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The goal of this study was to identify potential transcriptomic markers in developing ankylosing spondylitis by a meta-analysis
of multiple public microarray datasets. Using the INMEX (integrative meta-analysis of expression data) program, we performed
the meta-analysis to identify consistently differentially expressed (DE) genes in ankylosing spondylitis and further performed
functional interpretation (gene ontology analysis and pathway analysis) of the DE genes identified in the meta-analysis. Three
microarray datasets (26 cases and 29 controls in total) were collected for meta-analysis. 905 consistently DE genes were identified
in ankylosing spondylitis, among which 482 genes were upregulated and 423 genes were downregulated. The upregulated gene
with the smallest combined rank product (RP) was GNG11 (combined RP = 299.64). The downregulated gene with the smallest
combined RPwas S100P (combined RP = 335.94). In the gene ontology (GO) analysis, themost significantly enrichedGO termwas
“immune system process” (𝑃 = 3.46×10−26).Themost significant pathway identified in the pathway analysis was antigen processing
and presentation (𝑃 = 8.40 × 10−5). The consistently DE genes in ankylosing spondylitis and biological pathways associated with
those DE genes identified provide valuable information for studying the pathophysiology of ankylosing spondylitis.

1. Introduction

Ankylosing spondylitis (AS) represents a chronic inflamma-
tory arthritis, which affects the axial joints such as spine
and sacroiliac joints [1]. It causes serious spinal mobility
impairment and influences the quality of life [2]. Ankylosing
spondylitis is a complex and systemic rheumatic disease;
hence systematic screening is required to improve the diag-
nosis and treatment of ankylosing spondylitis.

Rapid growth of high-throughput transcriptomic data
largely enables gene expression profiling and diagnostic
targets identification in disease nowadays. In the past decade,
several studies have focused on the transcriptional profiling
of ankylosing spondylitis using microarrays to identify can-
didate genes involved in ankylosing spondylitis [3, 4]. Anal-
ysis of multiple transcriptomic datasets has the likelihood
of discovering robust candidates for diagnosis and treat-
ment. Therefore, we investigated gene expression patterns
between ankylosing spondylitis patients and healthy controls

in a meta-analysis based on public microarray datasets. The
differently expressed genes identified in the meta-analysis
were further interpreted by gene ontology analysis and
pathway analysis.

To carry out these studies, we used the INMEX (integra-
tive meta-analysis of expression data) program [5]. Careful
data procession and annotation were done to insure that the
data format and class labels were consistent across datasets.
Due to the differences in study design and platform usage,
heterogeneity exists among microarray datasets. To address
this, we applied the combing rank orders algorithm based on
the RankProd package [6], which is robust facing outliers and
variations among studies, to carry out the meta-analysis.

2. Materials and Methods

2.1. Microarray Datasets Search and Selection. In this
study, we searched public microarray study till March 18,
2014, according to the keywords “ankylosing spondylitis” in
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Table 1: Studies and data included in this meta-analysis.

Study GEO accession Sample size Sample source Platform
AS case Control

1 GSE41038 2 4 Synovial biopsies GPL6883 Illumina HumanRef-8 v3.0 expression beadchip
2 GSE25101 16 16 Blood GPL6947 Illumina HumanHT-12 V3.0 expression beadchip
3 GSE11886 8 9 Blood GPL570 Affymetrix Human Genome U133 Plus 2.0 Array
GEO: Gene Expression Omnibus; AS: ankylosing spondylitis.

Gene ExpressionOmnibus (GEO) database (http://www.ncbi
.nlm.nih.gov/geo/) [7]. The studies obtained were fur
ther selected for the meta-analysis and our selection criteria
were (a) case-control study; (b) study providing gene expres-
sion data; and (c) study with ankylosing spondylitis pa-
tients diagnosed based on the modified New York criteria
[8]. Animal studies and studies not about ankylosing
spondylitis were excluded in this meta-analysis.

Two investigators independently collected data from each
eligible study. The data were composed of GEO accession,
sample size, sample source, platform, and gene expression
data.Through checking between the two investigators, a final
data collection was determined.

2.2. Meta-Analysis Methods. According to the data collected
from each eligible microarray study, we performed an over-
all meta-analysis to identify differentially expressed (DE)
genes in ankylosing spondylitis. In this study, we used
the INMEX (integrative meta-analysis of expression data)
program (http://www.inmex.ca/INMEX/) [5] to carry out the
meta-analysis.

All eligible datasets were uploaded to INMEX, then
processed, and annotated to insure that the data format
and class labels were consistent across datasets. After data
integrity check, we carried out ameta-analysis using combing
rank orders algorithm, with 100 times of permutation tests.
The combing rank order algorithm is based on the RankProd
package [6] and is robust facing outliers and variations among
studies.

2.3. Functional Interpretation Methods. Functional interpre-
tation (gene ontology analysis and pathway analysis) of
the DE genes identified in the meta-analysis was further
performed using the INMEX program. In gene ontology
(GO) analysis, a 𝑃 value threshold of 0.05 was used to
identify significantly enriched GO terms [9]. In pathway
analysis, enrichment analysis was carried out using the
hypergeometric test with a 𝑃 value threshold of 0.05 based
on the KEGG database [10].

3. Results

3.1. Studies andData Included inThisMeta-Analysis. Original
search identified 8 studies in total. Then, 5 studies were
excluded among which 4 were not about the DE genes
between ankylosing spondylitis patients and healthy controls,
and 1 was animal study. Through searching and selection,

a final list of 3 microarray datasets [3, 4] was collected
for meta-analysis. In total, the 3 eligible datasets consisted
of 26 cases and 29 controls. All 3 datasets provided case-
control datawith various sample sources (1 dataset of synovial
biopsies sample and 2 datasets of blood sample).The detailed
information of these 3 datasets is presented in Table 1. Heat
map of rescaled individual expression data for a subset of
genes across the 3 datasets is shown in Figure 1, and the
patterns of change for a gene among different datasets could
be visualized.

3.2. Meta-Analysis Results. In this study we performed the
meta-analysis based on combing rank orders, and the DE
genes with 𝑃 value < 0.05 were selected. Overall, there
were 743 gained genes and 167 lost genes in this meta-
analysis (Figure 2, see Supplementary Table 1 in Supplemen-
tary Materials available online at http://dx.doi.org/10.1155/
2014/826316). Gain genes are those identified to be differen-
tially expressed uniquely in themeta-analysis.The expression
profiles of gain genes are relatively weak but consistent across
datasets. They benefit by larger sample size and hence are
more reliable DE genes. Lost genes are those identified to be
differentially expressed in individual analysis rather than in
the meta-analysis. The expression profiles of lost genes vary
largely across different datasets [5].

In total, according to the results of our meta-analysis, 905
genes were identified to be differentially expressed between
ankylosing spondylitis patients and healthy controls across
microarray datasets (Supplementary Table 2). Among the 905
DE genes, 482 genes were upregulated and 423 genes were
downregulated. The top 10 most significantly upregulated
genes and top 10 most significantly downregulated genes are
shown in Table 2. The upregulated gene with the smallest
combined rank product (RP) was GNG11 (combined RP
= 299.64). GNG11, guanine nucleotide binding protein (G
protein) gamma 11, is a member of the G protein gamma
family which functions in the transmembrane signaling
system and cellular senescence [11, 12]. The downregulated
genewith the smallest combinedRPwas S100P (combinedRP
= 335.94). S100P (S100 calcium binding protein P) belongs to
the S100 calcium-binding protein family and functions in the
regulation of diverse cellular processes [13]. However, neither
GNG11 nor S100P have been reported to be associated with
ankylosing spondylitis yet.

Many consistently DE genes across datasets identified are
involved in immune regulation, such asCOMMD6,C19orf59,
CCR7, CX3CR1, CFD, and FGFBP2 (see Table 2). Although
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Figure 1: Heat map for visualization of gene pattern changes across different datasets (row-wise comparison). Individual datasets were
rescaled in this map to prevent the influence of study-specific effects.

these results are suggestive rather than straightforward, those
DE genes could be involved in the pathogenesis of ankylosing
spondylitis and further research is required.

3.3. Advanced Analyses Results. Advanced analyses (GO
analysis and pathway analysis) were carried out for further
functional investigation of the DE genes. Figure 3 presented
a summary of the GO analysis results. In the GO analysis,
715 GO terms were significantly enriched for the DE genes
(see Supplementary Table 3), and the three most significantly
enriched GO terms were “immune system process” (𝑃 = 3.46
× 10−26), “immune response” (𝑃 = 7.83 × 10−24), and “defense
response” (𝑃=6.99× 10−16) (Table 3). In the pathway analysis,
15 significant pathways were identified when we mapped the
DE genes to the KEGG database (see supplementary Table
4), and the three most significant pathways were antigen
processing and presentation (𝑃 = 8.40 × 10−5), measles

(𝑃 = 3.30 × 10−3), and cell adhesion molecules (CAMs) (𝑃 =
5.66 × 10−3) (Table 4).

4. Discussion

A number of genes have been reported to be upregulated
or downregulated in ankylosing spondylitis patients [14–16].
Identification of the most important candidate genes and
pathways involved in ankylosing spondylitis pathogenesis
is a challenge currently. Growing high-throughput tran-
scriptomic data enables meta-analysis of multiple datasets
which has the likelihood of discovering robust candidates for
diagnosis and treatment. Hence in this study, we performed
a meta-analysis of multiple public microarray datasets to
identify potential transcriptomic markers in developing
ankylosing spondylitis.

In the meta-analysis, 905 consistently DE genes were
identified in ankylosing spondylitis, among which 482 genes
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Table 2: The 10 most significantly upregulated and 10 most significantly downregulated genes in ankylosing spondylitis.

Entrez ID Gene symbol Gene full name Combined rank
product

Average log fold
change

10 most significantly upregulated genes
2791 GNG11 Guanine nucleotide binding protein (G protein), gamma 11 299.64 0.380467
51372 TMA7 Translation machinery associated 7 homolog (S. cerevisiae) 312.39 0.610581
9349 RPL23 Ribosomal protein L23 324.13 0.148532
23643 LY96 Lymphocyte antigen 96 330.33 0.195432
170622 COMMD6 COMM domain containing 6 332.47 0.293187
5909 RAP1GAP RAP1 GTPase activating protein 343.66 0.223733
1349 COX7B Cytochrome c oxidase subunit VIIb 371.12 0.132367
6283 S100A12 S100 calcium binding protein A12 439.12 0.334567
27258 LSM3 LSM3 homolog, U6 small nuclear RNA associated (S. cerevisiae) 440.15 0.596028
199675 C19orf59 Chromosome 19 open reading frame 59 494.30 0.358146

10 most significantly downregulated genes
6286 S100P S100 calcium binding protein P 335.94 −0.199948
3560 IL2RB Interleukin 2 receptor, beta 351.04 −0.166370
221178 SPATA13 Spermatogenesis associated 13 473.13 −0.442046
9289 GPR56 G protein-coupled receptor 56 528.50 −0.239562
22848 AAK1 AP2 associated kinase 1 530.65 −0.364595
5551 PRF1 Perforin 1 (pore forming protein) 531.02 −0.114758
1236 CCR7 Chemokine (C-C motif) receptor 7 609.87 −0.199449
1524 CX3CR1 Chemokine (C-X3-C motif) receptor 1 622.12 −0.351950
1675 CFD Complement factor D (adipsin) 636.15 −0.365854
83888 FGFBP2 Fibroblast growth factor binding protein 2 653.39 −1.054696

Gain

743

Meta-DE Individual-DE

162

Loss

167

Figure 2: Venn diagram for overlap visualization between meta-
analysis results and individual dataset analysis results. Meta-DE:
DE genes identified in meta-analysis; individual-DE: DE genes
identified in individual dataset analysis.

were upregulated and 423 genes were downregulated. The
upregulated gene with the smallest combined RP wasGNG11.
GNG11 belongs to the G protein gamma family and plays
a role in the transmembrane signaling system and cellular
senescence [11, 12].The downregulated gene with the smallest
combined RP was S100P. S100P encodes a protein which is
a member of the S100 calcium-binding protein family and
functions in the regulation of diverse cellular processes [13].
So far, S100P is reported to be involved in the development
and progression of various cancers [13]. Although the exact
contributions of these DE genes to ankylosing spondylitis

Biological regulation (486)
Regulation of biological process (454)
Response to stimulus (408)
Cellular response to stimulus (304)
Cell communication (274)

Signaling (265)
Signal transduction (251)
Localization (235)
Response to stress (228)
Others (15808)

Figure 3: Summary of the GO analysis results for the DE genes in
ankylosing spondylitis.

development are not clear yet, further research is necessary
as those genes could be potential transcriptomic markers for
ankylosing spondylitis.

Many consistently DE genes identified are involved in
immune regulation, suggesting its major role in ankylosing
spondylitis development. A set of DE genes without previous
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Table 3: The 10 most significantly enriched GO terms for the DE
genes in ankylosing spondylitis.

ID Term 𝑃 value
GO:0002376 Immune system process 3.46𝐸 − 26

GO:0006955 Immune response 7.83𝐸 − 24

GO:0006952 Defense response 6.99𝐸 − 16

GO:0002682 Regulation of immune system process 3.01𝐸 − 13
GO:0006950 Response to stress 2.02𝐸 − 12

GO:0050776 Regulation of immune response 1.44𝐸 − 11

GO:0001775 Cell activation 2.24𝐸 − 11

GO:0045087 Innate immune response 5.19𝐸 − 11

GO:0045321 Leukocyte activation 1.32𝐸 − 10

GO:0030097 Hemopoiesis 2.91𝐸 − 10

Table 4: The 10 most significant pathways identified when the DE
genes were mapped to the KEGG database.

Pathway 𝑃 value
Antigen processing and presentation 0.0000840
Measles 0.0032959
Cell adhesion molecules (CAMs) 0.0056626
Jak-STAT signaling pathway 0.0070316
Hypertrophic cardiomyopathy (HCM) 0.0099861
Pathogenic Escherichia coli infection 0.0105380
T cell receptor signaling pathway 0.0167490
Natural killer cell mediated cytotoxicity 0.0172540
Graft-versus-host disease 0.0174410
Allograft rejection 0.0186970

studies in ankylosing spondylitis were also identified in
our analysis. Some of these DE genes may function in the
pathogenesis of ankylosing spondylitis and could be potential
biomarkers.

In the GO analysis, 715 significantly enriched GO
terms were identified in total. The top three significantly
enrichedGO termswere “immune system process,” “immune
response,” and “defense response.” Similar features were
also shown in a previous microarray analysis of ankylosing
spondylitis mouse model [17]. The overlap of enriched GO
terms between human study and mouse study suggests that
immune response plays amajor role in ankylosing spondylitis
development and therefore deserves further studies. In the
pathway analysis, 15 significant pathways were identified in
all. The top three significant pathways were antigen process-
ing and presentation, measles, and cell adhesion molecules
(CAMs). Our result that pathways involved in immune
response are related with the pathogenesis of ankylosing
spondylitis is consistent with previous reports highlighting
innate immune stimulation and the IL-23 pathway in anky-
losing spondylitis pathogenesis [18, 19]. Our analysis also
identified pathways not previously studied in ankylosing
spondylitis, some of which may harbor interesting functions
and deserve further investigation.

In addition, all the results of our meta-analysis should
be considered prudently due to the existence of several

limitations. One limitation is the insufficient sample size
used in our meta-analysis. A second limitation is the lack
of subgroup analyses based on potential influential factors,
including age, sex, treatment, disease severity, and platform
usage, as ankylosing spondylitis is reported to be more
prevalent in men and often occur in the third decade of life
[1]. The third limitation is that biological knowledge base
and pathway information are far from being complete at
present and need further investigation. Hence, in order to
achieve amore convincible conclusion, further analysis using
larger sample size and more complete biological knowledge
base and pathway information is required, and stratified
analyses on different factors such as age, sex, disease severity,
and platform usage are needed. In addition, experimental
verification of the candidate DE genes identified should also
be performed in the future, and functional studies need to
be carried out as well to address the exact roles of those
candidate DE genes in ankylosing spondylitis.

In conclusion, we identified consistently DE genes in
ankylosing spondylitis that could potentially serve as tran-
scriptomic markers. GO and pathway analyses revealed that
those candidates strongly were associated with immune sys-
tem process besides the underlying complex andmultifactor-
influenced molecular mechanism. These results provide
novel insights into the pathogenesis of ankylosing spondylitis
and promote the generation of diagnostic gene sets.
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