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Efficient variance components analysis across
millions of genomes
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While variance components analysis has emerged as a powerful tool in complex trait

genetics, existing methods for fitting variance components do not scale well to large-scale

datasets of genetic variation. Here, we present a method for variance components analysis

that is accurate and efficient: capable of estimating one hundred variance components on a

million individuals genotyped at a million SNPs in a few hours. We illustrate the utility of our

method in estimating and partitioning variation in a trait explained by genotyped SNPs (SNP-

heritability). Analyzing 22 traits with genotypes from 300,000 individuals across about 8

million common and low frequency SNPs, we observe that per-allele squared effect size

increases with decreasing minor allele frequency (MAF) and linkage disequilibrium (LD)

consistent with the action of negative selection. Partitioning heritability across 28 functional

annotations, we observe enrichment of heritability in FANTOM5 enhancers in asthma,

eczema, thyroid and autoimmune disorders.
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Variance components analysis1 has emerged as a versatile
tool in human complex trait genetics, enabling studies of
the genetic contribution to variation in a trait2 as well as

its distribution across genomic loci3,4, allele frequencies3, and
functional annotations3,5,6. There is increasing interest in apply-
ing methods for variance components analysis to large-scale
genetic datasets with the goal of uncovering novel insights into
the genetic architecture of complex traits4,7. A prominent
example of the utility of these methods is in the estimation of
SNP heritability (h2SNP)

2, the variance in a trait explained by a
given set of genotyped SNPs. Variance components methods for
estimating SNP heritability typically assume a genetic variance
component that represents the fraction of phenotypic variation
explained by the SNPs included in the study and a residual var-
iance component. Recent studies have shown that these “single-
component” methods yield biased estimates of SNP heritability
due to the linkage disequilibrium (LD) and minor allele frequency
(MAF)-dependent architecture of complex traits8,9. On the other
hand, flexible models with multiple variance components3,4 that
allows for SNP effects to vary with MAF and LD, have been
shown to yield more accurate SNP heritability estimates8,9.
Recent work has shown that SNP heritability can be estimated
with minimal assumptions about the genetic architecture10;
however, this method cannot partition heritability across cate-
gories of SNPs of interest such as functional or population
genomic annotations. Partitioning heritability requires fitting
multiple variance components, thus creating the need for accurate
and scalable methods that can fit tens or even hundreds of var-
iance components to large-scale genomic data to obtain accurate
and novel insights into genetic architecture.

While the ability to fit flexible variance component models to
large-scale datasets is essential to obtain accurate and novel
insights into genetic architecture, fitting such models requires
scalable algorithms. Approaches for estimating variance compo-
nents typically search for parameter values that maximize the
likelihood or the restricted maximum likelihood (REML)11.
Despite a number of algorithmic improvements2,4,12–16, com-
puting REML estimates of the variance components on data sets
such as the UK Biobank17 (≈500,000 individuals genotyped at
nearly one million SNPs) remains challenging. The reason is that
methods for computing these estimators typically perform repe-
ated computations on the input genotypes.

We propose a method that can jointly estimate multiple var-
iance components efficiently. Our proposed method, RHE-mc, is a
randomized multi-component version of the classical
Haseman–Elston regression for heritability estimation18,19. RHE-
mc builds on our previously proposed method, RHE-reg20, which
uses a randomized algorithm to estimate a single variance com-
ponent. RHE-mc can simultaneously estimate multiple variance
components, as well as variance components associated with
continuous and overlapping annotations. Further, unlike REML
estimation algorithms, RHE-mc requires only a single pass over
the input genotypes that results in a highly memory efficient
implementation. The resulting computational efficiency permits
RHE-mc to jointly fit 300 variance components in less than an
hour on a dataset of about 300,000 individuals and 500,000 SNPs,
about two orders of magnitude faster than state-of-the-art meth-
ods. On a dataset of one million individuals and one million SNPs,
RHE-mc can fit 100 variance components in about 12 h.

To demonstrate its utility, we first show that RHE-mc can
accurately estimate genome-wide and partitioned SNP heritability
under realistic genetic architectures (the functional dependence of
SNP effect sizes on MAF and LD). We applied RHE-mc to 22
traits measured across 291,273 individuals genotyped at 459,792
common SNPs (MAF > 1%) in the UK Biobank to obtain esti-
mates of genome-wide SNP heritability. We then used RHE-mc

to partition heritability for the 22 traits across seven million
imputed SNPs (MAF > 0.1%) into 144 bins defined based on
MAF and LD. We observe that the per-allele squared effect size
tends to increase with lower MAF and LD across the traits con-
sidered. Finally, we partitioned heritability for SNPs with MAF >
0.1% across 28 functional annotations. We recover previously
reported enrichment of heritability in annotations corresponding
to conserved regions7 and also document enrichment of herit-
ability in FANTOM5 enhancers in eczema, asthma, autoimmune
disorders, and thyroid disorders.

Results
Methods overview. RHE-mc aims to fit a variance component
model that relates phenotypes y measured across N individuals to
their genotypes over M SNPs X:

yjϵ; β1; ¼ ; βK ¼
XK
k¼1

Xkβk þ ϵ

ϵ � Dð0; σ2e INÞ

βk � D 0;
σ2k
Mk

IMk

� �
; k 2 f1; ¼ ;Kg

where Dðμ;ΣÞ is an arbitrary distribution with mean μ and cov-
ariance Σ. Each of the M SNPs is assigned to one of K non-
overlapping categories so that Xk is the N ×Mk matrix consisting
of standardized genotypes of SNPs belonging to category k (note
that the expected heritability is constant within categories when
we use standardized genotypes). βk denotes the effect sizes of
SNPs assigned to category k which are drawn from a zero-mean

distribution with covariance parameter
σ2k
Mk

IMk
(the variance

component of category k) while σ2e is the residual variance.
In this model, the genome-wide SNP heritability is defined as:

h2SNP ¼
PK

k¼1
σ2kPK

k¼1
σ2k þ σ2e

while the SNP heritability of category k is

defined as: h2k ¼ σ2kPK

k¼1
σ2k þ σ2e

. By choosing categories to represent

genomic annotations of interest, e.g., chromosomes, allele
frequencies, or functional annotations, these models can be used
to estimate the phenotypic variation that can be attributed to the
relevant annotation.

The key inference problem in this model is the estimation of the
variance components: ðσ21; ¼ ; σ2K ; σ

2
eÞ. These parameters are

typically estimated by maximizing the likelihood or the restricted
likelihood. Instead, RHE-mc uses a scalable method-of-moments
estimator, i.e., finding values of the variance components such that
the population moments match the sample moments18,19,21–23.
RHE-mc uses a randomized algorithm that avoids explicitly
computing N ×N genetic relatedness matrices that are required by
method-of-moments estimators. Instead, it operates on a smaller
matrix formed by multiplying the input genotype matrix with a
small number of random vectors (see “Methods” section). The
application of a randomized algorithm for SNP heritability
estimation using a single variance component was proposed in
our previous work, RHE-reg20. RHE-mc extends our previous
work in several directions. RHE-mc can efficiently fit multiple
variance components (both non-overlapping and overlapping)
and can also handle continuous annotations. The resulting
algorithm has scalable runtime as it only requires operating on
the genotype matrix one time. Further, RHE-mc uses a streaming
implementation that does not require all the genotypes to be
stored in memory leading to scalable memory requirements
(Supplementary Notes). Finally, RHE-mc uses an efficient
implementation of a block Jackknife to estimate standard errors
with little computational overhead (Supplementary Notes).
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Accuracy of genome-wide SNP heritability estimates in simu-
lations. We assessed the accuracy of RHE-mc in estimating
genome-wide SNP heritability as previous attempts at estimating
SNP heritability have been shown to be sensitive to assumptions
about how SNP effect size varies with MAF and LD8. Starting
with genotypes of M= 593,300 array SNPs over N= 337,205
unrelated white British individuals in the UK Biobank, we
simulated phenotypes according to 64 MAF and LD-dependent
architectures by varying the SNP heritability, the proportion of
variants that have non-zero effects (causal variants or CVs), the
distribution of CVs across minor allele frequencies (CVs dis-
tributed across all minor allele frequency bins or CVs restricted to
either common or low-frequency bins), and the form of coupling
between the SNP effect size and MAF as well as LD. For RHE-mc,
we partitioned the SNPs into 24 variance components based on
six MAF bins as well as four LD bins (see “Methods” section).
The key parameter in applying RHE-mc is the number of random
vectors B which we set to 10. RHE-mc estimates were relatively
insensitive when we increased the number of random vectors B to
100 (Supplementary Figs. 1 and 2, Supplementary Table 1).
Across these 64 architectures, RHE-mc is relatively unbiased (a
two-sided t-test of the hypothesis of no bias is not rejected across
any of the architectures at a p-value < 0.05) with the largest
relative bias observed to be 0.5% of the true SNP heritability
(Supplementary Fig. 3). We used a block Jackknife (number of
blocks= 100) to estimate the standard errors of RHE-mc and
confirmed that the estimated standard errors are close to the true
SE (Supplementary Table 2).

We compared the accuracy of RHE-mc to state-of-the-art
methods for heritability estimation that can be applied to large
datasets (across architectures where the true SNP heritability was
fixed at 0.5). These methods, LDSC24, SumHer25, S-LDSC26, and
GRE10, all leverage summary statistics while RHE-mc requires
individual genotype data. We found that estimates from the
summary-statistic methods tend to be sensitive to the underlying
genetic architecture: across 16 architecture relative biases range
from −31% to 27% for LDSC, −27% to 5% for S-LDSC, and
−5% to 9% for SumHer (Fig. 1). We also compared to a recently
proposed method (GRE10) that only estimates genome-wide SNP
heritability (without partitioning by MAF/LD) and observed that
relative biases ranged from 1% to 1.4% for GRE and from −1.5%
to 0.5% for RHE-mc. We also considered architectures in which
only rare variants are causal and found RHE-mc is accurate
relative to other methods (Supplementary Fig. 4). These results
further emphasize that RHE-mc can accurately estimate SNP-
heritability through fitting multiple variance components.

We compared RHE-mc to the state-of-the-art REML-based
variance component estimation method, GCTA-mc (multi-
component GREML8,27,28) and to exact multi-component
Haseman–Elston Regression (HE-mc) as implemented in
GCTA27. We ran each of these methods by partitioning SNPs
into 24 variance components (6 MAF bins by 4 LD bins, see
“Methods” section). To make these experiments computationally
feasible, we simulated phenotypes starting from a smaller set of
genotypes (M= 593,300 array SNPs and N= 10,000 white British
individuals). Across 16 architectures where the true SNP
heritability was fixed at 0.25, the relative biases for RHE-mc
range from −3.2% to 3.6%, and from −3.2% to 5% for GCTA-
mc (Fig. 2). On average, RHE-mc has standard errors that are 1.1
times larger than GCTA-mc (which range from 0.97 to 1.24) and
1.08 times larger than HE-mc (which range from 1.00 to 1.21).

Accuracy of heritability partitioning in simulations. We also
evaluated the accuracy of RHE-mc in partitioning SNP herit-
ability in both small-scale (M= 593,300 SNPs, N= 10,000

individuals) (Supplementary Fig. 5) and large-scale settings (M=
593,300 SNPs, N= 337,205 individuals) (see Supplementary
Fig. 6). For these experiments, we restrict our attention to
architectures for which the CVs are chosen to lie within a narrow
range of MAF. Since the variance components correspond to bins
of MAF and LD, a subset of the variance components would have
no causal SNPs and hence have a heritability of zero. We assess
the accuracy of estimates of heritability aggregated over these
components (termed the non-causal bin) as well as the herit-
ability aggregated over the remaining genetic components
(termed the causal bin). For example, variance components that
correspond to MAF∈ [0.01, 0.05] would be included in the causal
bin for an architecture that restricts the MAF of CVs to lie in the
range [0.01, 0.05]. For the small-scale simulations, we compared
RHE-mc to GCTA-mc. We ran both methods by partitioning the
SNPs into 24 variance components based on six MAF bins as well
as four LD bins defined by quartiles of the measure of LDAK
weight at a SNP (see “Methods” section). Across the genetic
architectures tested, estimates of heritability within each of the
causal and non-causal bins are highly concordant between RHE-
mc and GCTA-mc (Supplementary Fig. 5, Supplementary
Table 3): for the causal bin, the relative bias ranges from −4% to
0.4% for RHE-mc and −3.6% to 2% for GCTA-mc while, for the
non-causal bin, the bias ranges from 0 to 0.7% for RHE-mc and 0
to 1.4% for GCTA-mc (Supplementary Table 3). For the large-
scale settings, RHE-mc remains accurate: the relative bias ranges
from −2.6% to 3.2% (causal bin) and −0.5% to 0.2% (non-causal
bin) over the genetic architectures considered (Supplementary
Fig. 6, Supplementary Table 4).

Heritability partitioning has been used to estimate heritability
attributed to functional genomic annotations7. However, some of
these annotations (such as FANTOM5 enhancers) are quite small
covering <1% of the genome. We explored the ability of RHE-mc
to accurately estimate heritability as a function of the size of the
annotation. To this end, we performed simulations using N=
291,273 unrelated white British individuals and M= 459,792
common SNPs. We defined eight annotations (four MAF bins
and two LD bins) in which we fixed the enrichment of a selected
bin and varied the proportion of SNPs in the selected category.
RHE-mc obtained accurate estimates of enrichment even when
the selected bin only contained 0.4% of the genome-wide SNPs
(comparable to the size of FANTOM5 enhancers). RHE-mc
estimates are well-calibrated: when the bin has zero enrichment,
RHE-mc rejected the null hypothesis of no enrichment in 5% of
the simulations, while attaining high power to reject the null
hypothesis even when the bin contained <1% of the SNPs
(Supplementary Notes).

Computational efficiency. We benchmarked the runtime and
memory usage of RHE-mc as a function of number of individuals,
SNPs and variance components (Fig. 3, Table 1). We ran RHE-
mc with B= 10 random vectors and 22 variance components
where each chromosome forms a distinct component. On a
dataset of ≈300,000 individuals and ≈500,000 SNPs, RHE-mc
can fit 22 variance components in less than an hour and ≈300
variance components (corresponding to bins of size 10Mb) with
little increase in its runtime. On a dataset of one million indivi-
duals and one million SNPs, RHE-mc can fit 100 variance com-
ponents in a few hours. Further, due to its use of a streaming
implementation that only requires the genotypes to be operated
on once, the memory requirement of RHE-mc is modest: all
experiments required <60 GB. We compared the run time and
memory usage of RHE-mc with REML-based methods (GCTA27

and BOLT-REML4) on the UK Biobank genotypes consisting of
around 500,000 SNPs over varying sample sizes and observed that
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Fig. 1 Comparison of estimates of genome-wide SNP heritability from RHE-mc with LDSC, GRE, S-LDSC, and SumHer in large-scale simulations (N=
337,205 unrelated individuals, M= 593,300 array SNPs). a We compared methods for heritability estimation under 16 different genetic architectures.
We set true heritability to 0.5 and varied the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a= 0 indicates no coupling
with MAF and a= 0.75 indicates coupling with MAF), and the effect of local LD on effect size (b= 0 indicates no dependence on LDAK weights and b= 1
indicates dependence on LDAK weights) (see “Methods” section). Each boxplot represents estimates from 100 simulations. b Relative bias of each method
(as a percentage of the true h2) across 16 distinct MAF-dependent and LD-dependent architectures. Each boxplot contains 16 points; each point is the
relative bias estimated from 100 simulations under a single genetic architecture. Points and error bars represent the mean and ±2 SE. In a and b, boxplot
whiskers extend to the minimum and maximum estimates located within 1.5× interquartile range (IQR) from the first and third quartiles, respectively.
Here, we run RHE-mc using 24 bins formed by the combination of six bins based on MAF as well as four bins based on quartiles of the LDAK score of a
SNP (see “Methods“ section). We run S-LDSC with only 10 MAF bins (see Supplementary Table 5). To do a fair comparison, for every method, we
computed LD scores and LDAK weights by using in-sample LD, and in all simulations we aim to estimate the SNP-heritability explained by the same set of
M SNPs.
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Fig. 2 Comparison of SNP heritability estimates from RHE-mc with GCTA-mc (GCTA with multiple variance components) and HE-mc (HE with multiple
variance components) (N = 10,000 unrelated individuals, M= 593,300 array SNPs). In a–d we compared heritability estimates from these methods
under 16 different genetic architectures. We varied the MAF range of causal variants (MAF of CV), the coupling of MAF with effect size (a), and the effect
of local LD on effect size (b= 0 indicates no dependence on LDAK weights and b= 1 indicates dependence on LDAK weights (see “Methods” section). We
ran 100 replicates where the true heritability of the phenotype is 0.25. We run RHE-mc, HE-mc, and GCTA-mc using 24 bins formed by the combination of
six bins based on MAF as well as four bins based on quartiles of the LDAK score of a SNP (see “Methods” section). Across all different genetic
architectures, the relative biases range from −3.2% to 3.6% for RHE-mc, and from −3.2% to 5% for GCTA-mc, and from −2.6% to 1.45% for HE-mc. On
average, RHE-mc has SEs that are 1.1 and 1.08 times larger than GCTA-mc and HE-mc, respectively. Black points and error bars represent the mean and ±2
SE. Each boxplot represents estimates from 100 simulations. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5×
interquartile range (IQR) from the first and third quartiles, respectively. The SEs are computed from 100 simulations (note that GCTA-mc did not run
successfully on all 100 simulations).
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RHE-mc achieves several orders-of-magnitude reduction in
runtime. Summary-statistic methods such as S-LDSC requires
pre-computed inputs which depend on the runtimes of other
softwares making a direct comparison of speed difficult. Thus, we
have restricted our comparison to individual-level methods where
the benchmarking can be done in a comparable manner.

Estimating total SNP heritability in the UK Biobank. We
applied RHE-mc to estimate genome-wide SNP heritability for 22
complex traits (6 quantitative and 16 binary traits) measured in
the UK Biobank. We analyzed N= 291,273 unrelated white
British individuals and M= 459,792 SNPs genotyped on the UK
Biobank Axiom array (see “Methods” section). We ran RHE-mc
with B= 10 and with SNPs divided into eight bins based on two
MAF bins (0.01 ≤MAF < 0.05, MAF ≥ 0.05) and quartiles of the
LD-scores. We compared the estimates from RHE-mc to those
from LDSC, S-LDSC, SumHer, and GRE. Restricting our analysis
to 18 traits for which the point estimate of genome-wide SNP
heritability from RHE-mc is >0.05, the estimates from S-LDSC,
GRE, SumHer, and LDSC were on average 2.5%, 10%, 25%, and
67% higher than RHE-mc (Fig. 4). Relative to the simulation
results, the estimates from S-LDSC are generally consistent with
those from RHE-mc. This is likely due to the fact that, in simu-
lations, our application of S-LDSC used only MAF bins. On the

other hand, in real data, we used S-LDSC with the recommended
baseline-LD annotations (including functional annotations).

We then applied RHE-mc to estimate genome-wide heritability
attributable to imputed variants. The genome-wide estimates of
SNP heritability from RHE-mc on imputed SNPs (MAF > 1%) are
concordant with the estimates from array SNPs (2.8% higher on
average). We then analyzed M= 7,774,235 imputed genotypes with
MAF > 0.1% using 144 bins formed by 4 LD bins and 36 MAF bins
(see “Methods” section). Genome-wide SNP heritability estimates
from RHE-mc on imputed SNPs (MAF > 0.1%) are 11.4% higher
than RHE-mc on imputed SNPs (MAF > 1%) (Fig. 4, Supplemen-
tary Fig. 7). Following previous work10, we have removed the MHC
region to enable a systematic comparison since the estimation of LD
in the MHC region can be challenging; it would be of interest to
compare methods when the MHC is included.

Partitioning SNP heritability across allele frequency and LD
bins. We used RHE-mc to partition SNP heritability of 22
complex traits across MAF and LD bins. We analyzed M=
7,774,235 imputed SNPs with MAF > 0.1%. We used 144 bins
formed by 4 LD bins and 36 MAF bins (see “Methods” section).
We compute the per-allele squared effect size of SNPs in bin k as

h2k
2f kð1� f kÞMk

, where h2k is the heritability estimated in bin k, fk is the

mean MAF in bin k, and Mk is the number of SNPs in bin k. We
observe that allelic effect size increases with lower MAF and LD.
For height, in the lowest quartile of LD scores, SNPs with MAF ≈
0.1% have allelic effect sizes ≈27x ± 8 larger than SNPs with
MAF ≈ 50%. Similarly, among SNPs with MAF ≈50%, SNPs in
the lowest quartile of LD scores have allelic effect sizes ≈5x ± 1
larger than SNPs in the highest quartile (Fig. 5 for height; other
traits in Supplementary Fig. 9). While these trends have been
observed in previous studies9,29,30, the ability of RHE-mc to
jointly fit multiple variance components allows us to estimate
effect sizes at SNPs with MAF as low as 0.1%. We caution that
negative heritability estimates in bins of lowest MAF and high LD
score could arise due to one or more of the following factors: low
number of SNPs in this bin (we did not constrain our variance
components estimates to be non-negative), the inadequacy of the
assumed heritability model, and errors in the imputed genotypes
used for the analysis.

Partitioning heritability by functional annotations. The ability
of RHE-mc to estimate variance components associated with a
large number of overlapping annotations enables us to explore
the contribution of a variety of functional genomic annotations to
trait heritability using individual-level data in the UK Biobank.
We applied RHE-mc to jointly partition heritability of 22 com-
plex traits across 28 functional annotations as defined in
ref. 7 restricting our analysis to N= 291,273 unrelated white
British individuals and M= 5,670,959 imputed SNPs (we restrict
to SNPs with MAF > 0.1% which are also present in 1000 Gen-
omes Project). We grouped the traits into five categories (auto-
immune, diabetes, respiratory, anthropometric, cardiovascular);
for a representative trait from each category, we report enrich-
ment of each of the 28 functional annotations in Fig. 6 (see
“Methods” section; for all traits see Supplementary Fig. 8). Our
results are largely concordant with previous studies7,9: we observe
enrichment of heritability across traits in conserved regions (Z-
score > 3 in 15 traits). We also observe enrichment of heritability
at FANTOM5 enhancers (labeled Enhancer_Andersson in Fig. 6)
in asthma, eczema, autoimmune disorders (broad), hypothyr-
oidism, and thyroid disorders (Z-score > 3) even though these
annotations cover only 0.4% of the analyzed SNPs.

Fig. 3 Comparison of running time of RHE-mc, GCTA-mc, and BOLT-
REML.We compared runtime of RHE-mc, GCTA-mc, and BOLT-REML with
increasing sample size N (for a fixed number of SNPs M= 459,792 and
components K= 22).

Table 1 Comparison of running time of RHE-mc, GCTA-mc,
and BOLT-REML.

Parameters Running time (h)

N M K RHE-mc GCTA-mc BOLT-
REML

10,000 459,792 22 <1 1.3 1
100,000 459,792 22 <1 – 40
291,273 459,792 22 <1 – 162
291,273 459,792 300 <1 – –
291,273 4,824,392 8 3.2 – –
1,000,000 1,000,000 8 3 – –
1,000,000 1,000,000 100 12.4 – –

Here M, N, and K are the number of SNPs, individuals, and variance components, respectively.
RHE-mc can run efficiently even on datasets with one million individuals and SNPs as well as
efficiently computing hundreds of variance components. All comparisons were performed on an
Intel(R) Xeon(R) CPU 2.10 GHz server with 128 GB RAM.
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Discussion
We have presented RHE-mc, an algorithm that can efficiently
estimate multiple variance components on large-scale genotype
data. In light of increasing evidence for SNP effect sizes that vary

as a function of covariates, such as MAF and LD and the bias
associated with methods that fit only a single variance compo-
nent8, the ability to define flexible models endowed with multiple
variance components is important to obtain unbiased estimates of
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We ran S-LDSC with baseline-LD model. For every method, LD scores or LDAK weights are computed using in-sample LD among the SNPs, and we aim to
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fundamental quantities such as SNP heritability. We confirm that
RHE-mc yields accurate genome-wide SNP heritability estimates
under diverse genetic architectures. In applications to 22 complex
traits in the UK Biobank, RHE-mc yields heritability estimates on
array SNPs that are lower on average relative to S-LDSC and
SumHer. We have explored the utility of RHE-mc in heritability
partitioning analyses. These analyses show that per-allele squared
effect sizes tend to increase with a decrease in MAF and LD
consistent with previous studies9. We also partitioned heritability
across functional annotations to reveal enrichment of heritability
at FANTOM5 enhancers in specific traits such as asthma and
eczema.

We discuss several limitations of RHE-mc as well as directions
for future work. First, the method-of-moments estimator
underlying RHE-mc tends to yield slightly larger standard errors,
on average, relative to REML estimators. The relative perfor-
mance of the two methods likely depends on a number of aspects
of the study design such as sample size, number of SNPs, the LD
structure, relatedness patterns, and the underlying genetic
architecture. Nevertheless, our method is designed to be applic-
able to massive datasets for which the heritability estimates are
relatively precise. Developing scalable variance components esti-
mators that are as efficient as REML-based methods is an
important direction for future work. Second, this work has pri-
marily explored the partitioning of heritability across discrete
annotations. While we have shown how the methodology can be
extended to continuous-valued annotations (see “Methods” sec-
tion and Supplementary Notes), it would be of interest to explore
variation in trait heritability as a function of the value of an
annotation. On the other hand, the ability of RHE-mc to fit many
annotations allows the annotation to be divided into a sufficiently

large number of bins. Third, we have applied RHE-mc to binary
traits available in the UK Biobank treating these traits as con-
tinuous. Methods that explicitly model binary traits as well as the
underlying ascertainment involved in case-control studies are
likely to lead to more accurate heritability estimates23,31. For
example, the PCGC method23 is an extension of HE regression
and it would be of interest to develop a scalable randomized
PCGC estimator. Fourth, RHE-mc requires access to individual-
level genotype and phenotype data. Methods that only require
summary statistic data (GRE10, LDSC24, and SumHer25) have the
advantage of being applicable to datasets where acquiring access
to individual-level data can be challenging10. Finally, our method
could potentially lead to improvements in association testing,
trait prediction, and understanding of polygenic selection.

Methods
Multi-component linear mixed model. RHE-mc attempts to fit the following
variance component model:

yjϵ; β1; ¼ ; βK ¼
XK
k¼1

Xkβk þ ϵ

ϵ � Dð0; σ2e INÞ

βk � D 0;
σ2k
Mk

IMk

� �
; k 2 f1; ¼ ;Kg

ð1Þ

Here y is a N-vector of centered phenotypes and each of the M SNPs is assigned to
one of K non-overlapping categories. Each category k contains Mk SNPs, k∈
{1, …, K}, ∑kMk=M. Xk is a N ×Mk matrix, where xk,n,m denotes the standardized
genotype for individual n at SNP m in category k. We have ∑nxk,n,m= 0 andP

nx
2
k;n;m ¼ N for m∈ {1, 2, …, Mk}. βk denote the Mk-vector of SNP effect sizes

for the kth category where Dðμ;ΣÞ is an arbitrary distribution with mean μ and
covariance Σ. In the above model, σ2e is the residual variance, and σ2k is the variance
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Fig. 6 Enrichment of heritability across 28 functional annotations. We applied RHE-mc to N= 291,273 unrelated white British individuals and M=
5,670,959 imputed SNPs (MAF > 0.1% and present in 1000 Genomes Project). SNPs were partitioned based on 28 functional annotations that were
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component of the kth category. The total SNP heritability is defined as

h2SNP ¼
PK

k¼1 σ
2
kPK

k¼1 σ
2
k þ σ2e

ð2Þ

The SNP heritability of category k is defined as

h2k ¼
σ2kPK

k¼1 σ
2
k þ σ2e

; k 2 f1; ¼ ;Kg ð3Þ

Enrichment in bin k is defined as

ek ¼
h2k=h

2
SNP

Mk=M
; k 2 f1; ¼ ;Kg ð4Þ

Method-of-moments for estimating multiple variance components. To esti-
mate the variance components, RHE-mc uses a Method-of-Moments (MoM)
estimator that searches for parameter values so that the population moments are
close to the sample moments32. Since E½y� ¼ 0, we derived the MoM estimates by
equating the population covariance to the empirical covariance. The population
covariance is given by

covðyÞ ¼ E½yyT� � E½y�E½yT� ¼
X
k

σ2kKk þ σ2e IN ð5Þ

Here Kk ¼ XkX
T
k

Mk
is the genetic relatedness matrix (GRM) computed from all SNPs

of kth category. Using yyT as our estimate of the empirical covariance, we need to
solve the following least-squares problem to find the variance components.

ð ~σ21; ¼ ; ~σ2K ;
~σ2e Þ ¼ argmin

ðσ21 ;¼ ;σ2K ;σ
2
e Þ
jjyyT �

X
k

σ2kKk þ σ2e I

 !
jj2F ð6Þ

The MoM estimator satisfies the following normal equations:

T b

bT N

� � ~σ2g

~σ2e

" #
¼ c

yTy

� �
ð7Þ

Here ~σ2g ¼
~σ21
..
.

~σ2K

264
375, T is a K × K matrix with entries Tk,l= tr(KkKl), k, l∈ {1, …, K},

b is a K-vector with entries bk= tr(Kk)=N (because Xks is standardized), and c is a
K-vector with entries ck= yTKky. Each GRM Kk can be computed in time
OðN2MkÞ and OðN2Þ memory. Given K GRMs, the quantities Tk,l, ck, k, l∈
{1, …, K}, can be computed in OðK2N2Þ. Given the quantities Tk,l, ck, the normal
Eq. (7) can be solved in OðK3Þ. Therefore, the total time complexity for estimating
the variance components is OðN2M þ K2N2 þ K3Þ.

RHE-mc: Randomized estimator of multiple variance components. The key
bottleneck in solving the normal Eq. (7) is the computation of Tk,l, k, l∈ {1, …, K}
which takes OðN2MÞ. Instead of computing the exact value of Tk,l, we use an
unbiased estimator of the trace33 based on the following identity: for a given N ×N
matrix C, zTCz is an unbiased estimator of tr(C) (E[zTCz]= tr[C]), where z be a
random vector with mean zero and covariance IN. Hence, we can estimate the
values Tk,l, k, l∈ {1, …, K} as follows:

Tk;l ¼ trðKkK lÞ � cTk;l ¼
1
B

1
MkMl

X
b

zTbXkX
T
kXlX

T
l zb ð8Þ

Here z1, …, zB are B independent random vectors with zero mean and covariance
IN. We draw these random vectors independently from a standard normal dis-
tribution. Computing Tk,l using the unbiased estimator involves four multi-
plications of sub-matrices of the genotype matrix with a vector, repeated B times.
Therefore, the total running time for estimating the matrix T is OðNMBþ K2NBÞ.

Moreover, we can leverage the structure of the genotype matrix which only
contains entries in {0, 1, 2}. For a fixed genotype matrix Xk, we can improve the per
iteration time complexity of matrix–vector multiplication from OðNMÞ to
Oð NM

maxðlog 3N;log 3MÞÞ by using the Mailman algorithm34. Solving the normal equations

takes OðK3Þ time so that the overall time complexity of our algorithm is
Oð NMB

maxðlog 3ðNÞ;log 3ðMÞÞ þ K2ðK þ NBÞÞ.
RHE-mc uses a block Jackknife to estimate standard errors. In Supplementary

Notes, we show how the block Jackknife estimates can be computed with little
additional computational overhead. Further, we also show how covariates can be
efficiently included in the model (Supplementary Notes).

Multi-component LMM with overlapping annotations. RHE-mc can also be
applied in the setting where annotations overlap. Following ref. 7, the heritability of

SNPs belong to annotation k is defined as

h2k ¼
P

i2Sk
P

j:i2Sj
σ2j
MjPK

k¼1 σ
2
k þ σ2e

; k 2 f1; ¼ ;Kg ð9Þ

where Sk is the set of SNPs in kth annotation andMk= ∣Sk∣. Enrichment in bin k

is defined as ek ¼ h2k=h
2
SNP

Mk=M
.

Multi-component LMM with continuous annotations. We have described the
derivation of RHE-mc using binary annotations. Following ref. 29, we can extend
RHE-mc to support continuous-value annotations as follows:

yjϵ; β1; ¼ ; βK ¼
XK
k¼1

Xkβk þ ϵ

ϵ � Dð0; σ2e IN Þ

βk � D 0;
σ2k
Mk

diagðakÞ
� �

; k 2 f1; ¼ ;Kg

ð10Þ

This model is similar to the model in Eq. (1) except that here we assume that the
variance of effect sizes depend on continuous-valued annotation. Let ak be a Mk-
vector where ak,m is the value of kth annotation at SNP m (the elements of ak must
be non-negative). Let Sk be the set of SNPs belong to annotation k. In this model,
the SNP heritability of annotation k is defined as:

h2k ¼
P

i2Sk
σ2k
Mk

ak;iPK
k¼1

P
i2Sk

σ2k
Mk

ak;i þ σ2e
; k 2 f1; ¼ ;Kg ð11Þ

To estimate the variance components of this new model, we only need to replace Xk

with Xkdiagð ffiffiffiffiffi
ak

p Þ in Eq. (5) for every annotation k. We assessed the accuracy of
RHE-mc in estimating variance components with continuous annotation in Sup-
plementary Notes.

Simulations. We performed simulations to compare the performance of RHE-mc
with several state-of-the-art methods for heritability estimation that cover the
spectrum of methods that have been proposed.

We considered two simulation settings. In the large-scale simulation setting, we
simulated phenotypes for the full set of UK Biobank genotypes consisting of M=
593,300 array SNPs and N= 337,205 individuals. We obtained the individuals by
keeping unrelated white British individuals which are >3rd degree relatives
(defined as pairs of individuals with kinship coefficient <1/2(9/2))17, and removing
individuals with putative sex chromosome aneuploidy. The small-scale setting was
designed so that we could compare the accuracies of RHE-mc to REML methods.
In this setting, we simulated phenotypes from a subsampled set of genotypes from
the UK Biobank data genotypes used in large-scale simulation35. Specifically, we
randomly chose a subset of N= 10,000 individuals from the large-scale data so
that we have M= 593,300 array SNPs and N= 10,000 individuals. We simulated
phenotypes from genotypes using the following model which is used in refs. 8,10:

σ2m ¼ Scmw
b
m½f mð1� f mÞ�a

ðβ1; β2; ::; βmÞT � Nð0; diagðσ21; σ22; :::; σ2mÞÞ
yjβ � NðXβ; ð1� h2ÞIN Þ

ð12Þ

where S is a normalizing constant chosen so that
PM

m¼1 σ
2
m ¼ h2. Here h2∈ [0, 1],

a∈ {0, 0.75}, b∈ {0, 1}. βm, fm, and wm are the effect size, the minor allele
frequency, and LDAK score of mth SNP, respectively. Let cm∈ {0, 1} be an
indicator variable for the causal status of SNP m. The LD score of a SNP is defined
to be the sum of the squared correlation of the SNP with all other SNPs that lie
within a specific distance, and the LDAK score of a SNP is computed based on local
levels of LD such that the LDAK score tends to be higher for SNPs in regions of low
LD36. The above models relating genotype to phenotype are commonly used in
methods for estimating SNP heritability: the GCTA Model (when a= b= 0 in Eq.
(12)), which is used by the software GCTA27 and LD Score regression (LDSC)24,
and the LDAK Model (where a= 0.75, b= 1 in Eq. (12)) used by software
LDAK36. Moreover, under each model, we varied the proportion and minor allele
frequency (MAF) of CVs. Proportion of CVs were set to be either 100% or 1%, and
MAF of CVs drawn uniformly from [0, 0.5] or [0.01, 0.05] or [0.05, 0.5] to consider
genetic architectures that are either infinitesimal or sparse, as well genetic
architectures that include a mixture of common and rare SNPs as well as ones that
consist of only rare or common SNPs. The true heritability were chosen from
{0.1, 0.25, 0.5, 0.8}.

We generated 100 sets of simulated phenotypes for each setting of parameters
and report accuracies averaged over these 100 sets.

Comparisons. For the large-scale simulations, we compared RHE-mc to methods
that rely on summary statistics for estimating heritability. Among the summary
statistic methods, LD score regression (LDSC)24 uses the slope from the GWAS χ2

statistics regressed on the LD scores to estimate heritability. Stratified LD score
regression (S-LDSC)7 is an extension of LDSC for partitioning heritability from
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summary statistics. SumHer is the summary statistic analog of LDAK25. We ran S-
LDSC with 10 binary MAF bin annotations defined such that each bin contains
exactly 10% of the typed SNPs; this is intended to mirror the 10 MAF bin anno-
tations in the S-LDSC “baseline-LD model”29 (see Supplementary Table 5). To run
SumHer, we used the LDAK software to compute the default “LDAK weights”
using in-sample LD 25,36,37. We then computed “LD tagging” using 1-Mb windows
centered on each SNP as recommended25. To do a fair comparison we computed
LD scores for LDSC, S-LDSC, GRE, and SumHer by using in-sample LD among
the M SNPs, and in all simulations we aim to estimate the SNP-heritability
explained by the same set of M SNP. We described the parameter settings of
summary statistic methods in Supplementary Notes.

For the small-scale simulations, we compared RHE-mc to GCTA-mc and HE-
mc27. GCTA-mc and HE-mc are the extensions of GCTA and HE to a multi-
component LMM, respectively, where the variance components are typically
defined by binning SNPs according to their MAF as well as local LD8. We ran
GCTA-mc, HE-mc and RHE-mc using 24 bins formed by the combination of six
bins based on MAF (MAF ≤ 0.01, 0.01 <MAF ≤ 0.02, 0.02 <MAF ≤ 0.03, 0.03 <
MAF ≤ 0.4, 0.04 <MAF ≤ 0.05, MAF > 0.05) as well as four bins based on quartiles
of the LDAK score of a SNP. We ran both GCTA-mc and RHE-mc allowing for
estimates of a variance component to be negative.

For comparisons of runtime, we compared RHE-mc to GCTA27 and BOLT-
REML4 which is a computationally efficient approximate method to compute the
REML estimator. We ran all methods with 22 components (one for each
chromosome). We also ran RHE-mc with ≈300 components (corresponding to 10
Mb bins) on the UK Biobank genotype (Supplementary Fig. 10). To create our
largest dataset, we replicate individuals from the UK Biobank and a subset of the
imputed SNPs to obtain a dataset with one million individuals and SNPs. We use
the latest versions of BOLT-REML (Version 2.3.2) and GCTA (Version 1.92.1) in
our comparison. All comparisons are performed on an Intel(R) Xeon(R) CPU 2.10
GHz server with 128 GB RAM.

Heritability estimates in the UK Biobank. We estimated SNP-heritability for 22
complex traits (6 quantitative, 16 binary) in the UK Biobank17. In this study, we
restricted our analysis to SNPs that were present in the UK Biobank Axiom array
used to genotype the UK Biobank. SNPs with >1% missingness and minor allele
frequency <1% were removed. Moreover, SNPs that fail the Hardy–Weinberg test
at significance threshold 10−7 were removed. We restricted our study to self-
reported British white ancestry individuals who are >3rd degree relatives defined
as pairs of individuals with kinship coefficient <1/2(9/2)17. Furthermore, we
removed individuals who are outliers for genotype heterozygosity and/or miss-
ingness. Finally, we obtained a set of N= 291,273 individuals and M= 459,792
SNPs to use in the real data analyses. We included age, sex, and the top 20 genetic
principal components (PCs) as covariates in our analysis for all traits. We used PCs
precomputed by the UK Biobank from a superset of 488,295 individuals. Addi-
tional covariates were used for waist-to-hip ratio (adjusted for BMI) and diastolic/
systolic blood pressure (adjusted for cholesterol-lowering medication, blood pres-
sure medication, insulin, hormone replacement therapy, and oral contraceptives).

Heritability partitioning. In our initial analysis, we removed SNPs with >1%
missingness and minor allele frequency <1%. Moreover, we removed SNPs that fail
the Hardy–Weinberg test at significance threshold 10−7 as well as SNPs that lie
within the MHC region (Chr6: 25–35Mb) to obtain 4,824,392 SNPs. We restricted
our study to self-reported British white ancestry individuals who are >3rd degree
relatives defined as pairs of individuals with kinship coefficient <1/2(9/2)17. Fur-
thermore, we removed individuals who are outliers for genotype heterozygosity
and/or missingness. Finally, we obtained 291,273 individuals . We partitioned SNPs
into eight bins based on two MAF bins (MAF ≤ 0.05, MAF > 0.05) and quartiles of
the LD-scores. For each bin k, we computed the heritability enrichment as the ratio
of the percentage of heritability explained by SNPs in bin k to the the percentage of
SNPs in bin k.

We considered an additional analysis in which we included SNPs with MAF >
0.1% resulting in N= 291,273 unrelated white British individuals and M=
7,774,235 imputed SNPs (MAF > 0.1%). We defined 144 bins based on 4 LD bins
and 36 MAF bins. The 4 LD bins are defined based on quartile of LD-scores, and 36
MAF bins are defined based on 9-quantile of the following four intervals: 0.001 ≤
MAF ≤ 0.01, 0.01 <MAF ≤ 0.05, 0.05 ≤MAF ≤ 0.10, 0.10 <MAF ≤ 0.50.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Access to the UK Biobank resource is available via application at: http://www.ukbiobank.
ac.uk.

Code availability
RHE-mc software is open-source software freely available at: https://github.com/
sriramlab/RHE-mc
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