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Abstract

Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for
several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney
(MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis,
which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under
various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with
pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell
cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation
history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high
intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the
coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates.
Finally, the model’s predictive power supports the design of more efficient bioprocesses.
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Introduction

The primary metabolism of cells is essential for cell growth and

maintenance. Glycolysis is a central element of the primary

metabolic activity and supplies anabolic pathways with precursors

and cellular energy in form of ATP. The detailed in vitro
characterization of glycolytic enzymes, such as hexokinase (HK),

phosphofructokinase (PFK) and pyruvate kinase (PK), with respect

to their catalytic properties in the presence of substrates, products

and allosteric effectors represents an initial step towards a kinetic

description of metabolic phenomena of cells [1–3]. Dynamic

mathematical models of glycolysis have been developed for many

different organisms such as Escherichia coli, yeast, or mammalian

cells. Such models range from simple to full kinetic descriptions

with the intention to study specific observations, e.g., metabolic

steady states [4–6] perturbation of substrates [7–9] or enzymes

[10], flux sensors [11], oscillations in glycolysis [12], the glucose

uptake system [13], or the link of liver cell glycolysis with blood

glucose homeostasis [14,15]. Although in many cases the existing

experimental data sets do not allow for a full validation of highly

complex models in a broad physiological context, there is a clear

benefit regarding the integration of complex regulatory mecha-

nisms, which helps to explain general phenomenological aspects

that are typically found in the respective organism. However, an

apparently complex metabolic behavior must not result from

complex regulatory mechanisms [16]. In case of glycolysis, it seems

that few regulatory mechanisms dominate the dynamics of

intracellular metabolite pools and readily explain salient features

of experimental observations [17]. Furthermore, with an increasing

number of powerful assays, e.g. to determine intracellular metab-

olite concentrations or to measure enzyme activities in yeast and

animal cells (e.g. [18–21]), changes in glycolytic activity for cell

growth or substrate perturbations can be monitored at an

unprecedented level. Based on the additional quantification of

extracellular metabolite changes and cell number measurements a

systematic analysis of basic dynamics of glycolysis for various

cultivation conditions is possible.

Recently, we reported that adherent MDCK cells cultivated in

two different media not only show similar and reproducible

dynamics of many intracellular metabolite pools but also that

changes in their concentrations are growth phase-dependent [22].

With the aim to elucidate the interplay between enzyme and

growth regime-mediated regulation of glycolysis, a segregated cell

growth model has been developed, which captures experimental

observations during cell growth phases regarding number increase,

diameter change and uptake of substrates [23].

Here, we couple this segregated cell growth model to a

structured model which incorporates a simple kinetic description

of glycolysis and focusses on a few well-known enzymatic

properties to elucidate the control of glycolysis. In addition, the

linkage to the pentose phosphate pathway and the glycogenesis are

taken into account. We evaluate the model’s ability to reflect

changes in intracellular metabolite pools for a variety of cultivation

conditions using a single set of parameters. This includes the

transition from the exponential to the stationary cell growth phase,

the fast replacement of medium by PBS at different time points of

cultivation, and a substrate pulse experiment. Afterwards we

discuss the influence of growth regime, changes in extracellular
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metabolite concentrations, and activity of key enzymes on the

control of glycolysis. In addition, aspects of hierarchical regulation

are addressed which, taken together, improve our understanding

of the metabolism of fast proliferating cells. Finally, options for the

modulation of metabolic activity are evaluated regarding the

design and optimization of cell culture processes as well as the

study of metabolic diseases.

Results

Glycolytic activity under changing growth regimes
In three independent experiments, adherent MDCK cells were

grown in 6-well plates with the serum-containing medium

GMEM-Z, which provides sufficient amounts of extracellular

substrates over the chosen cultivation time. Therefore, cell growth

occurs with maximum rate until the available surface becomes

limiting [23]. The experimental data of intracellular metabolite

pools is taken from Rehberg et al. [22], and analyzed in the

following using the model described in the Materials & Methods

section (see section ‘‘Model and simulation’’). The model focuses

on intermediates that were measured experimentally and is

composed of a concise set of enzyme kinetics with few regulatory

mechanisms. A schematic overview of the considered enzyme

reactions, the measured metabolite pools and maximum in vitro
enzyme activities, and the coupling to the previously developed

segregated model of cell growth [23] is given in Fig. 1.

Upper glycolysis. The model takes into account that the

adherent MDCK cells used for inoculation of cultivation I, II, and

III (Cult1 (n), Cult2 (%) and Cult3 (#)) originate from a

preculture that has reached the stationary growth phase (e.g.

Cult1—3 with t.86 h). The corresponding metabolic steady state

is depicted in the time interval from 220 h to 0 h (Fig. 2), and the

values of the model simulation are shown in Table 1. In particular,

we assume that this metabolic status is reproducibly achieved in

the preculture (which is the case in all three cultivations) and

represents the metabolic starting point for the batch cultivation

experiments Cult1–3. Note that variations of 620% in initial

conditions of intracellular metabolite concentrations have no

impact on the simulation results, since the activity of glycolysis

adjusts the cellular pools within seconds. However, using a

simulated initial metabolic status reduces the number of parameters

that require optimization (discussed in section ‘‘Model coupling and

simulation’’), avoids an artificial model behavior due to an

inconsistent assignment of initial conditions and, most importantly,

Figure 1. Scheme of glycolysis model (B) and its link to the
segregated cell growth model (A) established previously [23].
Green boxes represent metabolite pools that were quantified
experimentally while white ones were not measured. Enzymes are
shown as ellipses with blue background if the maximum enzyme
activity was measured in vitro and with white background otherwise.
Reactions and their directions are shown as arrows. Dashed arrows
represent allosteric regulation of enzymes by metabolites. The activity
of the enzymes relative to the highest activity in glycolysis (see legend)
is attached to the corresponding reactions/enzymes and expressed by
colored bars (blue: cell growth at 24 h of Cult1; green: cell maintenance
at 100 h of Cult1; orange: limitation at 6 min). Absolute flux rates (unit:
mmol L21 min21) are given next to the bars. GLCx extracellular glucose;
GLC glucose; G6P glucose 6-phosphate; UGLC uridyl diphosphate
glucose; R5P ribose 5-phosphate; PPP pentose phosphate pathway; F6P
fructose 6-phosphate; F16BP fructose 1,6-bisphosphate; 3PG 3-phos-
phoglyceric acid; PEP phosphoenol pyruvate; HK hexokinase; UT UTP-
glucose-1-phosphate uridylyltransferase; G6PDH glucose 6-phosphate
dehydrogenase; GPI glucose phosphate isomerase; ALD aldolase; ENO
enolase; PK pyruvate kinase.
doi:10.1371/journal.pcbi.1003885.g001

Author Summary

Glycolysis generates biomass precursors and energy from
sugars and is therefore a key element in the metabolism of
mammalian cells. Changes in its activity greatly affect
cellular function which is often recognized as metabolic
disease but also as opportunity for the design of efficient
bioprocesses. Metabolic research discovered that contin-
uously growing mammalian cells often exhibit a high
glycolytic activity but also delivered seemingly endless
facets in the pathway operation. The latter call for a
systems-level understanding regarding capacity and reg-
ulation for a broad range of cultivation conditions. In this
work, we couple a cell growth model to a simple kinetic
description of glycolysis to consistently explain intracellu-
lar metabolite pool dynamics of the Madin-Darby canine
kidney cell line over a variety of experiments and time
scales while considering the growth status and cultivation
history of the cells. We argue that the many different
dynamics in glycolysis result from an interplay between a
growth-dependent sugar uptake together with simple
intrinsic enzyme regulation.

Dynamics of MDCK Cell Glycolysis
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is biologically more relevant as cells indeed originate from a

stationary growth phase with constant metabolite pools (e.g. Cult1

at t = 200 h).

With onset of the cell growth phase (t = 0 h, of Fig. 2), the

simulation of the three experiments follows the measured peak-like

behavior of glucose 6-phosphate (G6P), fructose 6-phosphate (F6P)

and fructose 1,6-bisphosphate (F16BP) concentrations (Fig. 2A–I),

which together form the upper part of glycolysis. The maximum is

reached at around 24 h of cultivation and roughly coincides with

the onset of cell growth inhibition (indicated by the grey bar). In

the model, the peak results from high cell volume-specific glucose

uptake rates and low maximum cell volume-specific enzyme

activities. In the intermediate growth phase (34–86 h), the

concentrations of all three metabolites drop to their initial level

(220 h to 0 h, Fig. 2A–I). Due to the tight coupling of cell growth

to glycolysis, the model considers experiment-specific differences

such as the cell number Xtot t~0ð Þ used for inoculation as well as

the minimum and maximum mean cell diameter (dm and dc;

Table 1), which have the strongest effect on time point and height

of the peak. In addition, we performed a sensitivity analysis to

investigate the influence of parameters and initial conditions on

the model behavior (supporting information, Fig. S1). Differences

in growth and metabolic status of cells used for inoculation of

cultivation experiments indicate that the cells are obviously not

identical. It is therefore likely that not only the cell size but also

the enzyme level (Elevel) differs to a certain degree. For the

Figure 2. Metabolites pools of glycolysis during adherent MDCK cell cultivation. Glucose 6-phosphate (A–C), fructose 6-phosphate (D–F),
fructose 1,6-bisphosphate (G–I), 3-phosphoglyceric acid (J–L) and phosphoenolpyruvate (M–O) concentrations in three independent MDCK cell
cultivations (Cult1 n, Cult2 %, Cult3 #) in 6-well plates and GMEM-Z. Data and error bars represent mean and standard deviation of three wells.
Dashed lines are the limit of quantification (LOQ; data below LOQ marked in grey). Lines represent the respective simulation result based on the
experiment-specific parameters in Table 1 and parameters in Table 2. The intermediate growth phase (95%–5% proliferating cells) is indicated as grey
bar for the respective cultivation.
doi:10.1371/journal.pcbi.1003885.g002

Dynamics of MDCK Cell Glycolysis

PLOS Computational Biology | www.ploscompbiol.org 3 October 2014 | Volume 10 | Issue 10 | e1003885



quantification of cell number-specific enzyme activities, Janke

et al. [19] measured six biological replicates and found a mean

relative standard deviation for the activities of about 68%.

Therefore, we introduce the Elevel as an experiment-specific value

to modulate the maximum catalytic activity of every enzyme in the

model with a range from 0.92 to 1.08 (Eq. (4)). The model suggests

that the cells with the lowest diameters (dm, dc), i.e. Cult3 (#), also

have the lowest Elevel (Table 1). Besides variations due to assay

noise, the experiment-specific differences in cell number, mean cell

diameter and Elevel explain batch-to-batch variations such as the

lower peak height for Cult1 (n, Fig. 2A, D, G, J, M), a medium

peak height for Cult2 (%, Fig. 2B, E, H, K, N) and an increased

peak height for Cult3 (#, Fig. 3C, F, I, L, O), which is most

prominent for F6P. An exemplary intracellular flux from glycolysis

into associated pathways is shown for Cult1 in Fig. 1. During

cell growth the flux through HK (3.28 mmol L21 min21) is

roughly five times higher than during stationary growth

(0.7 mmol L21 min21; Fig. 1) while 13% of the generated G6P

is transferred into the pentose phosphate pathway (PPP) for

synthesis of macromolecules, purines and pyrimidines. The

transfer of G6P into glycogenesis via the UTP-glucose-1-

phosphate uridylyltransferase (UT) mediated reaction as well as

the exchange of F6P with the PPP via the transaldolase and

transketolase mediated reaction (TATK) show very low activities

(,1% of the flux through HK, Fig. 1).

Lower glycolysis. The level of 3-phosphoglyceric acid (3PG)

follows the peak-like behavior of upper glycolysis albeit with a

two-fold increase only, which is quite similar among the three

cultivations (Fig. 2J–L). The data of Cult1 (n) have a larger standard

deviation which complicates the assessment of the peak-like

Table 1. Initial conditions for the structured model comprising metabolic status, growth status and culture conditions for the
simulated experiment.

Cult1
Preculturea

Cult2
Preculturea

Cult3
Preculturea

Pred.
Preculturea

Lim1 (Cult1
at t* = 48 h)

Lim2 (Cult1
at t* = 60 h)

Pulse (Cult1
at t* = 30 h) Unit

Metabolic status

[GLC] 1.18e-4 1.18e-4 1.18e-4 1.18e-4 7.96e-4 3.30e-4 0.00 mmol L21

[G6P] 1.46e-2 1.46e-2 1.46e-2 1.46e-2 6.03e-2 3.25e-2 1.15e-3 mmol L21

[F6P] 6.66e-3 6.66e-3 6.66e-3 6.66e-3 1.19e-2 8.86e-3 2.31e-3 mmol L21

[R5P] 5.76e-3 5.76e-3 5.76e-3 5.76e-3 2.36e-2 1.28e-2 4.55e-4 mmol L21

[UGLC] 0.25 0.25 0.25 0.25 0.36 0.34 1.97e-1 mmol L21

[F16BP] 1.05e-1 1.05e-1 1.05e-1 1.05e-1 0.63 0.28 1.64e-3 mmol L21

[3PG] 4.74e-2 4.74e-2 4.74e-2 4.74e-2 7.67e-2 5.78e-2 8.86e-2 mmol L21

[PEP] 1.42e-2 1.42e-2 1.42e-2 1.42e-2 1.03e-2 1.22e-2 3.53e-2 mmol L21

Growth status

Xtot 0.40e6 0.41e6 0.48e6 0.30e6c 2.10e6 2.69e6 1.11e6 cells

Elevel 1.08b 1.04b 0.92b 1.00 1.08 1.08 1.08 -

dm 15.68 15.31 14.34 15.48c n/a n/a n/a mm

dc 22.93 24.86 20.98 21.12c n/a n/a n/a mm

VC
S

n/a n/a n/a n/a 3.04e-12 2.53e-12 3.46e-12 L/cell

cGLUT n/a n/a n/a n/a 0.52 0.27 0.77 -

Culture conditions

[GLCx] 31.04 29.25 31.95 2.31c 24.22 22.58 30.00 mmol L21

VM 4e-3 4e-3 4e-3 4e-3 3e-7b 3e-7b 4e-3 L

The estimated cultivation history of cells is given below the experiment name.
aprecultures were carried out in T-flasks (Cult1, Cult2, Pred.) or roller bottles (Cult3) which caused slight differences in culture conditions and growth status of cells (see
Rehberg et al. [23]). Initial values for intracellular metabolite concentrations (metabolic status) are taken from the steady state value of Cult1 at 200 h determined via
model simulations.
bestimated during model fitting.
csee supporting information 4.
doi:10.1371/journal.pcbi.1003885.t001

Figure 3. Estimated fluxes for energy and precursors produc-
tion during adherent MDCK cell cultivation. Net flux into pentose
phosphate pathway (PPP) relative to glucose transport flux (A, see
section ‘‘Exchange of glycolytic metabolites through other reactions’’),
net flux into glycogenesis relative to glucose transport flux (B), glucose
transport flux (C), and ATP production rate (D) are simulated for the
three cultivations (Cult1 – 3) and shown in the color code of Fig. 2.
doi:10.1371/journal.pcbi.1003885.g003

Dynamics of MDCK Cell Glycolysis
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behavior. The data for phosphoenol pyruvate (PEP) are below the

limit of quantification until 48 h of cultivation (indicated by grey

symbols) but still support the hypothesis of a fast drop at the

beginning of cultivation with a slow but steady increase until the

stationary growth phase begins (Fig. 2M–O, 50–200 h). Under

consideration of these data points, the model similarly suggests a

decrease and increase in PEP levels on the basis of an allosteric feed-

forward activation of PK by F16BP. Otherwise, a straight line would

suffice to describe the data. In the stationary growth phase, the

simulation result is slightly above the data points as higher levels of

PEP are advantageous for fitting of the perturbation experiments (see

section ‘‘Response of glycolysis to perturbation experiments). In the

model, the lower part of glycolysis shows a four-fold increase in the

activity during cell growth (5.7 mmol L21 min21) compared to the

stationary growth phase (1.39 mmol L21 min21). Interestingly,

during cell maintenance most of the PPP metabolites, synthesized

by glucose 6-phosphate dehydrogenase (G6PDH), are fed back into

glycolysis through the TATK mediated reactions (Fig. 1). Hence,

most of the glucose influx during the stationary growth phase is

converted to pyruvate (PYR).

Exchange of glycolytic metabolites through other

reactions. The products of the PPP are used for nucleotide

and nucleic acid synthesis, production of macromolecules and

yield NADPH for the synthesis of fatty acids. The net flux into the

PPP, is 3% to 15% of the glycolytic flux (G6PDH-TATKF6P-

0.5TATK3PG relative to the glucose transporter (GLUT) flux)

depending on the cell growth phase (Fig. 3A), and fulfills the

constraint to be in the range of 0% to 40% (see supporting

information 2). Glycogenesis mainly generates glycogen and the

relative net flux, which is branched off from glycolysis for this

pathway (UT relative to GLUT), is less than 0.1% during cell

growth and increases to 0.4% during cell maintenance (Fig. 3B).

The activity of the glucose transporters during cell cultivation has

an initial peak followed by a stepwise decrease (Fig. 3C). The first

decrease is a product of an immediate start of a high extracellular

glucose (GLCx) uptake under a slowly increasing cell-specific

volume. Therefore, the model suggests a relatively high consump-

tion by the cell at initial times of cultivation. The second decrease

results from a reduced cellular demand of GLCx due to growth

inhibition. The net production of ATP by glycolysis is calculated

by adding the flux through PK and phosphoglycerate kinase (here

ENO, see supporting information 3) minus the flux through HK

and PFK. In the simulation, the net production rate of ATP is

strongly correlated to the GLUT activity (Fig. 3D). Furthermore,

glycolysis produces 1.5–10 mmol L21 min21 of ATP depending

on the cellular growth status.

Response of glycolysis to perturbation experiments
Limitation experiments. At a certain time point of cultiva-

tion the medium was replaced by PBS, which essentially removes

all substrates and by-products. Unexpectedly, the intracellular

metabolite pools of upper glycolysis, i.e., G6P, F6P and F16BP,

show different starting concentrations in the first (Lim1; Fig. 4A,

D,G) and the second limitation experiment (Lim2; Fig. 4B,E,H).

Obviously the metabolic status of cells is not identical although

taken from a similar time point of cultivation. As the metabolic

status of cells greatly depends on the growth phase (see section

‘‘Glycolytic activity under changing growth regimes’’), we assume

that that the cells used for the limitation experiment originate from

different time points of cultivation (t*, using the Cult1 simulation

as the origin of cells). The resulting difference in the initial

metabolite pool levels upon selection of a t* (Lim1: 48 h, Lim2:

60 h, see Table 1) allows to resemble the measured initial metabolic

status of the perturbation experiments (Fig. 4). Choosing Cult2 or

Cult3 as a starting point for simulations yields similar simulation

results. Furthermore, the model takes into account that 361027 L

medium remain on the cellular surface and in the intercellular space

as a glycolytic activity of 3.28 mmol L21 min21 would, for

example, deplete the G6P pool within a second, which is obviously

not the case (Fig. 4A, 4B). However, it takes about only one minute

until the corresponding metabolite pools drop below the limit of

quantification. Interestingly, F6P and G6P are still detected while

the pool of F16BP is fully consumed. According to the model, a flux

from PPP to F6P of about 0.013 mmol L21 min21 is sufficient to

maintain the F6P and G6P pool under a reversed activity of the

glucosephosphate isomerase (GPI; Fig. 1). However, G6PDH

transfers G6P back into the PPP and completes a very low cyclic

metabolite exchange between both pathways. The activity of PFK is

reduced under low F6P levels, but a slight flux remains and

generates 3PG (Fig. 1). Overall, we conclude that the model is in

good agreement with experimental data for cells under glucose

limitation, especially for those above the limit of quantification.

In the lower part of glycolysis, 3PG and PEP remain

comparatively constant or even increase in concentration until

reaching a steady state after 3 min (Fig. 4J,K,M,N). In the model,

the increase in PEP results from a reduction in the PK activity due

to decreasing F16BP levels (Fig. 1). The initial concentration of

PEP measured in both experiments is higher than in simulations

but also higher than the levels found in the cultivation experiment

(Fig. 2). To improve the fitting of the Lim1 and Lim2 experiments,

the model realized slightly higher final PEP levels in the cultivation

experiments than measured experimentally. The simulation of

3PG showed a short drop and a subsequent increase after 1 min of

glucose limitation which may also be present in the data although

to a lesser extent.

Pulse experiments. The pulse experiment follows the

limitation experiment, which used cells from approximately 32 h

of Cult1, by replacing the PBS after two hours of incubation with

fresh medium providing glucose and other substrates. The model

suggests that glycolysis almost immediately (it takes 1.4 s to achieve

a 5% flux through PK) starts with the conversion of glucose to

pyruvate and that the metabolite pools reach a steady state after

one to two minutes (Fig. 4C,F,I,L,O). Such a fast increase in

glycolytic intermediates was also observed for sarcoma 180 ascites

tumor cells [24]. As a result, the dynamics are mirroring the

limitation experiment with increasing levels in upper glycolysis

(Fig. 4C,F,I) and decreasing PEP pools (Fig. 4O) due to the feed-

forward activation of PK by F16BP. However, the slight but

continuous increase of G6P and F6P pools is not reflected by the

model and also 3PG, which remains more or less constant in the

simulation with a small drop at 0.5 min, is slightly different

compared to the data (Fig. 4L). However, the model simulation

resembles at t = 6 min the metabolic status of Cult1 at 32 h of

cultivation, which fits most of the pulse experiment data.

Link to pentose phosphate pathway and glycogenesis
The implemented G6PDH and UT mediated conversion of

G6P are entry points into the PPP and the glycogenesis,

respectively. They eventually fuel the pools of ribose 5-phosphate

(R5P) and uridyl diphosphate glucose (UGLC) and implementa-

tion of simple degradation reactions (Eq. (11), (12)) allows assessing

the consistency between the flux through G6PDH and the R5P

pool as well as between the flux through UT and the UGLC pool.

The expense of an additional model parameter for the ribose 1,5-

bisphosphate phosphokinase (RDPK) and glycogen synthase

(GLYS), which both represent only one of the possible degradation

reactions, enables the model to reflect the dynamics of R5P and

UGLC during cell cultivation (Fig. 5). Note that in contrast to

Dynamics of MDCK Cell Glycolysis
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other intracellular metabolites, UGLC is diluted by cell volume

growth to a visible extent, which reduces the typical peak-like

behavior compared to other metabolites (Fig. 5D–F). During the

limitation experiment, the pool of R5P decreases later than

suggested by the model yet with similar dynamics. During the

pulse experiment, the level of R5P is lower than suggested by the

model (Fig. 6A,B,C). In both cases, the differences between

experimental data and simulation results might be due to network

properties of the PPP, which are not considered by the model (for

instance, the high number of reversible reactions, and the linkage

of its intermediates to the biosynthesis machinery). The data for

UGLC shows only a minor decrease and a minor increase during

the limitation and pulse experiments, respectively, which is

described by the model (Fig. 6D,E,F) and clearly attributed to

the low pathway activity (Fig. 1).

Estimations and predictions for the metabolic activity
ATP and biomass precursors generation under

modulation of the glucose transport activity. The correla-

tion of the (GLUT) activity and the ATP synthesis rate in Fig. 3C

and Fig. 3D already indicates that the glycolytic flux is controlled

by the GLUT during cell cultivation. Modulation of the GLUT is

not only a target for the improvement of production cell lines but

also an approach considered for cancer treatment with the

intention to interfere with the high metabolic activity of cells, and

eventually with tumor growth. For the subsequent analysis of

Figure 4. The response of intracellular metabolite pools to perturbation experiments. Glucose 6-phosphate (A–C), fructose 6-phosphate
(D–F), fructose 1,6-bisphosphate (G–I), 3-phosphoglyceric acid (J–L) and phosphoenolpyruvate (M–O) concentrations of three independent
perturbation experiments with MDCK cells in 6-well plates. Cells originating from a cultivation experiment (see Table 1) were deprived of extracellular
nutrients by removal of medium and addition of phosphate buffered saline, shown in the first column (Lim1, A,D,G,J,M) and second column (Lim2,
B,E,H,K,N). After a 2 h limitation, PBS was exchanged by fresh medium (Pulse, C,F,I,L,O). Data (#) and error bars represent mean and standard
deviation of three wells, respectively. Dashed lines are the limit of quantification (LOQ; data below LOQ marked in grey). Lines represent the
respective simulation result based on the experiment-specific parameters in Table 1 and parameters in Table 2.
doi:10.1371/journal.pcbi.1003885.g004

Dynamics of MDCK Cell Glycolysis
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glycolysis by in silico modulation of the GLUT activity we chose

cells from Cult1 at 24 h of cultivation. As before, the net

production rate of ATP is estimated as the sum of the flux through

PK and phosphoglycerate kinase (here ENO, see supporting

information 3) minus the flux through HK and PFK. The net

production of PPP metabolites is the flux through G6PDH minus

the flux through TATKF6P and half of TATK3PG as it yields

only three carbon sugars. For the analysis, we also consider the

impact of the parameter uncertainty by using all model

parameterization derived from the bootstrap method (see section

‘‘Computation’’), which in sum comprise 2000 parameter sets

describing our data for glycolysis. The modulation of the GLUT

activity in all these model parameterization was chosen to range

from 0–10 mmol L21 min21, which exceeds the typical uptake

rates determined during cell growth and substrate limitation (e.g.

in Cult1: 0–3 mmol L21 min21). The resulting steady state

production rates of ATP and PPP metabolites were sorted in

increasing ATP production rate and are shown in Fig. 7. As

expected, the ATP and PPP metabolite production rate increases

with higher fluxes through GLUT up to about 4 mmol L21 min21,

depending on the model parameterization. A further increase to

6 mmol L21 min21 saturates the PFK (for cells of Cult1 at 24 h).

Figure 5. Intracellular metabolite pools of pentose phosphate pathway and glycogenesis during adherent MDCK cell cultivation.
Ribose 5-phosphate (A–C) and uridyl diphosphate glucose (D–F) concentrations of three independent MDCK cell cultivations (Cult1 n, Cult2 %,
Cult3 #) in 6-well plates and GMEM-Z. Data and error bars represent mean and standard deviation of three wells, respectively. Dashed lines are the
limit of quantification (LOQ; data below LOQ marked in grey). Lines represent the respective simulation result based on the experiment-specific
parameters in Table 1 and parameters in Table 2. The intermediate growth phase (95%–5% proliferating cells) is indicated as grey bar for the
respective cultivation.
doi:10.1371/journal.pcbi.1003885.g005

Figure 6. The response of metabolite pools of pentose phosphate pathway and glycogenesis to perturbation experiment. Ribose 5-
phosphate (A–C) and uridyl diphosphate glucose (D–F) concentrations in three independent perturbation experiments with MDCK cells in 6-well
plates. Cells originating from a cultivation experiment (see Table 1) were deprived of extracellular nutrients by removal of medium and addition of
phosphate buffered saline, shown in the first column (Lim1, A,D) and second column (Lim2, B,E). After 2 h of incubation, PBS was exchanged by fresh
medium (Pulse, C,F). Data (#) and error bars represent mean and standard deviation of three wells, respectively. Dashed lines are the limit of
quantification (LOQ; data below LOQ marked in grey). Lines represent the respective simulation result based on experiment-specific parameters in
Table 1 and parameters in Table 2.
doi:10.1371/journal.pcbi.1003885.g006
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The resulting shift of the metabolic flux into the PPP further

increases the synthesis of metabolites but impairs the glycolytic

ATP production. The increase in PPP metabolite production

results exclusively from an enhanced flux through G6PDH,

which, in cooperation with other enzymes, also yields NADPH.

As a result, the production of NAPDH correlates linearly with the

PPP metabolite production, which are both essential for biosynthe-

sis. However, for a flux through GLUT.6 mmol L21 min21,

the HK becomes saturated as well and a further increase of the

GLUT activity results in accumulation of intracellular glucose

(GLC).

Prediction of metabolic activity during growth in

different medium. Assessing the impact of a GLUT modula-

tion towards a flux of 6 mmol L21 min21, for instance by an

overexpression of GLUT or through the hypoxia-inducible factor

1 [25,26], in combination with the measurement of ATP, PPP

metabolites and NADPH production rates poses a very challeng-

ing experimental task. Therefore, the predictive power of the

developed model was evaluated by performing a cultivation with a

similar medium but with low initial GLCx concentration of

2.5 mmol L21 min21. After adjusting the cell growth model such

that it reflects the growth of the cells under low glucose concentrations

(i.e. growth depends on glutamine, VC
� is reduced, and the

macroscopic uptake rates depend also on the glucose concentration;

see supporting information 4, Fig. S2), the model for glycolysis

predicts changes in the peaks of the metabolite pools and a transient

shift into a limitation scenario (Fig. 8). The peak in metabolite pools

of upper glycolysis as well as R5P and UGLC (see supporting

information 4, Fig. S3) is correctly predicted especially with respect to

its width. However, the maximum peak height of F6P, F16BP as well

as R5P and UGLC exceeds that of the model prediction and is also

higher than during the CULT1–3 experiments. At later times of

cultivation, the levels of many metabolite pools are low which is

similarly predicted by the model. Most interestingly, the model

prediction renders the negative peak of 3PG at 48 h of cultivation as

well as the very high final level of PEP (Fig. 8).

Discussion

Model structure
We developed a kinetic description of glycolysis that, coupled to

a segregated cell growth model, enabled describing and analyzing

the experimental data of this study comprising roughly 600 data

points by using a single set of parameters for the enzyme kinetics.

To describe the dynamics of enzyme activities different types of

kinetics with arbitrary complexity can be found in literature. Here,

we focused on the establishment of a relatively simple model,

which incorporates only basic regulatory mechanisms of glycolytic

enzymes and a minimum of reactions. Nevertheless, the model

reflects the basic dynamics of metabolite pools for a variety of

experimental data sets and time scales. In the model, the kinetics of

TATK as well as the ENO represent lumped reactions and were

realized with reversible mass-action kinetics (see supporting

information 3 for further details on enzyme kinetics). The enzymes

HK, GPI, G6PDH, UT, and aldolase (ALD) as well as the GLUT

were defined as Michaelis-Menten kinetics, as they provide an

upper activity bound that was measured in vitro by Janke et al.

[19] (except GLUT), and appear either as reversible or irreversible

reaction. So similarly to mass action kinetics, only one or two

parameters of the Michaelis-Menten kinetics required estimation.

Only the PFK, which is a strongly regulated enzyme in glycolysis,

as well as the PK were considered to be influenced by allosteric

effectors. A Hill-Kinetic with four subunits [10,27] was sufficient

for the PFK to fit all data and takes a direct activation by F6P [17]

and an indirect activation via fructose 2,6-bisphosphate (F26BP)

into account [28,29]. The PK is influenced by the well-known

F16BP-mediated activation. The chosen simplifications in enzyme

kinetics renders the used parameters to be more abstract, such

that, for example, the affinity of an enzyme for its substrates or

products rather represents a constant sum of influential factors

such as availability of cofactors and concentration of ions. As a

result, a comparatively simple model is obtained that describes the

experimental data with enzyme kinetics comprising only 19

parameters. In addition, two experiment-specific parameters were

determined for each cultivation, which yields a total of 21 degrees

of freedom not considering the parameters used in the segregated

cell growth model. In principle, however, any model of glycolysis

that takes into account the metabolites and enzyme reactions used

here (even though with higher complexity) may equally well

describe the dynamics of the intracellular metabolite pools of this

study. Nevertheless, our relatively simple model features the

identification of mechanisms that are involved in certain dynamics

and has the advantage of efficient parameter estimation and model

analyses. Furthermore, extension by additional reaction mecha-

nisms is relatively easy in case further experimental data is

available or other cellular functions are of interest, e.g. the

response of primary metabolism to osmotic stress [30], and

hypoxia [31] or its influence on the glycosylation of proteins [32].

Model coupling and simulation
The derived kinetic description of glycolysis simultaneously

integrates data of three independent cell cultivation experiments,

two limitation experiments and one pulse experiment and

therefore required coupling to a model that takes explicitly into

account the progress of the cell through different growth phases

during the cultivation experiments Cult1–3 [23]. Because of the

many different experimental settings, simulations would normally

Figure 7. Impact of in silico GLUT modulation on (A) ATP and (B)
pentose phosphate pathway (PPP) production rates. At total of
1900 model parameterizations (0.025–0.975 quantile of 2000 model
parameterizations) were assessed for the GLUT modulation and were
derived from the optimal result of each bootstrap run, which was also
the basis for estimation of the parameter confidence intervals of
Table 2. The colored bars on the right hand show the respective
production rate; the black vertical line represents the original GLUT
activity of cells of Cult1 at 24 h.
doi:10.1371/journal.pcbi.1003885.g007
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require a large set of initial conditions that comprise not only

starting concentrations of intracellular metabolites (8 degrees of

freedom) but also cultivation conditions (the actual medium

volume, glucose concentration), and the growth status of the cells

(cell number, cell-specific volume, enzyme level and glucose

uptake rate). Considering that the perturbation experiments were

performed at a certain time point of cultivation and that

cultivations in turn were inoculated with cells from a defined

preculture introduces a dependency of the cell status on the

cultivation history. Accordingly, we transfer information regarding

the cell status, which comprises information of growth and

metabolism, as well as culture conditions (Table 1) from one

simulation to another (Fig. S4, further explained in the supporting

information 5). Estimating a certain cell cultivation history not

only eliminates the estimation of initial conditions for glycolysis

and the growth status of the cell but also supports consistent data

simulation and can be used to evaluate biological variations [33].

However, inconsistent data sets or an unknown cell status (e.g. cell

status different to those of Cult1–3) may pose a serious challenge

for model fitting. For such scenarios the individual selection of

initial conditions might be a better option. In this work, however,

the estimation of two experiment-specific parameters, which are

the Elevel for the respective cultivation and t* as starting point for

the perturbation experiments, as well as a consistent consideration

of all data sets outweighed a perfect data fitting and greatly

supported our systems-level analysis of glycolysis.

Glycolytic activity during substrate perturbation
The simulation of the limitation experiments was started with

initial conditions of cells (growth status and a metabolic status) that

corresponded to a time point t* of the Cult1 experiment (Table 1).

The selection of different time points t* readily explains variations

in the initial concentration of intracellular metabolite pools that

were found between the Lim1 and Lim2 experiment. The actual

limitation was induced by reducing the medium volume to

3|1027 L, which is estimated as liquid volume that remains on

the cellular surface or in the intercellular space. In comparison, the

volume of all cells is roughly 6|1026 L. In principle, a dilution of

the remaining medium with PBS can be realized by choosing

lower GLCx concentrations and a higher medium volume (VM).

The affinity of GLUT for GLCx (km
GLUT ) was found to have a large

confidence interval and, hence, lower concentrations of GLCx

under a higher VM are likewise possible (Table 2).

With the limitation of glycolysis in substrates, the feed-forward

regulation of PFK and PK stops the metabolite pool degradation

while the TATK reactions partially reverse and fuel glycolysis with

0.03 mmol L21 min21 leading to a new steady state within

minutes. Thus, the control of the glycolytic activity shifts from

the growth regime that regulates the GLUT activity (see section

‘‘Tuning the ATP and biomass precursor generation’’) towards an

inherent regulation of enzymes by substrates and products in the

glycolytic pathway (see also supporting information 1). Without

the implementation of the TATK reactions, the remaining

glycolytic activity eventually depletes the metabolite pools unless

fueled from sources other than GLC. As the limitation applies to

all possible extracellular substrates, the use of intracellular carbon

sources that might be related to the PPP, glycogenolysis or

glyconeogenesis from pyruvate seems likely. The PPP shares

already three metabolites with glycolysis (G6P, F6P, and glycerine-

aldehyde phosphate linked to 3PG) which are not depleted during

the limitation experiments and may thus pose the most promising

and simplest option among the aforementioned intracellular

carbon sources. Also, the late decrease in R5P during the

limitation experiment and its lower level during the pulse

experiment may support a scenario in which the PPP fuels

glycolysis under limiting GLC levels and, thus, can have a large

influence on glycolytic intermediates, which is similarly found for

hepatoma cells [34]. In turn, after addition of fresh medium, the

PPP metabolite pools may be replenished by glycolysis and we

hypothesize a certain buffering capacity of the PPP as it is

composed of many reversible reactions and intermediates that

participate in the biosynthesis machinery. In the model, the

implemented reversible mass action kinetics allow for such a switch

from metabolite consumption to metabolite production by the PPP

under the lack of alternative sources for glycolysis. However, the

flux rates as well as the parameters of the PPP cannot be uniquely

identified on the basis of our experimental data (Table 2).

Therefore, we have used the additional constrain that the flux

from the PPP into glycolysis is low (supporting information 2).

Although the implemented mechanisms may not definitely be

Figure 8. Prediction of glycolytic metabolite pools during cultivation of adherent MDCK cells in DMEM with 2.5 mmol L21

extracellular glucose. Glucose 6-phosphate (A), fructose 6-phosphate (B), fructose 1,6-bisphosphate (C), 3-phosphoglyceric acid (D) and
phosphoenolpyruvate (E) concentrations during MDCK cell cultivations in 6-well plates and DMEM medium with 2.5 mmol L21 extracellular glucose.
Data (e) and error bars represent mean and standard deviation of three wells. Dashed lines are the limit of quantification (LOQ; data below LOQ
marked in grey). Lines represent the model prediction based on the modifications of the cell growth model described in the supporting information 4
and the parameters in Table 1 and Table 2. The intermediate growth phase (95%–5% proliferating cells) is indicated as grey bar.
doi:10.1371/journal.pcbi.1003885.g008
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attributed to the PPP, all parameterizations of Table 2 support the

finding that metabolite pools can be maintained (or increased)

under limited substrate availability. To this end, the model

suggests that the allosteric regulation of PFK and PK as well as the

reversibility of GPI and TATK modulate the glycolytic activity in

scenarios characterized by limited substrate availability. This is

consistent with findings that flux control in glycolysis can rely on a

combination of many enzymatic steps [34] and can vary

depending on experimental conditions [35]. Counter-intuitively,

adenosine-based nucleotides, which are also considered to control

the metabolic activity in general [36], are constant during our

limitation and pulse experiments (Fig. S5). Similar observations

were made for yeast and HeLa cells [17,37]. Therefore, regulation

of glycolytic enzymes of MDCK cells by adenosine-based nucleotides

seems unlikely under the conditions investigated, which is also

hypothesized by Renner et al. [38] for rat hepatoma cells.

Furthermore, an activation of glycolysis by a possibly decreasing

ATP/ADP ratio stands in contrast to the metabolite pool preserva-

tion and renders its influence to be limited. However, the general

purpose of an enzyme-mediated control of the glycolytic activity

through PFK, PK, TATK and GPI might lie in the prevention of

unnecessary dissipation of valuable biomass precursors and may also

guarantee a metabolic status that enables a fast reactivation of

glycolysis and other cellular functions when new substrates become

available after starvation conditions (Fig. 4C,F,I,L,O).

Glycolytic activity during cell cultivation
Over the full course of cultivation cells pass through several

growth-phases with varying cell-specific volumes and with glucose

uptake rates that both strongly influence the metabolite pool

dynamics (Fig. 2,3). In addition, abundance of enzymes, their

covalent modifications as well as the level of allosteric regulators

may change over time which can additionally affect metabolite

fluxes and pools [39,40]. However, to our surprise most of the

experimental observations were captured by the model under a

parameterization that simultaneously explained the perturbation

experiments. Obviously, other hierarchical control mechanisms

besides the growth regime (for example on the genome or

proteome level) were not essential for describing the observed

metabolite pool dynamics. This may be attributed to the fact that

initial culture conditions were tightly controlled and that the media

composition provided adequate substrate and by-product concen-

trations in the time span analyzed. Nevertheless, the inclusion of

other levels of hierarchical control, in addition to the growth

regime of this work, may contribute to simulated aspects of the

observed dynamics. The enzyme kinetics and the direct influence

by the growth regime are in the following considered as the sole

source of regulatory principles that control glycolysis during

MDCK cell cultivation.

First, the peak in the metabolite pools can be explained with a

high GLUT-mediated flux rate in combination with low cell

volume-specific enzyme activities (based on higher cell-specific

volumes during the growth phase). The implemented enzyme

kinetics realize a relatively higher net flux into the PPP during cell

growth, which is attributed to the higher metabolite levels in

glycolysis and similarly described by Wu et al. [41] for bovine

venular endothelial cells after addition of citrate in order to inhibit

the PFK activity. Also, the activation of GLUT in rat thymus

lymphocytes with concanavalin A resulted in higher fluxes in

glycolysis and into the PPP [42]. Higher fluxes into the PPP

Table 2. Measured and estimated parameters of adherent MDCK cell glycolysis used to simultaneously capture all experiments of
this study with confidence intervals between 0.025-quantile Q0:025ð Þ and 0.975-quantile Q0:975ð Þ.

Parameter Value Q0.025-Q0.975 Unit Parameter Value Q0.025-Q0.975 Unit

ka
PK 6.5661021 (5.69–12.09)61021 mmol2 L22 vmax

ALD
a2.36610211 - mmol

cell21 min21

k
eq
GPI

1.78 0.30–10.00d - vmax
GLUT

c1.60610211 - mmol
cell21 min21

k
eq
ENO

3.8061021 (2.10–5.19)61021 - vmax
G6PDH

a5.81610211 - mmol
cell21 min21

k
eq
TATKF6P

9.84 4.66–969.63d L mmol21 vmax
GPI

a2.72610210 - mmol
cell21 min21

k
eq
TATK3PG

1.0161021 (0.00–9.31d)6102 L mmol21 vmax
HK

a1.92610211 - mmol
cell21 min21

km
ALD 1.77 1.29–2.52 mmol L21 vmax

PFK 1.00610211 (0.79–1.15)610211 mmol
cell21 min21

km
GLUT 6.60 1.75–35.90 mmol L21 vmax

PK
a1.2361029 - mmol

cell21 min21

km
GPI 2.41 0.10–2.89 mmol L21 vmax

UT 8.17610215 (6.94–96.81)610215 mmol
cell21 min21

km
G6PDH 3.98 1.17–10.50 mmol L21 vENO 2.34610210 (2.42–5.81)610210 mmol

cell21 min21

km
HK

b0.02 - mmol L21 vGLYS 1.91610214 (1.66–25.89)610214 L cell21 min21

km
PFK 1.0861022 (0.94–1.38)61022 mmol L21 vRDPK 3.69610211 (1.11–9.49)610211 L cell21 min21

km
PK 1.6661023 (0.11–9.99d)61023 mmol L21 vTATKF6P 3.73610214 (3.48–100.20)610214 L cell21 min21

km
UT 9.9661023 (1.12–23.24)61023 mmol L21 vTATK3PG 5.60610213 (0.14–112.22)610213 L cell21 min21

avalue taken from Janke et al. [19],
bvalue taken from Tsai and Wilson [79],
cvalue taken from Fitzpatrick et al. [80],
dconfidence interval at upper parameter bound.
doi:10.1371/journal.pcbi.1003885.t002
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possibly enables enhanced nucleotide, macromolecule, and lipid

synthesis rates, as reviewed by Mazurek et al. [43]. According to

our simulations the fluxes are in the range of 13—15% of the

glycolytic flux, which is reasonable for continuously growing

mammalian cells in the exponential growth phase [37,44].

However, a much lower contribution e.g. 5.8% and 3.6% can

be found in the late intermediate growth phase, which corresponds

to findings for other transformed mammalian cells [45–47]. So,

the regulation of enzymes by substrates, products and allosteric

effectors can change concentrations of intracellular metabolite

pools, and reorganize the pathway fluxes, especially under limiting

conditions (see section ‘‘Glycolytic activity during substrate

perturbation’’). However, during MDCK cell cultivation the

control over the glycolytic activity is exerted by the growth regime

through modulation of the GLUT activity. For many microor-

ganisms, the GLUT is described as the rate limiting step that can

control the glycolytic flux [38,48–51]. But also adenosine-based

nucleotides are reported to play a major role in the control of the

glycolytic activity [36,52]. For MDCK cells, the influence of

adenosine-based nucleotides on glycolysis seems to be negligible

during cultivation conditions with excess of substrates [22]. So,

neither during cell growth nor during substrate perturbation the

adenosine-based nucleotides played a crucial role in describing the

dynamics of the measured metabolite pools. Therefore, we

assumed for the model that enzymes are insensitive against

changes in the adenosine-based nucleotide levels, which is also

reported by Soboll et al. [53] for rat liver cells.

Snoep and co-workers hypothesized that GLUT controls cell

growth [54]. This, however, raises the question, whether

metabolism regulates cell growth or vice versa [55]. In case of

adherent MDCK cell growth with sufficient substrate supply, the

growth status is exclusively defined by the availability of free space

on the well surface. Eventually, space becomes limiting and cells

reduce the glycolytic activity although high extracellular glucose

concentrations are present. Therefore, we hypothesize that the

growth regime of exponentially growing MDCK cells controls the

GLUT activity to realize a higher metabolic activity yielding in

turn higher metabolite pools that meet the energy and precursor

demands of the biosynthesis machinery. On a lower level of

regulation, the properties of the involved enzymes shape

metabolism by influencing flux distributions. Under substrate

limitation, however, regulation of enzymes has full control over the

glycolytic activity (see section ‘‘Glycolytic activity during cell

cultivation’’). Thus, the model considers that the regulation of the

glycolytic activity changes with the physiological status of the cell

[55] and sheds light on the regulatory principles that are essential

to simultaneously explain various experimental scenarios. Al-

though regulation of glycolysis can change with the microorganism

[52], we are convinced that the derived principles can be applied

to other metabolic pathways, such as the citric acid cycle [56], and

also support the study of other mammalian cell lines relevant for

production of biologicals [57].

Tuning the ATP and biomass precursors generation
Within a GLUT activity of 0–4 mmol L21 min21, the model

for glycolysis is validated with cultivation, limitation and pulse

experiments. It already shows a good predictive power for an

experiment were MDCK cells were grown in DMEM medium

with low GLCx levels (Fig. 8), which further strengthens the

confidence in the model structure and its parameterization.

Although the model prediction for the DMEM cultivation would

benefit from a lower Elevel to describe all maximum peak-heights,

it still confirms the close linkage of GLUT activity and intracellular

metabolite dynamics. Based on the finding that the GLUT

modulates the glycolytic activity during cell cultivation (under

sufficient substrate availability) it seemed desirable to explore the

maximum capacity of glycolysis and the corresponding ATP and

PPP metabolite production. However, such a maximum capacity

clearly depends on the enzyme content (Elevel) and the cell-specific

volume (VC
S ). Therefore, we exemplary analyzed cells from the

Cult1 experiment at 24 h of cultivation with an actual uptake of

3.3 mmol L21. For these cells, in silico modulation of the GLUT

activity revealed that an uptake of up to 3.8 mmol L21 min21 can

be realized until the glycolytic flux saturates the PFK capacity,

which slightly enhances the ATP production on average to 105%,

and the PPP metabolite and NADPH production to surprising

153% for cells of Cult1 at 24 h. According to the model, a further

increase in ATP production would require the simultaneous

overexpression of the PFK, which illustrates the difficulty in fast

up-regulation of metabolic activity while keeping a certain balance

between ATP and PPP metabolite production. However, Janke et

al. [19] measured higher maximum in vitro PFK activities than

estimated in this study and glycolysis of MDCK cells may have

higher capacities than estimated by the model. Higher biomass

precursor and ATP production rates can support higher growth

rates as shown for tumor and yeast cells with up-regulation of the

GLUT activity [58,59]. Furthermore, Schmidt et al. [60]

described a correlation between the growth of tumor cells and

the ATP production rate. Potentially, an increase in the ATP

production to 105% may not or only slightly support higher

growth rates for MDCK cells especially as they are described to

have a large overproduction in ATP [47,61]. But due to the

importance of PPP metabolite production to pyrimidine [43,62]

and purine production [63] and NAPDH to lipid synthesis we

believe that an increase to 153% positively affects the growth of

cells (Fig. 6). A glycolytic activity above 5 mmol L21 min21

drastically enhances the production of PPP metabolites (433%)

at the expense of the ATP production (77%) and seems to be an

interesting scenario for future experiments. However, also the

reduction in the glucose uptake, as done by Liebl et al. [64], poses

an interesting strategy to design a more economic breakdown of

glucose in biotechnological processes [65]. Currently, the reduc-

tion of the glucose uptake by interference with the glucose

transporter is also studied as a potential target for cancer treatment

[59,66] which may benefit from the acquisition of mathematical

models to evaluate corresponding dynamics in metabolism. Taken

together, the model can greatly support the development of

strategies that aim either at a faster or a more efficient cell growth,

and is also an aid in the design of new experiments.

Materials and Methods

Model and simulation
The differential algebraic equations of the glycolytic model were

composed of first order rate laws, Michaelis-Menten and Hill

kinetics which describe enzyme activity in dependence of

metabolite concentrations and allosteric influences.

Coupling of glycolysis to a segregated cell growth

model. To simulate intracellular metabolite dynamics during

cell cultivation the kinetic description of glycolysis was coupled to

the recently developed segregated cell growth model of Rehberg et

al. [23]. In principle, any cell growth model can be used for the

coupling as long as it provides information regarding the glucose

uptake rate and the changes in mean cell diameter. To facilitate

simulations and to allow for model analyses (i.e. parameter

sensitivity studies) the cell growth model should be simple and only

incorporate state variables available from experiments. Coupling

of models incorporating delay functions (e.g. [67]) or population
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balance equations (e.g. [68]) will involve significant challenges

regarding efficiency of algorithms and time required for simula-

tions. Therefore, we specifically developed a segregated cell

growth model for the coupling to kinetic descriptions of metabolic

pathways. Limitations and advantages of the model are in detail

described by Rehberg et al. [23].

The segregated growth model established [23], provides all

information regarding the medium volume-specific uptake rate of

GLCx for growth (rx=GLCx ) and for maintenance (rm=GLCx ), the cell-

specific volume (VC
S ), the specific growth rate (m), and a cell

volume-dependent growth inhibition factor (f ) that increases over

cultivation time (see supporting information 6 for further

specification of parameters of the segregated cell growth model).

Furthermore, the water evaporation constant (Fevap), medium

volume (VM ), and cell number (Xtot) are taken into account. The

concentration of GLCx decreases over cultivation time with

d½GLCx�
dt

~{rx=GLCx{rm=GLCxz
Fevap½GLCx�

VM
: ð1Þ

For the simulation of the perturbation experiments we assumed

that the glucose uptake depends on a variable capacity for glucose

trans-membrane transport (cGLUT Kmax
GLUT ) as well as on the affinity

of GLUT for GLCx(km
GLUT ) such that Eq. (1) is substituted by

d½GLCx�
dt

~{cGLUT Kmax
GLUT

½GLCx�
km

GLUTz½GLCx�
VC

S

VM
Xtot: ð2Þ

The variable cGLUT scales the glucose uptake kinetic to the

macroscopic description in Eq. (1) at any time point of cultivation

at which the perturbation experiment starts (t*; Table 1). Hence,

cGLUT stands for cellular mechanisms such as a change in glucose

affinity of GLUT, translocation of GLUT or molecule-based

activation of GLUT [69] that are necessary to meet the rate in Eq.

(1):

cGLUT~
rX=GLCx (t�)zrm=GLCx (t�)

Kmax
GLUT (t�) ½GLCx�(t�)

km
GLUT

z½GLCx�(t�)

VC
S

(t�)

VM (t�)

: ð3Þ

Kmax
GLUT is the cell volume-specific maximum transport activity of

GLUT that is calculated from the cell-specific maximum transport

activity vmax
GLUT , the VC

S and the Elevel :

Kmax
e ~

vmax
e Elevel

VC
S

or Ke~
veElevel

VC
S

ð4Þ

Note that e stands for GLUT or any other enzyme of the model

and Kmax
e is, hence, the maximum cell volume-specific activity for

enzyme e. For first order rate laws, the cell volume-specific enzyme

activity Ke is similarly derived from the cell number-specific

activity ve.

Kinetics of glycolytic enzyme reactions. The model of

glycolysis considers the metabolic conversion of GLC to PYR as

well as the interconnection with PPP and glycogenesis for an

average cell:

d½GLC�
dt

~rinflux{Kmax
HK

½GLC�
km

HKz½GLC�{mf ½GLC�

with rinflux~

(rx=GLCxzrm=GLCx )
VM

VC
S Xtot

for experiment: Cult1,2,3

Kmax
GLUT

½GLCx�
km

HK
z½GLCx� cGLUT

for experiment: Lim1,2; Pulse

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5Þ

d½G6P�
dt

~Kmax
HK

½GLC�
km

HKz½GLC�{Kmax
GPI

(½G6P�{ ½F6P�
k

eq
GPI

)

km
GPIz½G6P�z ½F6P�

k
eq
GPI

{Kmax
G6PDH

½G6P�
km

G6PDHz½G6P�{Kmax
UT

½G6P�
km

UTz½G6P�

{mf ½G6P�

ð6Þ

d½F6P�
dt

~Kmax
GPI

(½G6P�{ ½F6P�
k

eq
GPI

)

km
GPIz½G6P�z ½F6P�

k
eq
GPI

{Kmax
PFK

½F6P�4

km
PFK

4z½F6P�4

zKTATKF6P(1{
½F6P�

k
eq
TATKF6P

){mf ½F6P�

ð7Þ

d½F16BP�
dt

~Kmax
PFK

½F6P�4

km
PFK

4z½F6P�4
{Kmax

ALD

½F16BP�
km

ALDz½F16BP�

{mf ½F16BP�
ð8Þ

d½3PG�
dt

~2Kmax
ALD

½F16BP�
km

ALDz½F16BP�zKTATK3PG(1{
½3PG�

k
eq
TATK3PG

)

{KENO(½3PG�{ ½PEP�
k

eq
ENO

){mf ½3PG�
ð9Þ

d½PEP�
dt

~KENO(½3 PG�{ ½PEP�
k

eq
ENO

)

{Kmax
PK

½PEP�

km
PKz½PEP�z ka

PK

½F16BP�

{mf ½PEP�
ð10Þ

The term mf ½M� expresses the dilution of intracellular

metabolite M by the approximate cell volume growth (which is

assumed to be zero during the perturbation experiments) while the

used parameters were defined as follows: Kmax
HK , Kmax

GPI , Kmax
G6PDH ,

Kmax
UT , Kmax

PFK , Kmax
ALD, and Kmax

PK are the maximum cell volume-

specific enzyme activities of HK, GPI, G6PDH, UT, PFK, ALD,

and PK, respectively; km
HK , km

GPI , km
UT , km

PFK , km
ALD, and km

PK are

the affinity constants of HK for GLC, of GPI for G6P, of UT for

G6P, of PFK for F6P, of ALD for F16BP, and of PK for PEP,

respectively; k
eq
GPI , k

eq
TATKF6P, k

eq
TATK3PG , k

eq
ENO are the equilibrium

constants of GPI between G6P and F6P, of TATKF6P between

F6P and the PPP pool (can have an arbitrary constant level; here
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1 mmol L21), of TATK3PG between 3PG and the PPP pool, and

of ENO between 3PG and PEP; KTATKF6P, KTATK3PG , and KENO

are the cell volume-specific enzyme activities of TATK with

respect to F6P conversion, TATK with respect to 3PG conversion,

and ENO. ka
PK is the activation constant of PK by F16BP.

Pentose phosphate pathway and glycogenesis. The mod-

el of glycolysis was extended at the expense of two additional

parameters by R5P and UGLC:

d½R5P�
dt

~Kmax
G6PDH

½G6P�
km

G6PDHz½G6P�{KRDPK ½R5P�{mf ½R5P�
ð11Þ

d½UGLC�
dt

~Kmax
UT

½G6P�
km

UTz½G6P�{KGLYS½UGLC�{mf ½UGLC�
ð12Þ

The ribose-phosphate diphosphokinase and glycogen synthase

with activity KRDPK (Eq.(11)) and KGLYS (Eq.(12)), respectively,

were modeled using first order rate laws. Additional constraints for

metabolite exchange between glycolysis and the PPP are described

in the supporting information 2.

Simulation procedure, initial values and parameter

settings. For simulation of the batch cultivation experiments

Cult1–3, the kinetic description of glycolysis is coupled to the

segregated cell growth and thus requires initial conditions for the

growth status of the cell as well as the culture conditions, which are

given by Rehberg et al. [23] (same symbol and color code).

However, the initial conditions for the metabolic status were derived

by simulating Cult1 at 200 h of cultivation for longer times

(104 min). The Elevel was estimated for each cultivation experiment.

For simulation of the perturbation experiments, the actual growth

status and the metabolic status of cells at time point t* of Cult1 was

used. Therefore, in addition to the estimation of 19 kinetic

parameters, two experiment-specific parameters (t* and Elevel) need

to be estimated (see also Table 1 and Table 2). Furthermore, it was

assumed for the perturbation experiments that cells remain constant

in size and number. Substrate limitation was initiated by reducing

the medium volume VM to 3|10{7 L, which considers remaining

glucose at the cellular surface and in the inter-cellular space.

Simulation of the pulse experiment was initialized with the

metabolic and cell growth status present after two hours of

limitation and the culture conditions VM~4|10{3 L and

½GLCx�(t~0)~30 mmol L21. An overview of all initial conditions

and settings is given in Table 1. A flow sheet for the transfer of initial

conditions and experiment-specific parameter to the corresponding

routines is given in Fig. S4 (also see the supporting information 5).

Computation. For model fitting, estimation of parameter

confidence intervals, and visualization of results MATLAB (Version

R2012b, The MathWorks, Inc.) was used. Models and data were

handled with the Systems Biology Toolbox 2 developed by Schmidt

and Jirstrand [70]; the model is exemplary given as .txt file for

simulation of Cult1 (Model S1) and Lim1 (Model S2), the kinetic

description of glycolysis is also provided in the SBML format (level 2

version 4, Model S3). Integrations of the ordinary differential

equations were performed with the CVODE from SUNDIALS [71].

The algorithm SSm [72] was used for stochastic global optimization

of the parameters and experiment settings using a least squares

objective function, which considers the constraints given in the

supporting information 2. A bootstrap method [73,74] was used for

assessment of the parameter confidence intervals with a total of 2000

runs. All simulations were carried out on a Linux-based system.

Experiments and analytics
Cell cultivation. As already described by Rehberg et al. [22],

Madin Darby Canine Kidney (MDCK) cells (ECACC,

#84121903) were precultured in GMEM (Gibco, #22100-093),

supplemented with 10% fetal calf serum (Gibco, #10270-106),

2 g L21 peptone (International Diagnostics Group, #MC33) and

4 g L21 NaHCO3 (Roth, #6885.1), referred to as GMEM-Z.

Precultures were either carried out in roller bottles (Greiner Bio-

One, #680XX, experiment depicted in figures with symbol #) or

in T-flasks (Greiner Bio-One, #661160, experiments depicted in

figures with symbols n and %) at 37uC and 5% CO2. Cell

cultivation experiments Cult1 (n), Cult2 (%) and Cult3 (#) were

independently performed in parallel 6-well plates (Greiner Bio-

One, #657160) containing 4 mL GMEM-Z with an average

initial cell concentration of about 66105 cells well21, cultivated at

37uC and 5% CO2 in an incubator. Subsequent analytics were

applied to at least three individual wells per time point. For the

perturbation experiments, cells were grown to the late exponential

growth phase at which a sample was taken as time point zero.

Glucose limitation was achieved by discarding the medium

followed by an immediate washing step with PBS (8 g L21 NaCl,

0.2 g L21 KCl, 0.2 g L21 KH2PO4, 1.2 g L21 Na2HPO4) and

followed by addition of PBS. After 2 h of limitation, a sample was

taken as time point zero of the glucose pulse experiment where

PBS was removed and 4 mL of fresh GMEM-Z added.

Additionally, MDCK cells from a GMEM-Z preculture were

inoculated with a concentration of 0:46|106 cells per well in

4 mL DMEM medium (#E15-079, PAA Laboratories), which was

supplemented with 10% fetal calf serum (Gibco, #10270-106),

2 g L21 peptone (International Diagnostics Group, #MC33) as

well as 2.5 mmol L21 glucose and 2.0 mmol L21 glutamine.

Analytics. The applied analytics are in detail described in

[75]. In short, after removal of the supernatant, cells were washed

three times with PBS and treated 30 min with trypsin (2.5%,

porcine, 5 U, 0.5 mL per well, Gibco, #27250-018) for cell

detachment. Cells were harvested using a cell scraper. A Vi-Cell

TM XR Cell Viability Analyzer (Beckman Coulter) was used for

cell counting and measurement of the diameter distribution. Cell

number and cell diameter distribution were used to determine the

cell volume. GLCx concentrations in the supernatant were

quantified as described by Genzel and Reichl [76] using a

Bioprofile 100 plus analyzer (Nova Biomedical, relative standard

deviation of the method 1.9–6.4% [77]). For the measurement of

intracellular metabolites, sample preparation was performed as

described in detail by Ritter et al. [75] using ice cold solutions. The

medium of the wells was discarded and the cell layer was washed

with a 0.9% NaCl solution. Quenching of metabolic reactions and

extraction of metabolites was done by immediate addition of

MeOH/CHCL3 solution (1:1). Quantification of the intracellular

metabolites was performed by anion exchange chromatography

(BioLC system, Dionex) in combination with mass spectrometry

(LC-MS, relative standard deviation of the method 0.7–9.5%), as

described by Ritter et al. [20] and Ritter et al. [78]. The absolute

amount of metabolites per well were related to the measured cell

volume at respective times of cultivation. To reduce the error,

regression analysis was used to interpolate the measured cell

volume. The limit of quantification was related to the simulated

cell volume (VC
S Xtot).

Supporting Information

Figure S1 Sensitivity analysis of initial conditions and
model parameters. (A) Relative local sensitivity of model

simulations (for cultivation and perturbation experiments) to a 1%
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perturbation in glycolysis parameters (Table 2), parameters of the

segregated cell growth model (Rehberg et al., 2013), culture

conditions growth status and metabolic status (Table 1). (B)

Relative local sensitivity of model simulations (for cultivation and

perturbation experiments) to a 1% perturbation of single glycolysis

parameter.

(TIF)

Figure S2 Adjusting the segregated growth model
established previously [14] to MDCK cell proliferation
in 6-well plates using DMEM medium. Cell number (A),

mean cell diameter (B) and extracellular glucose concentration (C)

during MDCK cell cultivations in 6-well plates and DMEM

medium with 2.5 mmol L21 extracellular glucose. Data (e) and

error bars represent mean and standard deviation of three wells.

Lines represent the respective simulation result based on the

modifications described in supporting information 4. The

intermediate growth phase (95%–5% proliferating cells) is

indicated as grey bar.

(TIF)

Figure S3 Prediction of ribose 5-phosphate and uridyl
diphosphate glucose during cultivation of MDCK cells in
DMEM with limited extracellular glucose. Ribose 5-

phosphate (A) and uridyl diphosphate glucose (B) concentrations

during MDCK cell cultivations in 6-well plates and DMEM

medium with 3 mmol L21 extracellular glucose. Data (e) and

error bars represent mean and standard deviation of three wells.

Dashed lines are the limit of quantification (LOQ; data below

LOQ marked in grey). Lines represent the respective simulation

result based on the parameters of Table 1 and experiment-specific

parameters of Table 2. The intermediate growth phase (95%–5%

proliferating cells) is indicated as grey bar.

(TIF)

Figure S4 Flow of information and link of experimental
data. 1) Transfer of growth status and culture condition occurring

in Cult1 at 200 h of cultivation to determine the metabolic status

by steady state simulation. 2) Transfer of the metabolic steady state

to the simulation of the Cult1–3 and the Pred. simulation. 3) At

individual time points t*, the metabolic and growth status of Cult1

is transferred to the respective simulation of the Lim1–3

experiments. 4) Simulation of pulse response with initial conditions

determined with the Lim3 simulation. Green background:

Coupling of segregated cell growth model and structured model

of glycolysis; red background: coupling of adjusted segregated cell

growth model, which renders cell growth under limited GLCx

concentrations, to the structured model of glycolysis.

(TIF)

Figure S5 Adenosine-based nucleotide pools during
perturbation experiments. ATP (A–C), ADP (D–F) and

AMP (G–I) concentrations in three independent perturbation

experiments with MDCK cells in 6-well plates. Cells, originating

from a cultivation experiment, are limited in extracellular

nutrients by removal of medium and addition of phosphate

buffered saline (PBS), shown in the first column (Lim1, A,D,G) and

second column (Lim2, B,E,H). After two hours of incubation, PBS

was exchanged by fresh medium (Pulse, C,F,I). Data (#) and

error bars represent mean and standard deviation of three wells

while dashed lines are the limit of quantification.

(TIF)

File S1 SBML model for yeast glycolysis adapted to
simulate a glucose limitation scenario.

(XML)

Model S1 Segregated cell growth model coupled to the
structured model of glycolysis for simulation of Cult1.
The model is provided as .txt and can be computed with the

Systems Biology Toolbox 2 (see section ‘‘Computation’’).

(TXT)

Model S2 Structured model of glycolysis for simulation
of Lim1. The model is provided as .txt and can be computed with

the Systems Biology Toolbox 2 (see section ‘‘Computation’’).

(TXT)

Model S3 Structured model of glycolysis for simulation
of Lim1. The model is provided in the SBML format level 2

version 4.

(XML)

Supporting Information S1 Sensitivity analysis of initial
conditions and model parameters.

(DOCX)

Supporting Information S2 Constraints for metabolite
exchange with the PPP.

(DOCX)

Supporting Information S3 Detailed description of en-
zyme kinetics.

(DOCX)

Supporting Information S4 Predicting the glycolytic
activity during cell growth in DMEM medium.

(DOCX)

Supporting Information S5 Flow of information and
initial conditions for parameter fitting.

(DOCX)

Supporting Information S6 Nomenclature for parameter
of the segregated cell growth model.

(DOCX)
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