statistics of the 25 large-scale GWASs of
diverse human complex traits in Japanese individuals
[Supplementary Material, Table S3; (40–42)]. MiRNA

expressions were modeled via the elastic net method
using genetic variants within 2 Mb cis-window as
explanatory variables. Among the 343 autosomal miR-
NAs in our data, prediction models for the 22 miRNAs
were successfully trained (see Materials and Methods).
Based on the prediction models, we evaluated the asso-
ciation between genetically regulated miRNA expression
and complex human traits. The miRNA TWAS identified
11 significant miRNA–complex trait associations (P <

0.05/22 = 2.3 × 10−3; Supplementary Material, Table S4),
of which five fulfilled the study-wide significance
threshold [P < 0.05/(22 × 25) = 9.1 × 10−5; the most
significant association was between miR-1908-5p and
adult height (P = 1.9 × 10−12); Fig. 6A]. TWAS associations
can be spuriously detected because of LD-contamination
(43), in which genetic variants used in the expression
prediction models and trait-causal variants are different
but in LD. To avoid capturing such false links, we
performed colocalization analysis to assess whether the
GWAS and eQTL associations share the same causal
variants or whether the associations are due to distinct
causal variants in linkage. We found that three out
of five study-wide significant miRNA–complex trait
associations exhibited high colocalization probability
(PP4 by COLOC > 0.5); miR-1908-5p and adult height,
colorectal cancer and type 2 diabetes.

The miR-1908-5p eQTL and a colorectal cancer GWAS
signal showed high colocalization probability (PP4 = 0.95).
The lead GWAS variant rs509360 and its proxy variants
showed strong associations with the expression of miR-
1908-5p (Fig. 6B). Rs509360 was previously reported as
an eQTL of four coding genes (FADS1, FADS2, TMEM258
and RAB3IL1) in the GTEx project (44), although the GTEx
dataset predominantly consists of individuals of Euro-
pean ancestry. We examined a publicly available gene

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
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Figure 5. Over-representation of the two types of canonical RNA-editing. (A) The number of detected miRNA-editing sites is shown for each type of base
substitution. (B) Mean-editing levels across all individuals are shown for each type of base substitution. Pink markers indicate the previously reported
editing sites.

expression profile dataset of colorectal cancer clinical
specimens (45), revealing that the corresponding pre-
miRNA mir-1908 was differentially expressed between
normal and tumor tissues (P = 3.5 × 10−5, the Wilcoxon
rank-sum test; Fig. 6C). Interestingly, although TWAS
analysis revealed that miR-1908-5p is protective against
colorectal cancer (i.e. the negative effect size in TWAS),
the expression in the clinical specimens was higher in
the tumor tissues. Several miRNAs are up-regulated
by the downstream signaling pathway of the target
genes and form a negative regulatory feedback loop
(46–48). The aberrantly activated oncogenic pathway
in tumor tissues, which miR-1908-5p represses under
physiological conditions, may induce the miR-1908-5p
overexpression.

Discussion
In this study, we performed the first miRNA-eQTL anal-
ysis in the Asian population and identified 40 eMiRNAs,
including 25 novel eMiRNAs unreported in the European
populations. This resource will facilitate linking GWAS-
identified loci to variations in miRNA expression in Asian
populations. We demonstrated that integration of the
miRNA expression and large-scale GWASs in Japanese
individuals identified disease-associated miRNAs.

Our study reports several novel findings elucidating
miRNA regulatory mechanisms. First, we performed
an ASE analysis of miRNAs, an orthogonal approach
for cis-regulatory variant detection. The detected ASE
showed consistent results with eQTL mapping, con-
firming the validity of miRNA ASE analysis. Moreover,
the analysis, which combined the reads across study
participants identified the ASE of the miRNA that was
not detected by the conventional eQTL mapping. Second,
genomic CNVs also exhibited cis-regulatory effects on

the expression of miRNAs. This is, to our knowledge,
the first analysis utilizing WGS data and sRNA-seq
to correlate CNVs with miRNA expression. MiR-570-3p
showed significant association with an overlapping CNV
but was undetected as an eMiRNA when only SNVs
and short indels were used for eQTL mapping. This
result indicates that eQTL mapping with CNVs makes
our understanding of the genetic architecture of miRNA
expression more comprehensive. In the study of protein-
coding gene eQTL, duplication variants overlapping
with coding regions were reported to increase gene
expression, which was explained as exon duplications
(27). The positive correlation between the miR-570-3p
expression and the copy number of the surrounding
CNV implies that duplications of the miRNA genes
may increase the miRNA expression analogously to
the exon duplications. Third, we created a catalog of
canonical and non-canonical miRNA-editing events,
while distinguishing the editing sites from an alternative
allele of a germline variant using WGS data. Non-A-to-I
editing showed low RNA-editing levels compared with
A-to-I editing, potentially making it difficult to detect.
Finally, the miRNA TWAS utilizing large-scale GWASs
in Japanese individuals revealed significant miRNA–
disease associations, which prioritized the causal role
of the identified miRNAs. Our results provide unique
insights into the pathogenic or protective role of miRNAs,
which would be difficult to be obtained from differential
miRNA expression profiling alone. We identified the
significant associations between miR-1908-5p and adult
height, colorectal cancer and type 2 diabetes. The eQTL
variants (rs102275 and rs968567) of miR-1908-5p were
also reported to be associated with Crohn’s disease
(CD) and rheumatoid arthritis (RA) by Wohlers et al. (49)
using the miRNA-eQTL and GWAS data of the European
populations (rs102275 for CD; rs968567 for RA). In our
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Figure 6. MiRNA TWAS for complex diseases and anthropometric traits. (A) P-values are shown for associations between genetically regulated miRNA
expression and complex traits. Each diamond represents the P-value for a given miRNA–trait pair. The y-axis indicates −log10(P) with the sign of the
effect sizes to represent the direction of the miRNA effects. Pink-dashed lines indicate the transcriptome-wide significance threshold via the Bonferroni
correction based on the number of tested miRNAs. The miRNA–trait pairs meeting the significance threshold are labeled. The miRNA–trait pairs with
COLOC PP4 > 0.5 are highlighted in pink. (B) Regional plots of colorectal cancer GWAS and miR-1908 eQTL are shown. Markers are colored by LD (r2)
with the lead variant of the GWAS (rs509360). (C) The pre-miRNA mir-1908 expressions in normal and tumor tissues from colorectal cancer patients
are shown (45). Each dot represents a normalized expression of mir-1908 in a given specimen sample. Boxplots represent IQR, and ends of whiskers
represent the minimum and maximum values within 1.5 × IQR.

TWAS, the association between miR-1908-5p and RA
was not detected (P = 0.67). One potential explanation
for the different result is the difference in the methods
used. Although Wohlers et al. associated miR-1908-5p
with RA using the joint likelihood mapping method, we

performed TWAS and colocalization analysis. Further
study is warranted to validate the association of miR-
1908-5p with RA.

The potential caveat of this study is the limited repli-
cation analyses for miRNA-eQTLs and TWAS findings.
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Although the systematic comparison with the previous
miRNA-eQTL studies in the European populations con-
firmed the overall validity of our miRNA-eQTL mapping
(Fig. 2B), further replication analyses in the East Asian
populations would be desirable as future work. Con-
structing another miRNA-eQTL dataset in the East Asian
populations would also facilitate the replication of TWAS
using an independent dataset.

In conclusion, by integrating sRNA-seq and WGS, our
study comprehensively elucidated the genetic architec-
ture of miRNA expression and identified potential miR-
NAs important for disease biology in the Japanese popu-
lation.

Materials and Methods
Study populations
We enrolled 141 participants of Japanese ancestry for the
WGS and the sRNA-seq. All participants signed a written
informed consent form, as approved by the ethical com-
mittee of Osaka University.

WGS data processing
DNA samples isolated from whole blood were sequenced
at Macrogen Japan Corporation. DNA quantity was mea-
sured by Picogreen, and degradation of DNA was assessed
by gel electrophoresis. All libraries were constructed
using the TruSeq DNA PCR-Free Library Preparation
Kit according to the manufacturer’s protocols. Libraries
were sequenced on HiSeqX (Illumina, San Diego, CA,
USA), producing paired-end reads of length 2 × 150
bp, with a mean insert size of 488 bp and a mean
coverage of 16.5×. Sequenced reads were aligned against
the reference human genome with the decoy sequence
(GRCh37, human_g1k_v37_decoy) using BWA-MEM (ver-
sion 0.7.13). Duplicated reads were removed using Picard
MarkDuplicates (version 2.10.10). After Base-quality
score recalibration implemented in GATK (versions 3.8–
0), We generated individual variant call results using
HaplotypeCaller and performed multi-sample joint-
calling of the variants via GenotypeGVCFs. We set
genotypes satisfying any of the following criteria as
missing: (i) DP < 5, (ii) GQ < 20 or (iii) DP > 60 and GQ < 95,
then removed variants with low genotyping call rates (<
0.90). We performed Variant Quality Score Recalibration
for SNVs and short indels according to the GATK Best
Practice recommendations and adopted the variants,
which passed the QC criteria. We further removed the
variants (i) located in the low complexity regions, (ii)
with ExcessHet > 60 or (iii) with Hardy–Weinberg P-
value < 1.0 × 10−10. We kept only those presenting a
non-significant difference in allele frequency (P > 1.0
× 10−10 provided by chi-square test) in the following
representative reference datasets of Japanese ancestry:
the combined reference panel of 1KG Phase 3 version
5 genotype (n = 2504) and Japanese WGS data [n =
1037; (41,50)], and the allele frequency panel of Tohoku
Medical Megabank Project (51). Genotype refinement

was performed using Beagle [version 5.1; (52)]. Also,
we genotyped all the individuals using Infinium Asian
Screening Array (Illumina). Comparison between WGS-
based and SNP array-based genotypes showed high
concordance rates (all individuals > 99.95%).

Total RNA extraction and small RNA sequencing
sRNA-seq library preparation was performed as described
elsewhere (11). PBMCs were isolated from leukocyte
concentrates by Ficoll–Paque density gradient centrifu-
gation. Total RNA from PBMCs was extracted using the
miRNeasy Micro Kit (Qiagen, Duesseldorf, Germany).
Libraries for sRNA-seq were prepared using the SMARTer
smRNA-Seq Kit (Takara, Tokyo, Japan) following the
manufacturer’s instructions. Sequencing was conducted
on HiSeq 2500 (Illumina, read length of 100 bp, single-
end).

MiRNA expression quantification
For the QC of the sRNA-seq data, we performed adapter
trimming using Cutadapt v1.8 (53) and removed reads
with a low quality score (Phred quality score < 20 in
>20% of total bases) using fastp (54). Also, we removed
reads with a length of >29 bp or <15 bp, which are
not expected to be mature miRNAs. Because of their
short length, the alignment of miRNAs is known to be
affected by cross-mapping, in which reads originated
from one miRNA are improperly mapped to other loci
with similar sequences (55). To address this issue, we
adopted a stringent criterion. Specifically, we aligned
the remaining reads to the human reference genome
using bowtie (version 1.2.3) allowing for one mismatch
(−v 1) and considered only uniquely mapped reads
as valid alignment (−m 1). Some mature miRNAs
are known to be encoded by multiple loci with the
same sequence (56), and such miRNAs are inevitably
removed by this criterion, even if they are properly
aligned. To avoid such unnecessary read removal, we
masked regions of the reference genome encoding the
same mature miRNA according to the annotation by
miRBase v22 (57) from the mapping except for a single
representative locus. We counted reads mapped to
mature miRNA sequences annotated by miRBase v22
using featureCounts (58) with at least 90% overlap. We
obtained a median of 1.9 × 105 reads aligned to miRNAs
for each individual (Supplementary Material, Fig. S4).
Mature miRNAs detected with ≥1 read in at least half of
the individuals were included in the subsequent analysis.
We computed size factors associated with each library
and normalized miRNA counts using DESeq2 (59). The
normalized counts plus a pseudo-count of 1 were log2-
transformed to stabilize the variance of the expression
values.

cis-miRNA-eQTL analysis
A principal component analysis with the samples of
HapMap project (60) confirmed that all the study partici-
pants were East Asian (Supplementary Material, Fig. S5).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
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The obtained miRNA expression matrix was normal-
ized using PEER (61) accounting for 15 unobserved
confounders as well as the known confounders, such
as library preparation batch, disease status, sex, age,
number of total mapped reads, type of blood collection
tube and five genotype-based principal components.
The residuals for each miRNA were transformed into
a standard normal distribution based on rank. We
analyzed the association between genetic variants (SNVs
and short indels) with MAF ≥ 0.01 within a cis-window
around each miRNA and normalized expression values
with MatrixEQTL (62) using linear regression with an
additive effect model. The cis-window was defined as
1 Mb up- and down-stream of the mature miRNA [± 1
Mb; (12)]. If a miRNA is encoded by multiple genomic
loci, we defined the cis-windows for every encoding
locus and tested all the variants within either of them.
To correct for multiple testing effects, we applied a
permutation procedure as in previous studies (63,64).
The minimal P-value per miRNA was used as the
test statistic. We randomized the sample IDs of the
expression data while retaining the sample IDs of the
genotype data. A 5000 permutations were applied to
obtain the null distribution of the minimal P-value.
Thus, we derived empirical P-values for every miRNA
and calculated permutation q-values using Storey’s q-
value method (65) and a q-value threshold of < 0.2 was
applied. To identify the list of all significant variant–
miRNA pairs associated with eMiRNAs, variants with a
nominal P-value below the gene-level threshold were
considered significant. To evaluate the effects of cell
type composition in PBMCs, we also performed cis-
miRNA-eQTL mapping using expression values adjusted
for cell type proportions. The cell type proportions in
PBMCs were estimated by CIBERSORTx (23) with the
default parameters using publicly available cell type-
specific miRNA transcriptome data of the following cell
types: cytotoxic T cells, T helper cells, B cells, monocytes
and NK cells (22). Note that the estimation of the cell
type proportions relied solely on the miRNA expression
profiles and could be affected by the technical factors,
such as the sample preparation batches or the quality of
the reference expression data.

Evaluating relative distances of cis-miRNA-eQTL
variants from TSSs
We examined the positional distribution of cis-miRNA-
eQTL variants relative to TSS with the following two
criteria for selecting eQTL variants:

(i) We used the single most significantly associated
eQTL variant per eMiRNA. When multiple eQTL vari-
ants exhibited the smallest P-value for an eMiRNA,
we used the median distance of such variants to TSS.

(ii) For each eMiRNA, we pruned the list of cis-eQTL
variants to retain the most significant variants with
pairwise LD (r2) < 0.7 for the study population using
the clump function of PLINK.

The chromosomal coordinates of miRNA TSSs were
obtained from the FANTOM5 project (66).

Allele-specific expression analysis
We kept the sRNA-seq reads aligned to mature miRNA
sequences with mapping quality ≥ 10 and filtered out
reads that exhibited mapping bias at heterozygous sites
using the WASP mapping pipeline (67). For quantifying
allele counts at heterozygous sites, we used GATK
ASEReadCounter (version 4.1.7.0). The following two
approaches were used to evaluate the allelic imbalance
between reference and alternative alleles:

(i) We tested the ASE using the binomial test for each
individual–heterozygous site pair with total cover-
age ≥8. To filter out potential genotyping errors,
the sites were excluded where both alleles were not
observed by sRNA-seq. Following the quality control,
we obtained 23 individual–heterozygous site pairs
composed of three SNP sites corresponding to three
miRNAs (miR-146a-3p, miR-11 400 and miR-627-5p).
We set a significance threshold at the level of P =
0.017 (= 0.05/3) by applying the Bonferroni correction
based on the number of tested sites.

(ii) To improve statistical power, we combined reads
across all individuals for each heterozygous site.
After that, we used the binomial test for estimat-
ing the ASE. We set a significance threshold at the
level of P = 2.1 × 10−3 (= 0.05/24) by applying the
Bonferroni correction based on the number of tested
sites.

CNV calling using the WGS data
We ran the Genome STRiP CNVDiscovery (25) pipeline
(version 2.00.1982) to identify and genotype large dele-
tions, duplications and mixed deletions/duplications.
Considering the sequencing depth of our WGS dataset
(16.5×), we set the parameters as follows: a window size
of 2000 bp, a window overlap of 1000 bp, a reference
gap length of 2000 bp, a boundary precision of 200 bp
and a minimum refined length of 1000 bp. To estimate
the FDR of the CNV call set, we performed an intensity
rank-sum (IRS) test for in silico CNV validation using
the intensity data of Infinium Asian Screening Array.
We obtained the log-transformed R ratio of intensity
values from Illumina GenomeStudio (version 2.0.4). The
intensity matrix was adjusted for the effects of plates
by linear regression and then used as IRS input. We
tested 8373 of 23 192 autosomal CNVs and computed
IRS FDR as in the 1KG Phase 3 (26). We found that a
threshold of GSCNQUAL ≥1 for deletions and mixed
deletions/duplications, and a threshold of GSCNQUAL
≥2 for duplications corresponded to an FDR of 0.1.
CNVs fulfilling these criteria were used for downstream
analysis. We excluded the individuals with excessive
variation from the dataset based on the number of calls
per individual exceeding the median plus three median
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absolute deviations. We defined MAF as the fraction of
individuals that deviated from the mode copy number
value in the population.

CNV cis-eQTL analysis
We selected CNV calls with MAF ≥ 0.01 for eQTL analysis.
We assessed the association between the CNV copy
number and normalized miRNA expression, which was
used in the aforementioned eQTL analysis with SNVs and
short indels. For each miRNA, we defined a cis-window
as 1 Mb up- and down-stream of the mature miRNA
[± 1 Mb; (27)] and tested the CNVs that overlapped
with the cis-window using MatrixEQTL. Empirical P-
values were calculated using 5000 permutations as
described in ‘cis-miRNA-eQTL analysis’, and the miRNA-
level multiple testing correction was performed using
Storey’s q-value method. We set a q-value < 0.2 as a
significance threshold.

MiRNA-editing calling
MiRNA-editing calling was performed using the script
from previous studies (68,69). The adaptor-trimmed
and length-filtered reads as described previously were
further trimmed by 2 nt at the 3′-end. The resulting
reads were aligned to the human reference genome
(build GRCh37) using bowtie, allowing at most one
mismatch per read, the best alignment and no cross-
mapping. We filtered out mismatches with a base-
quality score < 30. For the genomic regions of pre-
miRNAs annotated in miRBase v22, mismatch calling
was performed based on the binomial test. We detected
candidate miRNA-editing events with all individuals
combined as well as separately for each individual. To
filter out genetic variants and unreliable base editing
events, we applied stringent quality control criteria.
Specifically, we excluded the base editing events that
met the following criteria: (i) by our WGS analysis, the
base editing site is called as the genetic variant, (ii) the
base editing site is found in external reference datasets of
genetic variants of individuals of Japanese ancestry or (iii)
the base editing is called at 5′-end of the mature miRNA.
We further excluded the base editing events where
the aligned reads were revealed to imperfectly overlap
mature miRNA sequences by visual inspection using
the Integrative Genomics Viewer. Besides, we examined
the bam files generated during WGS variant calling to
confirm that the detected base substitutions were not
observed in the aligned WGS reads.

Replication analysis of the detected
miRNA-editing sites
Using the total RNA of the 79 individuals in the study
participants, we independently prepared another sRNA-
seq library. The sRNA-seq library was sequenced on
NovaSeq 6000 (Illumina, read length of 100 bp, single-
end). The sequenced reads were processed and aligned
to the human reference genome as described in ‘MiRNA-
editing calling’, and we counted the bases aligned to

the 16 detected miRNA-editing sites. We tested base
mismatches using the binomial test.

MiRNA-edQTL mapping
For each individual, we quantified miRNA-editing
levels as the ratio of the number of edited reads
at a specific miRNA-editing site to the number of
all reads covering the site ([miRNA editing level] =

[edited reads]
[edited reads]+[unedited reads] ). The obtained miRNA-editing
levels were adjusted for the known confounders described
previously by the linear regression model. Then, the
resulting residuals were transformed into a standard
normal based on rank. We tested the association between
variants within a cis-window of 200 kb around each
miRNA and normalized miRNA levels with MatrixEQTL
using linear regression with an additive effect model.

GWAS summary statistics
We downloaded the summary statistics of Japanese
GWASs for diseases (42) and anthropometric traits
(40,41). Only the diseases for which harmonic means of
the cases and controls were >5000 were used for down-
stream analysis (Supplementary Material, Table S3).

MiRNA TWAS
We performed the TWAS using the S-PrediXcan (43)
software. For each miRNA quantified in our dataset,
we trained a prediction model using the normalized
expression values and the genotype data within 1 Mb
up- and down-stream of the mature miRNA [± 1 Mb;
(43)]. The prediction models were trained on the basis of
the nested cross-validated elastic-net procedure (R script
‘gtex_v7_nested_cv_elnet.R’). We retained the prediction
models with rho_avg > 0.1 and zscore_pval < 0.05. Then,
we evaluated miRNA expression–trait associations using
the summary statistics of the Japanese GWASs. We set a
Bonferroni-corrected significance threshold at the level
of P = 2.3 × 10−3 (= 0.05/22) based on the number of tested
miRNAs. We set a study-wide significance threshold at
the level of P = 9.1 × 10−5 [= 0.05/(22 × 25)] by applying
the Bonferroni correction based on the number of tested
miRNAs and traits.

Colocalization of miRNA-eQTLs and GWAS loci
We performed colocalization analysis via COLOC (70).
The approximate Bayes factor test of COLOC estimates
whether the association signals of two phenotypes
share common causal variants in a given genomic
region and computes posterior probabilities for the
five hypotheses as follows: H0, neither trait exhibits
a genetic association; H1/H2, only one trait exhibits a
genetic association; H3, both traits are associated but
with independent causal variants and H4, both traits are
associated with a single causal variant. We ran COLOC
with the default parameters and evaluated the evidence
of colocalization based on the posterior probability
of H4.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab361#supplementary-data
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