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Abstract: 
Retrosynthesis is at the core of organic chemistry. Recently, the rapid growth of artificial intelligence (AI) has 
spurred a variety of novel machine learning approaches for data-driven synthesis planning. These methods learn 
complex patterns from reaction databases in order to predict, for a given product, sets of reactants that can be 
used to synthesise that product. However, their performance as measured by the top-N accuracy in matching 
published reaction precedents still leaves room for improvement. This work aims to enhance these models by 
learning to re-rank their reactant predictions. Specifically, we design and train an energy-based model to re-
rank, for each product, the published reaction as the top suggestion and the remaining reactant predictions as 
lower-ranked. We show that re-ranking can improve one-step models significantly using the standard USPTO-50k 
benchmark dataset, such as RetroSim, a similarity-based method, from 35.7 to 51.8% top-1 accuracy and Neural-
Sym, a deep learning method, from 45.7 to 51.3%, and also that re-ranking the union of two models’ suggestions 
can lead to better performance than either alone. However, the state-of-the-art top-1 accuracy is not improved by 
this method.
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Introduction
At the core of organic chemistry, retrosynthesis is the 
process of deriving simpler precursors from a target 
molecule. Arguably first used by Robert Robinson in the 
synthesis of tropinone [1] and then formalized by Corey 
[2, 3], retrosynthesis decomposes a target into simpler 
reactants at each step, repeating this process recursively 
until we obtain commercially-available starting materi-
als. However, retrosynthesis remains a challenging prob-
lem that can require years of experience and intuition to 
identify strategic disconnections for concise, practical 
routes. It can also be difficult to decide between multi-
ple possible routes. At each step, chemists need to con-
sider numerous factors from side reactions  and ease of 
synthesis to reactant availability, not to mention the ever-
expanding toolbox of reactions in the literature.

To help overcome these challenges, computer-aided 
synthesis planning (CASP) tools utilizing expert heuris-
tics have been developed since the 1960s [2, 4] and have 
matured into high-performing, experimentally validated 
software [5]. Still, their reliance on hand-crafted rules 
requires much human effort and limits their ability to 
keep up with the fast-growing toolbox of reactions. In 
contrast, the growth of artificial intelligence as applied 
to chemistry has spurred novel data-driven approaches 
that learn complex patterns from reaction databases 
with much less human effort, and whose full potential 
we believe is yet to be realized. For examples of data-
driven one-step retrosynthesis models, see NeuralSym 
[6], Seq2Seq [7], Retrosim [8], GLN [9], and MEGAN 
[10], all of which learn to predict a set of reactants given 
a product. As one-step models can be recursively applied 
to generate multi-step routes, here we focus on one-step 
retrosynthesis in line with these previous work.

Current data-driven methods can be broadly classified 
as template-based or template-free [11]. Template-based 
approaches, like NeuralSym [6], RetroSim [8] and GLN 
[9] use reaction “templates” [12] that specify the atoms 
and bonds at and around the reaction centre before and 
after the reaction. While chemically grounded, they 
require practitioners to strike a balance between the 
templates’ specificity and coverage, which is not trivial. 
To preserve generality across different molecules, algo-
rithmically-extracted templates tend to focus on just 
reaction centres, losing information about distant func-
tional groups which might cause unwanted reactions 
or be necessary for reactivity. Template-based methods 
also struggle to extrapolate to reactions beyond their 
template database [13]. In contrast, template-free meth-
ods learn the rules of retrosynthetic transformations 
implicitly from data without templates, aiming to achieve 
better generalization. Among these, sequence-based 
methods like Seq2Seq [7] and AutoSynRoute [14] treat 

retrosynthesis as a translation task from the language 
of products into the language of reactants, while graph-
based methods like G2Gs [15] and MEGAN [10] perform 
graph-edits to convert the product graph into reactant 
graphs. Despite their competitive performance, it can be 
difficult to rationalise template-free predictions due to 
their black-box nature. As template-based models allow 
chemists to retrieve published precedents to explain the 
model’s predictions, they offer greater interpretability 
than template-free methods. All in all, there is value in 
both types of methods, depending on the use-case.

Typically, these data-driven methods are evaluated in 
terms of top-N accuracy, which measures whether the 
published reaction is present within the model’s top N 
suggestions. Rather than inventing another approach 
from scratch, we wondered if we could improve exist-
ing one-step models by learning to re-rank their predic-
tions. Specifically, we were inspired by renewed interest 
in energy-based models (EBMs) [16, 17]. In our proposed 
formulation, the input to the EBM (Fig.  1) is a reaction 
(a product paired with a reactant-set suggested by a one-
step model), with the EBM assigning an energy to each 
reaction. The term “energy” is a formalism and does 
not refer to physical energy. Instead, it can be seen as 
an inverse score (the lower the better) that holistically 
measures a reaction’s “feasibility”, implicitly learnt from 
data. This captures factors like reactivity, reactant avail-
ability, functional group compatibility, and how strate-
gic the transformation is from a chemist’s perspective. 
For each product, the reactant-sets proposed are sorted 
from lowest to highest energy; the reactant-set assigned 
the lowest energy by the EBM is the EBM’s top re-ranked 
prediction. Therefore, a trained EBM can be used for a 
re-ranking step after each one-step prediction to improve 
the one-step model’s ability to recapitulate the “true” ret-
rosynthetic strategies in the literature.

It should be noted that re-ranking and verifying sug-
gestions for forward predictions and retrosynthesis have 
been studied in the past. Initial work done by Satoh and 
Funatsu [18] evaluates forward reactions using a rule-
based approach with pattern matching. More recently, 
Segler et  al. implemented an in-scope filter [19] by 
training a model on a simple binary classification task 
of whether a reaction is feasible. In this case, “positive” 
(feasible) reactions were contained in reaction databases, 
while “negative” (infeasible) reactions were artifcially 
generated through the use of forward reaction tem-
plates. Schwaller et  al. [20] alternatively used a trans-
formed-based forward prediction model [21] to score 
retrosynthetic suggestions in terms of their likelihood of 
producing the intended product, which was used in com-
bination with a modified version of the SCScore [22] to 
prioritize steps in the RXN synthesis planning tool [23]. 
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Our energy-based re-ranking approach inherently differs 
from these prior work as we use hard negatives sampled 
from trained one-step proposers.

Additionally, Sun et  al. [24] recently applied the EBM 
framework to retrosynthesis. Their main contributions 
include formulating an energy-based view of retrosyn-
thesis, showing theoretically that both template-based 
and template-free models can be re-framed as EBMs 
that output energy values. They also applied the con-
cept of re-ranking with a novel dual Transformer model 
to assign energies and re-rank reactant-sets proposed by 
another Transformer model, which did improve upon 
the proposing Transformer model’s performance, from 
an original 44.4% to 53.6% re-ranked top-1 accuracy. 
This dual Transformer considers not only the backward 
reaction direction (retrosynthesis), but also the forward 
direction, and learns to keep both directions in agree-
ment. To the best of our knowledge, while they did make 
use of generated negatives to train this dual variant, it 
was not for the purpose of explicitly training re-rankers 
like we do. Explicitly training the re-ranker on propos-
als from the proposing model might teach the re-ranker 
useful insights about what differentiates a good reactant 
proposal from a bad one. In addition, we explore a wider 
range of proposer and re-ranker combinations beyond 
just Transformer-based ones. Ultimately, their work posi-
tively suggests the potential of energy-based approaches 
to re-ranking and serves as inspiration for our work.

Methods
The energy‑based re‑ranking model
Motivated by statistical mechanics, EBMs describe the 
unnormalized probability distribution pθ of a variable 
of interest, x, using an energy function Eθ (x) : RD �→ R . 
Popularized in mid-2000s [25], EBMs regained inter-
est after recent works drawing theoretical connections 
between EBMs and the widespread tasks of classification 
and generation [16, 17]. Formally, we have:

EBMs are highly flexible as there is no restriction to the 
form of the energy function Eθ , allowing the user massive 
freedom to explore and utilize what best suits the prob-
lem at hand. We exploit this flexibility by exploring dif-
ferent architectures of deep neural networks that encode 
different molecular representations to parameterize Eθ . 
The ranking architecture choice for the ranking model 
can be chosen independently from the proposer model. 
Given an input reaction x, the output of our network, 
Eθ (x) , is its “energy”, a scalar value (the lower the better), 
which holistically represents that reaction’s feasibility. 
Also, notice that the denominator Z(θ) in Eq. 1, the par-
tition function, requires integrating Eθ over all possible 
input reactions in order to represent a meaningful prob-
ability distribution. However, this partition function is 
computationally intractable and it is necessary to simplify 

(1)pθ (x) =
e−Eθ (x)

Z(θ)
Z(θ) =

∫

x

e−Eθ (x)dx

Fig. 1  This work: re-ranking reactant suggestions proposed by existing one-step retrosynthesis models to recapitulate the published reaction
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it. In the context of retrosynthesis, for each product, 
a one-step model can generate up to K reactant-sets: 
{Rk}

K
k=1 . While only one of these can exactly match the 

published reactant-set (“ground-truth”, Rtrue ∈ {Rk}
K
k=1 ), 

given a well-trained one-step model, several of the 
remaining reactant-sets, {Rk}

K
k=1 \ Rtrue , could also be 

chemically viable options or could be similar to Rtrue (dif-
fering by the identity of a leaving group, for example). 
Therefore, we reasoned that we could simply use these 
remaining reactant-sets as “negatives” to approximate the 
intractable partition function Z(θ) . Similar simplification 
was also made in Sun et al’s energy-based modelling work 
[24] which shares our theoretical motivations but samples 
the “negatives” in a different way. They choose to assume 
that extracted reaction template sets are exhaustive and 
subsequently apply non ground-truth templates to gen-
erate negative samples, while we assume that relevant 
proposed reactants are exhaustive. We then empirically 
show in this work that such an approximation is sufficient 
for good retrosynthesis re-ranking performance.

Therefore, the EBM’s training objective is to describe 
the dataset of reactions to maximize the separation of 
energy between a positive reaction (a product paired with 
published reactant-set) against its associated negatives 
(the same product paired with non-published reactant-
sets proposed by the one-step model), by pushing down 
the energy of positive reactions while pushing up the 
energy of negative reactions. To achieve this, we design 
the following loss function, where for a product P, given a 
batch of top K reactant-set proposals {Rk}

K
k=1 from a one-

step model, we have:

The EBM can then be trained using this loss function 
through stochastic gradient descent and variants over 
mini-batches of data. This approach has conceptual simi-
larities to contrastive learning, where the decision to use 
negative examples from existing one-step models can be 
thought of as a form of hard negative sampling. Theo-
retically, the higher the K, the better the approximation 
to the true partition function Z(θ) , but in practice, we 
do not find any noticeable benefit in using K > 50 , and 
therefore use K = 50 for all experiments. We also note 
that because one-step models do not have a perfect top-
50 accuracy, the set of top K proposals will not always 
contain the published reactant-set. During training, 
we add the ground truth reactant-set Rtrue to the list of 
candidates if it is not already present. When re-ranking 
validation or test reactions, however, if Rtrue is not part 
of the top K proposals from the one-step model given a 

(2)Lbatch = − log pθ (Rtrue, {Rk}, P) = − log

(

e−Eθ (Rtrue ,P)

∑K
k=1 e

−Eθ (Rk ,P)

)

product, the EBM cannot re-rank correctly for this prod-
uct. To maximize the chances of Rtrue being present in 
{Rk}

K
k=1 , we use a larger K = 200 when re-ranking valida-

tion and test proposals.

Architecture choices for the energy‑based model
Due to the flexibility of the EBM framework, we enjoy 
great freedom in both input representation and architec-
ture. In this work, we focus on two machine-readable for-
mats to represent a chemical reaction, with each choice 
corresponding to a different architecture below. We 
explore both a feedforward backbone and a graph-based 
Message Passing Neural Network (MPNN) backbone. 
We did briefly experiment with a Transformer-based 
architecture, but did not observe good performance and 
further discuss it in Additional file 1: Section S4.3.3. For 
all three architectures, we elaborate on details of the net-
work structure and hyperparameter choice in the Addi-
tional file 1: Section S4.

Feedforward EBM (FF‑EBM)
We represent each molecule as a Morgan count finger-
print of length 16,384 with radius 3, and employ 3 input 
networks (Fig.  2, left). The first network receives the 
product fingerprint Pin . The second network receives 
the reactants fingerprint Rin ; because each reaction can 
have multiple reactants, we sum reactant fingerprints 
into a single, 16,384-length fingerprint. Lastly, the third 
network receives the “difference” fingerprint [26] Din , 
which captures fragments lost and gained during the 
reaction: Din = Pin − Rin . From these 3 input networks, 

we obtain 3 dense embeddings Pout , Rout , Dout . We con-
catenate these 3 vectors with their element-wise products 
Pout ∗ Rout , Rout ∗Dout and Pout ∗Dout to capture higher-
order interactions as inspired by Ref. [27], as well as the 
cosine similarity of product and reactants embeddings 
sim(Pout,Rout) =

Pout·Rout
�Pout��Rout�

 . Finally, we apply another 
feedforward network on this concatenated vector to out-
put the energy.

Graph EBM
A graph G contains nodes V corresponding to atoms and 
edges E that link nodes, corresponding to bonds. We 
adapt the graph representation from GraphRetro [28]. 
Each atom u has a feature vector xu containing chemical 
properties such as its element and charge. Similarly, each 
bond (u, v) between two atoms u and v has a feature vec-
tor xuv , containing information like bond type. The full 
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list is detailed in Additional file 1: Table S1. We directly 
adapt the graph encoder from Ref.  [28]. The MPNN 
performs a defined number of message passing opera-
tions around each atom and bond in the molecule, which 
communicates chemical information from neighbouring 
bonds and atoms to extract meaningful representations. 
These representations can be very powerful as they are 
custom-learnt for the task at hand. In contrast, finger-
prints are constructed using a fixed algorithm agnostic 
to the task, which may not yield optimal performance. 
For brevity, we denote the MPNN’s encoding process by 
MPNN(· ) and refer readers to Refs.  [28, 29] for detailed 
explanations of the MPNN architecture. In our case, 
we apply two MPNNs with separate parameters (Fig.  2, 
right): one MPNN just for the reactant graphs, and the 
other just for the product graph. For each graph G , the 
MPNN computes atom representations cu for each atom 
u, i.e. {cu|u ∈ G} , using Eq. 3:

where N (u) refers to the neighbouring atoms of atom 
u. To obtain a fixed-length graph-level embedding for 
each molecule cG , all of its atom representations could be 
summed: cG =

∑

u∈V cu . However, a naive sum may not 
be optimal as certain atoms may be more important in 
determining a reaction’s feasibility. Thus, we use atten-
tion pooling [30] which uses a feedforward network to 
calculate the weight (“attention”) each atom should con-
tribute to the graph-level embedding in a weighted sum. 
Since a reaction can have multiple reactants, we sum the 
graph-level embeddings of all reactants into a single vec-
tor. We additionally apply a small projection network to 

(3){cu} = MPNN (G, {xu}, {xuv}v∈N (u))

the pooled output from each MPNN encoder to respec-
tively obtain the product embedding PG and reactants 
embedding RG . Finally, we concatenate PG and RG with 
their difference PG − RG and element-wise product 
PG ∗ RG , before applying an output feedforward network 
to obtain the energy.

Dataset and preprocessing
We trained our models on the USPTO-50K dataset of 
roughly 50,000 reactions extracted from the United 
States patent literature from 1976 to 2016 [31]. The reac-
tions are recorded as atom-mapped SMILES strings and 
comprise 10 types (Additional file 1: Table S2). We use a 
cleaned version of the random 80%/10%/10% split from 
Refs.  [8, 9], where additional duplicate reactions are 
removed (explained in Additional file 1: Section S3), for 
a total of 39,713 training, 4989 validation and 5005 test 
reactions.

One‑step models used for re‑ranking
We re-trained from scratch all the one-step models to 
be re-ranked—RetroSim [8], NeuralSym [6], GLN [9] 
and RetroXpert [32]—on our cleaner USPTO-50K, 
which led to minor discrepancies in quantitative top-
N accuracies relative to previously reported values. 
However, results are typically within 2% of previously 
reported values. RetroSim [8] is a template-based 
approach that computes and compares molecular simi-
larity to choose the best template for a given product. 
The similarity is a combination of product similarity 
and reactants similarity, calculated against the training 

Fig. 2  FF-EBM (left) and Graph-EBM (right) schematics; ‖ stands for concatenation
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data. Using only similarity values, RetroSim is a purely 
data-driven method without any model parameters. 
Next, NeuralSym [6] is a one-step retrosynthesis deep-
learning model trained to classify, for a given product 
in each retrosynthesis step, the most relevant template 
from a library of templates algorithmically-extracted 
from the training set. One of the best performing tem-
plate-based models, the Graph Logic Network (GLN) 
[9] is parameterized by graph neural networks. First, 
GLN identifies reaction centres in a given product, and 
then ranks the most relevant templates, before finally 
scoring and matching reactants given each template. 
In the realm of template-free methods, Retrosynthesis 
eXpert (RetroXpert) [32] is a hybrid graph-sequence 
model that employs a graph network to first identify 
likely reaction centres to decompose the product into 
synthons, followed by a Transformer network to gen-
erate full reactants from each synthon.

Implementation
We used several open-source libraries with Python 3.6 
[33]. PyTorch [34] was used as the backbone for build-
ing, training and testing all models. We used RDKit 
[35] and rdchiral [36] for chemical processing, and 
NetworkX [37] for processing molecular graphs for the 
Graph-EBM. As NeuralSym is not open-sourced, we 
re-implemented it from scratch at https://​github.​com/​
linmi​nhtoo/​neura​lsym following the original work 
[6]. All code for data preprocessing, proposer train-
ing, EBM training and evaluation is open-sourced at: 
https://​github.​com/​coley​group/​rxn-​ebm.

We tuned the hyperparameters for each of the three 
EBM architecture by choosing the hyperparameters 
that produce the best top-1 accuracy on the valida-
tion data. It is also possible to optimize for other top-N 
accuracies, if desired. The tuning was done manually 
starting from common settings found in the literature. 
Only after the best hyperparameters for each EBM 
architecture have been finalized, we then calculate 
and report the top-N accuracies with these optimized 
hyperparameters on the USPTO-50K test data for re-
ranking each of the four one-step models. Specific 
model and training hyperparameters are described in 
Additional file 1: Section S4.

Results
Re‑ranking individual models
The first one-step model, RetroSim, has been greatly 
improved by Graph-EBM, from 35.7% to 51.8% top-1 
accuracy (a relative factor of 45%) as shown in Table  1. 
The remaining top-N accuracies for N ∈ {3, 5, 10, 20} 
are also significantly boosted. The Graph-EBM is clearly 
superior than the FF-EBM, although not by a very large 
margin.

NeuralSym’s performance is also significantly enhanced 
by both FF-EBM and Graph-EBM, although the margin 
is not as large as for RetroSim. The Graph-EBM is again 
slightly superior than FF-EBM across the board, particu-
larly for N ∈ {3, 5} . RetroXpert, however, paints a differ-
ent picture. Firstly, both FF-EBM and Graph-EBM fail to 
recover RetroXpert’s original top-1 accuracy, much less 
improve it. More surprisingly, the Graph-EBM suffers 
a large drop in top-1 accuracy from RetroXpert’s 45.8% 

Table 1  Results of re-ranking four one-step models on the USPTO-50K test dataset

 Bolded values refer to the best top-N accuracy and the best MRR for that one-step model. We report the average of 3 experiments where both the proposer and 
re-ranker are initialized with a different random seed, with the standard deviation in parentheses. Note that RetroSim is a deterministic algorithm and is reported with 
a standard deviation of 0

Models Top-N accuracy (%) Mean Reciprocal Rank

1 3 5 10 20 50

RetroSim 35.7 ( ±0) 53.3 ( ±0) 62.0 ( ±0) 73.4 ( ±0) 82.3 ( ±0) 88.5 ( ±0) 0.477 ( ±0.000)

RetroSim + FF-EBM 49.7 ( ±0.34) 72.3 ( ±0.21) 79.4 ( ±0.15) 85.5 ( ±0.13) 88.1 ( ±0.07) 88.9 ( ±0.01) 0.622 ( ±0.002)

RetroSim + Graph-EBM 51.8 ( ±0.43) 74.5 ( ±0.37) 81.1 ( ±0.17) 86.4 ( ±0.13) 88.5 ( ±0.02) 88.9 ( ±0.00) 0.644 ( ±0.004)

NeuralSym 45.7 ( ±0.30) 66.4 ( ±0.40) 73.5 ( ±0.30) 80.7 ( ±0.21) 85.3 ( ±0.34) 87.3 ( ±0.32) 0.578 ( ±0.001)

NeuralSym + FF-EBM 50.5 ( ±0.21) 71.8 ( ±0.62) 78.7 ( ±0.18) 84.5 ( ±0.32) 87.1 ( ±0.29) 87.5 ( ±0.32) 0.626 ( ±0.003)

NeuralSym + Graph-EBM 51.3 ( ±0.52) 73.6 ( ±0.34) 80.2 ( ±0.35) 85.4 ( ±0.30) 87.1 ( ±0.27) 87.5 ( ±0.32) 0.636 ( ±0.004)

RetroXpert 45.8 ( ±0.25) 59.2 ( ±0.26) 63.0 ( ±0.57) 66.9 ( ±0.31) 69.9 ( ±0.62) 73.0 ( ±0.70) 0.543 ( ±0.004)

RetroXpert + FF-EBM 42.7 ( ±0.27) 62.0 ( ±0.21) 67.6 ( ±0.05) 72.5 ( ±0.08) 75.6 ( ±0.11) 77.1 ( ±0.20) 0.536 ( ±0.002)

RetroXpert + Graph-EBM 36.7 ( ±0.91) 58.2 ( ±1.06) 65.8 ( ±0.73) 73.0 ( ±0.32) 75.9 ( ±0.12) 77.3 ( ±0.21) 0.491 ( ±0.008)

GLN 51.7 ( ±0.33) 67.8 ( ±0.43) 75.1 ( ±0.32) 83.2 ( ±0.12) 88.9 ( ±0.11) 92.4 ( ±0.06) 0.620 ( ±0.003)

GLN + FF-EBM 49.7 ( ±0.77) 72.4 ( ±0.18) 80.0 ( ±0.28) 87.0 ( ±0.11) 90.6 ( ±0.12) 93.0 ( ±0.02) 0.629 ( ±0.005)

GLN + Graph-EBM 52.3 ( ±0.01) 74.9 ( ±0.27) 82.0 ( ±0.18) 88.0 ( ±0.02) 91.4 ( ±0.11) 93.0 ( ±0.08) 0.652 ( ±0.001)

https://github.com/linminhtoo/neuralsym
https://github.com/linminhtoo/neuralsym
https://github.com/coleygroup/rxn-ebm
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to 36.7%, which is noticeably worse than the FF-EBM’s 
42.7%. On the positive side, the FF-EBM does improve 
upon RetroXpert’s top-3 to top-50 accuracies, while the 
Graph-EBM does so for top-5 onwards; the FF-EBM is 
superior to the Graph-EBM up to N = 5 , beyond which 
the Graph-EBM takes over.

Lastly, for GLN, the best one-step model among these 
four in terms of top-1 accuracy, only the Graph-EBM 
is able to improve (albeit marginally) the top-1 accu-
racy from 51.7% to 52.3% while the FF-EBM falls short 
at 49.7%. Still, we observe solid enhancements of the 
top-3 to top-50 accuracies. On the whole, the general 
improvement in top-N accuracies by both our FF-EBM 
and Graph-EBM highlight that our energy-based re-
ranking approach can indeed improve the performance 
of a range of one-step models, relative to their original 
performance.

In addition to top-N accuracy, we also compare the 
one-step models’ performance before and after re-rank-
ing using two other metrics, the Mean Reciprocal Rank 
(MRR), which is also shown in Table  1, as well as area 
under the top-N curve (Additional file  1: Section S5.1). 
With MRR, just as with top-N accuracy, re-ranking with 
Graph-EBM achieves the best performance on Retro-
Sim, NeuralSym and GLN, compared to re-ranking with 
FF-EBM. For RetroXpert, re-ranking with FF-EBM gives 
better MRR than the Graph-EBM, but both re-ranked 
versions are worse than the original RetroXpert. On the 

whole, the trends in MRR mirror the same patterns seen 
with top-N accuracy.

Re‑ranking multiple models
As each retrosynthesis model is inherently different in 
design, we conducted a detailed analysis of the correla-
tion between proposals from different models. Indeed, 
we found that each model does get a different subset of 
reactions correct. In Fig.  3, we collate and compare the 
frequency of different ranks assigned by GLN and Ret-
roSim to each published reactant-set in the USPTO-
50K test data. As an example, if GLN’s true rank is 2 for 
a product, it means that GLN’s rank-2 proposal matches 
the published reactant-set.

Across almost every class but particularly in classes 
1, 2, 3 and 6 (circled in yellow; classes defined in Addi-
tional file  1: Table  S2), we observe between 7 and 10% 
of reactions where RetroSim scored the published reac-
tants as its rank-1 prediction, but GLN only got them as 
its rank-2 (or worse) prediction. Thus, even though GLN 
is significantly superior to RetroSim on average, with a 
top-1 accuracy of 51.7% versus 35.7%, RetroSim does bet-
ter on subsets of reactions. We note similar trends when 
comparing other models, such as GLN against RetroX-
pert. In short, this analysis encouraged us to check if the 
EBM could learn to re-rank proposals combined from 
multiple models. If it can learn to leverage the “strong 

Fig. 3  Comparing GLN vs RetroSim across the 10 reaction classes. Note that figures are taken from one specific seed of each model and not 
averaged over 3 replicates
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chemical space” from each model, we could hope for 
an even larger margin of improvement than re-ranking 
each model individually. To investigate this, we trained 
a Graph-EBM on proposals pooled from RetroSim and 
GLN, with up to 50 from each model during training, and 
200 each during testing. Therefore, the Graph-EBM sees 
up to 100 proposals during training and up to 400 during 
testing, as opposed to just 50 and 200 when re-ranking 
models individually.

Positively, all of the top-N accuracies as well as MRR 
have been further improved (Table 2) beyond re-ranking 
just GLN with the Graph-EBM, with the largest margins 
of improvement in top-N accuracy for N ∈ {10, 20, 50} . 
This indicates that the EBM does benefit from seeing a 
wider variety of proposals and is able to learn to utilize 
the unique strengths of RetroSim and GLN. It may help 
to supplement each proposal with the original probability 
or rank assigned by each one-step model. We did experi-
ment re-ranking more than 2 one-step models, but this 
did not yield better top-N accuracies than re-ranking 1 or 
2 one-step models, and did not pursue it further.

Discussion
Training proposals vs test proposals
We note that the EBM re-ranking performance on Ret-
roXpert is poor compared to the other 3 one-step mod-
els, especially in terms of top-1 and top-3 accuracies. 
Although the exact reasons for this remain unclear to 
us, one hypothesis is that there is significant divergence 
between the distribution of RetroXpert’s training propos-
als versus its test proposals. That is, RetroXpert’s incor-
rect predictions on the training set (to which it has been 
(over)fit) will be mistakes of a different kind compared to 
incorrect predictions on the test set. This makes it more 
challenging for our EBMs to generalise the patterns they 
have learnt about RetroXpert’s training proposals to 
its test proposals. One possible solution might be to set 
aside a larger validation dataset when training RetroX-
pert. Subsequently, we can use RetroXpert’s proposals 

on that validation dataset to train the EBM re-ranker, 
rather than its proposals on the training dataset. Since 
the validation and test proposals should be very similar in 
distribution, such a set-up could improve the EBMs’ gen-
eralisation. However, a trade-off is that we have less data 
to train the one-step model, which is likely to worsen its 
performance. It remains to be investigated whether these 
two conflicting factors would overall boost or worsen the 
combined proposal-re-ranking performance.

Limitations of top‑N accuracy
For a reaction to be top-1 accurate, the published reac-
tants has to exactly match the one-step model’s highest-
ranked suggestion but there almost always exist multiple 
plausible routes to a product. Hence, teaching and vali-
dating models to recapitulate the published reaction may 
not be ideal, since it is not necessarily the “best” reac-
tion (a highly subjective concept). We acknowledge that 
top-N accuracy alone does not paint a complete picture 
of a one-step model’s performance, as others have also 
argued [20]. Unfortunately, chemical plausibility is sub-
jective without specification of reaction conditions and, 
moreover, is difficult to verify without time-consuming 
experiments; the use of reaction prediction models for 
evaluation is not always ideal as these models come with 
their own errors and could complicate analysis, although 
they can be useful in injecting prior chemical biases. 
Therefore, top-N accuracy continues to be a primary 
metric in computer-aided retrosynthesis as it is quanti-
tative, scalable and enables standardised comparison of 
models across benchmark datasets.

Multi‑step synthesis planning
Our energy-based re-ranking model can be applied to 
multi-step synthesis planning by using it to re-rank each 
single step during a recursive expansion. In general, the 
re-ranking stage merely reorders proposed precursors 
at each single step. However, this may complicate exist-
ing pipelines that rely on precursor scores, such as [19]’s 

Table 2  Results of re-ranking combined proposals of GLN and RetroSim on USPTO-50K test data

Bolded values represent best top-N accuracies and best MRR across both GLN and RetroSim (including their individually re-ranked versions)

Models Top-N accuracy (%) Mean Reciprocal Rank

1 3 5 10 20 50

RetroSim 35.7 ( ±0) 53.3 ( ±0) 62.0 ( ±0) 73.4 ( ±0) 82.3 ( ±0) 88.5 ( ±0) 0.477 ( ±0.000)

RetroSim + Graph-EBM 51.8 ( ±0.43) 74.5 ( ±0.37) 81.1 ( ±0.17) 86.4 ( ±0.13) 88.5 ( ±0.02) 88.9 ( ±0.00) 0.644 ( ±0.004)

GLN 51.7 ( ±0.33) 67.8 ( ±0.43) 75.1 ( ±0.32) 83.2 ( ±0.12) 88.9 ( ±0.11) 92.4 ( ±0.06) 0.620 ( ±0.003)

GLN + Graph-EBM 52.3 ( ±0.01) 74.9 ( ±0.27) 82.0 ( ±0.18) 88.0 ( ±0.02) 91.4 ( ±0.11) 93.0 ( ±0.08) 0.652 ( ±0.001)

GLN + RetroSim + Graph-EBM 52.5 ( ±0.10) 75.7 ( ±0.15) 83.1 ( ±0.34) 89.7 ( ±0.18) 93.1 ( ±0.12) 94.8 ( ±0.06) 0.658 ( ±0.000)
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Monte Carlo Tree Search which directly uses probabili-
ties assigned by the NeuralSym policy network. In addi-
tion, the energy score is compatible with several existing 
scores used to shortlist single-step retrosynthetic sugges-
tions, such as a forward prediction score [21] or a syn-
thesizability score [22]. One simple approach could be 
to linearly combine multiple single-step scores by tun-
ing the scalar coefficients on a validation set, and use the 
combined scores for re-ranking at each step. As the focus 
of this work is on single-step re-ranking, we leave both of 
these considerations to future work.

Visualizing re‑ranked predictions
We supplement our quantitative evaluations with quali-
tative case studies to highlight the plausibility of our 
EBM’s re-ranked predictions. Prior works [8, 9, 32] have 
also utilised similar visualisations to support their case 
and analyse their one-step models, but we acknowledge 
that a small number of examples does not provide a 
comprehensive view of what has been learned. In Addi-
tional file 1: Section S6, we also display examples where 
re-ranking has egregiously worsened the rank of the pub-
lished reaction.

Fig. 4  Top: our EBM re-ranks the published reaction correctly and the EBM’s other top suggestions are also chemically reasonable despite being 
poorly ranked by RetroSim; bottom: another successful re-ranking by the EBM, with rank-2 and rank-3 suggestions also plausible reactions
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Re‑ranked reactants that match published reactants
First, we highlight examples of proposals that were 
successfully re-ranked, where the one-step model’s 
original rank-1 prediction did not match the pub-
lished reactants. We focus on examples from re-rank-
ing RetroSim with the Graph-EBM, as this effected the 
greatest margin of improvement. In the first example 
(Fig. 4, top), the published reaction is a C–N coupling 
between a secondary alkyl amine and a 2-chloropyri-
dine. Although the published reaction is not favored by 
RetroSim with a rank of 12, the Graph-EBM recognizes 
its feasibility and assigned it the lowest energy. Further-
more, the EBM recovers promising reactions ranked 
poorly by RetroSim. The top-2 suggestion by the EBM 

is a Stille reaction between an organostannane and an 
aryl bromide, a valid route that is not favored by Retro-
Sim with an original rank of 26. The EBM’s rank-3 sug-
gestion is an N-alkylation of the secondary aryl amine 
with methyl iodide, which is chemically plausible, but 
ranked 20th by RetroSim. Similarly, EBM’s rank-4 sug-
gestion is a condensation between a hydrazine moiety 
and a diketone to construct the pyrazole ring. This, 
too, is a known, real reaction but only ranked 36th by 
RetroSim.

Next in Fig. 4 (bottom), the published reaction involves 
reducing a conjugated alkene to an alkane. Although 
RetroSim ranked this reaction only 12th, our EBM again 
re-ranked it as its top suggestion. The EBM’s rank-2 and 

Fig. 5  Top and bottom: two examples of the EBM’s rank-1 suggestion being reasonable despite not matching the published reaction
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rank-3 predictions are the borylation of aryl bromide and 
aryl triflate respectively, which are both realistic sugges-
tions and this time also ranked highly by RetroSim as 
rank-1 and rank-2.

Re‑ranked reactants that do not match published reactants
We also analyse cases where the EBM failed to re-rank 
the published reactants as rank-1. In Fig.  5 (top), the 
published reaction is the radical bromination of a methyl 
arene group using N-Bromosuccinimide. The EBM’s 
rank-1 prediction is different: it slightly prefers the bro-
mination of an alkyl alcohol using tetrabromomethane. 
This is, in fact, the well-known Appel reaction [38] which 
is certainly a plausible choice. Multiple reasonable routes 
often exist, and our EBM’s suggestions are still valuable 
even when they differ from the published reaction. On 
the other hand, the EBM’s rank-3 proposal is a C–N cou-
pling between iodobenzene and the NH nitrogen of the 
purine core. This suggestion seems slightly less favorable 
due to potential side reactions such as nucleophilic attack 
at the alkyl bromide or aryl chloride groups. What is 
remarkable is that the EBM assigns a significantly higher 
energy to this (+10.76) than its rank-1 and rank-2 pro-
posals, showing that the EBM does understand this pro-
posal’s limitations with a qualitative significance to the 
energy output, if not the reason.

As a second case study, we examine the target molecule 
in Fig  5 (bottom), published as the C–N coupling of an 
aryl iodide with a secondary alkyl amine. Interestingly, 
our EBM very slightly favors the C–N coupling with an 
aryl bromide over the aryl iodide. This may seem coun-
terintuitive since the aryl C–I bond is weaker and iodides 
are generally better leaving groups. However, we cannot 
rule out that the aryl bromide is still reactive enough for 
such a C–N coupling reaction, and because aryl bro-
mides tend to be cheaper than aryl iodides, the aryl bro-
mide may be preferred by a chemist. That being said, the 
EBM’s assigned energies are essentially the same, with 
+1.104 for the aryl bromide verus +1.105 for the aryl 
iodide, which suggests they are perceived as equally valid 
options. In contrast, RetroSim proposed the aryl bromide 
as its rank-2 and the aryl iodide as its rank-13 suggestion, 
ranking the iodide much lower, which seems to indicate 
that our EBM has a relatively nuanced understanding of 
feasibility.

Lastly, we include several examples of “failure” cases 
in Additional file 1: Section S6 where the EBM worsened 
the rank of the published reaction relative to the original 
proposer. However, we also argue that even in such cases, 
EBM’s suggestions are plausible alternative strategies.

Conclusion
Computer-aided retrosynthetic planning software can 
assist chemists by not just suggesting a pool of promis-
ing routes, but also ranking them in order of predicted 
plausibility. They can provide additional ideas for routes 
chemists may not have considered before, especially 
when synthesising novel molecules for which no lit-
erature precedent exists. Improving these data-driven 
retrosynthesis tools can benefit chemists in numerous 
applications of organic synthesis, ranging from small 
molecule drug discovery to material science.

Our work approaches the problem of retrosynthesis 
from the perspective of learning to re-rank the sugges-
tions of existing one-step models to improve their perfor-
mance. Through this work, we have designed and validated 
an energy-based approach to re-ranking, and explored 
3 diverse architectures for the EBM. Firstly, we could 
significantly improve the performance of two template-
based models: RetroSim and NeuralSym. We also boost 
GLN’s top-N accuracies across the board, with the larg-
est improvements for N ∈ {3, 5, 10} . Improving template-
based models is especially valuable as they can provide 
literature precedents responsible for each prediction, mak-
ing them more chemically explainable than template-free 
models. Even within template-based models, RetroSim 
is extraordinarily transparent due to its parameter-free 
design; we know exactly which reaction precedent was 
used to generate each reactant-set proposal with a one-to-
one correspondence. With re-ranking, we can enjoy this 
transparency with virtually the same top-1 accuracy as 
GLN which, although a template-based approach, is less 
interpretable in terms of how it exactly derives each pro-
posal. While the top-1 accuracy of RetroXpert, a template-
free approach, could not be improved, we still enhance its 
top-3 to top-50 accuracies. Finally, we show that re-rank-
ing a combination of GLN and RetroSim can be superior 
than re-ranking just GLN or RetroSim.

Since the only input our EBM requires is a product with 
a pool of corresponding reactant-set proposals, our EBM 
works as a simple and convenient plug-and-play frame-
work and can be applied to any one-step retrosynthesis 
method. Furthermore, the energy-based formulation 
allows for great flexibility in model design because the 
EBM only needs to output a single number; thus, there 
is great freedom to further enhance its architecture, for 
example, with extra chemical knowledge or meta-infor-
mation about the one-step model. Pairing one-step pro-
posal with energy-based re-ranking could also increase 
the chances of finding complete multi-step routes.
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