
1ScIEntIfIc REPOrTS |  (2017) 7:18040  | DOI:10.1038/s41598-017-18223-y

www.nature.com/scientificreports

Modeling and prediction of 
copper removal from aqueous 
solutions by nZVI/rGO magnetic 
nanocomposites using ANN-GA and 
ANN-PSO
Mingyi Fan1, Jiwei Hu1,2, Rensheng Cao1, Kangning Xiong2 & Xionghui Wei3

Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites 
were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron 
microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction 
quantum interference device magnetometer were performed to characterize the nZVI/rGO 
nanocomposites. In order to reduce the number of experiments and the economic cost, response 
surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural 
network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as 
a major tool that can model and optimize the removal processes, because a tremendous advance has 
recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-
PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., 
operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was 
proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error 
and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS 
analysis were performed to explore the mechanisms of Cu(II) removal process.

A wide range of hazardous heavy metals (such as copper, arsenic, chromium, lead, cadmium, mercury and zinc) 
have been discharged into water bodies due to the rapid growth of various industries1–3. The heavy metals pose 
a significant threat to human health and ecological systems owing to their non-biodegradability, high toxicity 
and easy accumulatio4,5. Among them, copper (Cu) is a toxic heavy metal that has been applied in a variety of 
industries, such as electroplating, architecture, printed circuit boards and machined products6. Although Cu is 
an important trace element needed by humans for enzyme synthesis, tissue and bone development, it is reported 
that intake of excessive Cu(II) by human leads to severe mucosal irritation and corrosion, widespread capillary 
damage, hepatic and renal damage7. Therefore, the remediation of Cu(II) pollution in the water environment has 
become a significant issue to human beings.

Various technologies in recent years have been utilized to remove heavy metals from wastewater, which 
include adsorption, electrolysis, reverse osmosis, membrane separation and chemical precipitation. Among 
these technologies, adsorption has been extensively employed because of its simple operation, high efficiency 
and low cost8–12. Graphene is a basic unit for construction of carbonaceous materials, which is composed of 
two-dimensional sp2 carbon network with a honeycomb crystal structure13. It also has a large specific surface area 
(about 2620 m2/g), which renders the sheet a good choice for supporting nanoparticles. Graphene oxide (GO) is 
a lamellar flexible material containing a variety of functional groups (C=C, C=O, OH and C-O-C) on its basal 

1Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological 
Environment, Guizhou Normal University, Guiyang, 550001, Guizhou, China. 2Cultivation Base of Guizhou National 
Key Laboratory of Mountainous Karst Eco-environment, Guizhou Normal University, Guiyang, 550001, Guizhou, 
China. 3Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, 
Beijing, 100871, China. Correspondence and requests for materials should be addressed to J.H. (email: jiweihu@
yahoo.com)

Received: 25 July 2017

Accepted: 7 December 2017

Published: xx xx xxxx

OPEN

mailto:jiweihu@yahoo.com
mailto:jiweihu@yahoo.com


www.nature.com/scientificreports/

2ScIEntIfIc REPOrTS |  (2017) 7:18040  | DOI:10.1038/s41598-017-18223-y

plane and on the edges of its sheet14. These oxygen-containing groups do not only improve the adsorption ability 
for heavy metals, but also enhance the dispersivity of GO15–17. Graphene-based magnetic nanocomposites, such 
as reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO), have recently been shown to be 
effective in wastewater treatment with a higher efficiency than either of their pure components18–20.

Modeling is a proven and accepted engineering approach that can help understand the removal processes21. 
However, modeling removal processes by conventional mathematical models (mechanistic models) are costly and 
time-consuming due to a broad range of experiments required. Moreover, the processes of wastewater treatment 
are highly complex, which are affected by various operating parameters and removal mechanisms. Thus, it is 
difficult to model and optimize the removal processes by using conventional mathematical models22. Modeling 
wastewater treatment processes is recently encouraged by using empirical models, including least squares support 
vector machines, response surface methodology (RSM) and artificial neural networks (ANNs). RSM is a com-
monly adopted statistical method for building quadratic models and optimizing the process parameters, and its 
important advantage is that it requires less number of experiments to be performed. ANNs inspired by biological 
neurons belong to artificial intelligence (AI) techniques, which have recently experienced a tremendous advance 
in various applications, e.g., intelligent search, autonomous driving, big data, pattern recognition and robotics23. 
ANNs (the black box models) can model ill-defined and non-linear problems since they can be developed solely 
from the input and output data without any detailed knowledge of the removal processes24. ANNs combined with 
RSM can be considered as an effective approach when the removal processes are complex and require a large 
number of experiments and a high consumption of chemical reagents25.

Meta-heuristic optimization algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO) 
and ant colony algorithm, were originated from social behavior or natural phenomena, which have been uti-
lized to carry out the optimization of removal processes26,27. GA is used for finding precise or approximate opti-
mal operating parameters of removal processes based on the fundamental of evolution from natural selection28. 
Another well-known optimization algorithm is PSO, which was inspired by the behavior of a bird flock29. Both 
GA and PSO are now frequently applied in the optimization of removal processes because they do not easily get 
trapped in a local minimum23,27,30–32.

To our knowledge, limit studies have hitherto been reported concerning the modeling and optimization for 
the Cu(II) removal process using RSM, ANN-GA and ANN-PSO. In this work, the nZVI/rGO magnetic nano-
composites were prepared by chemical deposition method and characterized by scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), superconduction quantum interference device (SQUID) mag-
netometer and X-ray photoelectron spectroscopy (XPS). Then, the Cu(II) removal process was modeled and 
optimized by using RSM, ANN-GA and ANN-PSO in order to obtain the maximum removal efficiency. The 
performance of these three models was evaluated based on the correlation coefficient (R2) and the absolute error. 
Analysis of variance (ANOVA) and sensitivity analysis were carried out to investigate the relative importance of 
independent variables. The isotherm, thermodynamics and kinetics studies were also performed to investigate 
the behavior of removal process. Finally, the mechanisms for the Cu(II) removal process were explored based on 
the XPS results.

Results and Discussion
Characterization of the nZVI/rGO magnetic nanocomposites.  As can be seen in Fig. 1a and their 
corresponding magnified images (Fig. 1b and Fig. 1c), the nZVI particles were successfully dispersed on the 
surface of rGO to form the nZVI/rGO magnetic nanocomposites. The reason for this is that graphene as a new 
synthetic 2D allotrope of carbon possesses a high surface area and chemical stability33. The average size of nZVI 
particles on rGO estimated from Fig. 1c was about 40 nm (Fig. S1). Moreover, the rGO sheets showing the folding 
nature are clearly visible, which indicated that the rGO sheets were of multiple layers (Fig. 1d,e). As shown in 
Fig. 1f, the nZVI/rGO magnetic nanocomposites present a crystalline lattice spacing (0.202 nm), which corre-
sponds to the (110) lattice plane of nZVI33.

The magnetization property of the nZVI/rGO nanocomposites was explored at 298 K by evaluating the mag-
netic hysteresis curve (Fig. 2a). The saturation magnetization of the nZVI/rGO nanocomposites was 86.41 emu/g, 
which was sufficient for magnetic separation with a conventional magnet. The nZVI/rGO magnetic nanocom-
posites dispersed in an aqueous solution can be separated within 10 seconds by a magnet, which would make the 
removal process easier and save more time or economic costs (Fig. 2b,c).

ANN modelling.  Although the number of neurons in the hidden layer is in direct proportion with the sim-
ulation performance of the ANN model, excessive number of the neurons could lead to over-fitting that could 
reduce the robustness and generalization of the ANN model34. For modeling the Cu(II) removal process, different 
numbers of neurons (1–10) in hidden layer were used to determine the optimum network architecture based on 
the relationship between the value of MSE and the number of neurons, thus 9 neurons were selected for the hid-
den layer (Fig. 3). The optimized BP-ANN with three layers and 9 neurons in the hidden layer is shown in Fig. 4.

The relationship between the MSE and the number of epochs for the developed BP-ANN for the Cu(II) 
removal indicated that the training was converged after 1212 epochs with the lowest MSE (0.0002) (Fig. 5). The 
results predicted by this model indicated that its performance was satisfying due to a low mean absolute error 
(Table 1). The developed ANN model was validated with the test data generated by RSM. The average absolute 
error of developed BP-ANN model was 3.64% for the test sets, which demonstrated a good generalization of this 
model for the Cu(II) removal process with new data. Furthermore, a satisfactory agreement between the experi-
mental and predicted values was obtained with 0.9997 of R2 (Fig. 6).

The connection weights between neurons in input, hidden and output layers of the developed BP-ANN mode 
are shown in Table 2, based on which the sensitivity analysis was carried out by using the Garson equation in 
order to evaluate the relative importance of the input variables on the output variable. As can be seen in Table 3, 



www.nature.com/scientificreports/

3ScIEntIfIc REPOrTS |  (2017) 7:18040  | DOI:10.1038/s41598-017-18223-y

contact time appears to be the most influential variable followed by initial concentration, operating temperature 
and initial pH. This is consistent with the results of ANOVA (Table S1).

Another approach for sensitivity analysis was also used to determine the influence of a variable in the devel-
oped ANN model. Moreover, the performances of interaction of different variables were also investigated. 
Performances for the groups of one, two, three and four variables were evaluated by the optimal ANN model 
using the traingdx with 9 hidden neurons. The results showed that contact time was the most effective variable 
among all variables in the group of one variable because of the low MSE (0.15939) (Table 4). The MSE decreased 
from 0.15939 to 0.05350 that is the minimum value for the group of two variables (X1 + X4). The minimum value 
of MSE in the group of three variables was 0.00368 by the combination of X1, X3 and X4. Then, the MSE decreased 
down to 0.00020 that is the minimum value for the group of four variables (X1 + X2 + X3 + X4). Therefore, it can 
be concluded that contact time has the most influence on the Cu(II) removal, which is in accordance with the 
results of the Garson equation.

Optimization by GA technique.  The developed ANN model was then optimized by GA approach with the 
objective of the maximization of Cu(II) removal efficiency from aqueous solutions. This approach began with a 

Figure 1.  The SEM images of nZVI/rGO magnetic nanocomposites with different magnifications (a,b and c), 
TEM images of nZVI/rGO magnetic nanocomposites with different magnifications (d and e), HR-TEM image 
of nZVI/rGO magnetic nanocomposites (f).

Figure 2.  Magnetic hysteresis curve of nZVI/rGO magnetic nanocomposites (a), digital photographs showing 
a water dispersion of nZVI/rGO magnetic nanocomposites (b) and the magnetic separation of nZVI/rGO 
nanocomposites after 10 seconds (c).
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population of random regimes using temperature, initial pH, initial concentration and contact time as the optimiza-
tion parameters. As shown in Fig. S2, the value of removal efficiency reached to a maximum value (84.78%) and then 
remained constant after about 14 generations. The optimized conditions of the four variables were found to be 38.90 °C, 

Figure 3.  Relationship between MSE and number of neurons in hidden layer.

Figure 4.  Optimized structure of the BP-ANN.

Figure 5.  The relationship between MSE and the number of epochs.
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4.67, 155.10 mg/L and 28.90 min. Verification experiments indicated that 83.65% ± 0.62 of Cu(II) removal efficiency is 
reasonably close to the predicted value (84.78%), which demonstrated the adequacy of the ANN-GA model.

ANN-PSO optimization.  The PSO technique was hybridized with the developed ANN model for optimiz-
ing the process parameters with the aim of maximizing the Cu(II) removal efficiency. The relationship between 
the removal efficiency and iterations demonstrated that after 8 iterations the removal efficiency reaches to the 

Number of 
dataset

Operating 
temperature °C

Initial 
pH

Initial 
concentration mg/L

Contact 
time min

Removal efficiency (%) Absolute 
error (%)Experimental Predicted

1 30 5 200 20 69.7500 ± 0.87 69.0604 0.6896

2 30 6 150 20 74.6500 ± 0.62 74.6505 0.0005

3 40 6 200 20 72.8800 ± 0.96 72.8808 0.0008

4 30 5 200 20 69.1200 ± 1.02 69.0604 0.0596

5 20 5 200 30 72.9200 ± 0.25 72.9201 0.0001

6 30 5 250 30 78.7700 ± 0.38 78.7659 0.0041

7 30 6 200 10 59.1000 ± 0.36 59.0984 0.0016

8 40 5 150 20 74.6600 ± 0.58 74.6596 0.0004

9 30 5 150 10 65.6700 ± 0.95 65.6712 0.0012

10 30 4 250 20 65.0000 ± 0.46 64.9988 0.0012

11 30 4 150 20 77.2000 ± 0.48 77.1986 0.0014

12 40 4 200 20 70.9400 ± 0.69 70.9404 0.0004

13 30 5 150 30 81.7400 ± 0.12 81.7349 0.0051

14 30 4 200 10 64.4600 ± 0.53 64.4597 0.0003

15 30 5 200 20 68.1600 ± 0.59 69.0604 0.9004

16 20 6 200 20 55.8400 ± 0.82 55.8399 0.0001

17 40 5 250 20 66.8800 ± 0.38 66.8795 0.0005

18 30 5 200 20 69.2100 ± 0.61 69.0604 0.1496

19 30 6 200 30 80.4100 ± 0.23 80.4136 0.0036

20 30 6 250 20 67.3000 ± 0.98 67.3005 0.0005

21 30 4 200 30 80.6600 ± 0.79 80.6652 0.0052

22 20 5 250 20 49.1400 ± 0.35 49.1399 0.0001

23 40 5 200 10 50.0600 ± 0.22 50.0597 0.0003

24 30 5 250 10 49.1100 ± 0.60 49.1111 0.0011

25* 40 5 200 30 73.7500 ± 0.57 68.6545 5.0956

26* 20 5 150 20 64.9900 ± 0.19 69.8168 4.8268

27* 20 4 200 20 65.0200 ± 0.88 60.6732 4.3468

28* 20 5 200 10 50.1200 ± 0.65 47.3305 2.7895

29* 30 5 200 20 67.9200 ± 0.59 69.0604 1.1404

Mean absolute error 0.6906

Table 1.  The relationship between the experimental results and results predicted by the developed BP-ANN.  
(*represents test sets).

Figure 6.  The experimental data versus the predicted data for Cu(II) removal efficiency.
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maximum value and then remains constant. The optimal conditions for the Cu(II) removal process were found 
to be: 20.18 °C, 5.79, 150 mg/L and 30 min. The Cu(II) removal efficiency achieved under the optimal conditions 
was 86.80 ± 0.72%, which was compatible with the hybrid ANN-PSO prediction (87.26%) (Fig. S3). The absolute 
error (0.46%) between the experimental and predicted value proved that the model of PSO combined with ANN 
is an efficient and effective tool for the Cu(II) removal process.

Comparison among RSM, ANN-GA and ANN-PSO models.  The comparison among the RSM, ANN-GA 
and ANN-PSO models demonstrates a better accuracy of ANN-based models with the higher R2 value than that of the 
RSM model (Table 5). In addition, the absolute error of verification experiments by ANN-PSO model was lower than 
that of the ANN-GA model (1.13%) and the RSM model (7.44%). Using the ANN-PSO model, the efficiency of Cu(II) 
removal from aqueous solutions was improved by 3.15% and 8.54% in comparison with the ANN-GA model and the 
RSM model. Therefore, it can be deduced that although RSM is a widely employed approach for the optimization of 
Cu(II) removal process, ANN-PSO methodology may present a satisfying alternative.

Number of 
neurons

Wi

bi Wj bj

Input variables

Operating 
temperature

Initial 
pH

Initial 
concentration

Contact 
time

1 1.1405 0.1820 −0.9163 −1.8877 −2.7333 −0.5250

2 −0.7464 −0.1009 1.3385 −1.9665 1.1898 −0.1374

3 −1.8672 −0.7593 1.0404 1.0547 1.2507 0.0305
−0.3470

4 −1.0621 1.3521 −1.0109 −0.0096 1.3992 0.2202

5 −0.4985 −0.3383 −0.6612 −0.4575 −0.1313 0.7031

6 0.3846 −0.2592 −1.4244 −1.6311 0.6935 −0.6361

7 −0.4123 −0.9827 0.7692 1.9676 −1.0993 0.1897

8 2.1261 0.5988 −0.4158 1.2984 1.3765 0.3528

9 2.4359 −0.6441 −1.1226 2.6906 1.8163 0.6953

10 0.4832 −0.2556 0.8146 0.5108 2.7942 −0.4049

Table 2.  Weights and biases in input-hidden layers (Wi and bi) and hidden-output layers (Wj and bj).

Input variables
Relative importance 
(%) Order

Operating temperature 26.28 3

Initial pH 12.64 4

Initial concentration 27.12 2

Contact time 33.96 1

Table 3.  Relative importance of input variables on the output.

Combination MSE Epoch
Correlation 
coefficient (R2) Best linear equation

X1 0.28934 472 0.3718 y = 0.14x + 0.140

X2 0.32093 342 0.2100 y = 0.044x + 0.150

X3 0.27335 295 0.4311 y = 0.19x + 0.130

X4 0.15939 295 0.7247 y = 0.53x + 0.077

X1 + X2 0.27050 397 0.4408 y = 0.19x + 0.130

X1 + X3 0.22340 262 0.5785 y = 0.33x + 0.110

X1 + X4 0.05350 234 0.9169 y = 0.84x + 0.026

X2 + X3 0.25790 1992 0.4815 y = 0.23x + 0.130

X2 + X4 0.14072 271 0.7622 y = 0.58x + 0.068

X3 + X4 0.08787 556 0.8592 y = 0.74x + 0.042

X1 + X2 + X3 0.14535 646 0.7530 y = 0.57x + 0.070

X1 + X2 + X4  0.04298 1372 0.9338 y = 0.87x + 0.021

X1 + X3 + X4 0.00368 1987 0.9945 y = 0.99x + 0.0019

X2 + X3 + X4 0.04756 1999 0.9265 y = 0.86x + 0.023

X1 + X2 + X3 + X4 0.00020 1212 0.9997 y = 0.99x + 0.041

Table 4.  The performance evaluation of possible combinations of input variables.
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Removal kinetics.  The effect of contact time on the Cu(II) removal by the nZVI/rGO magnetic nanocom-
posites showed that the removal of Cu(II) is rapid in the first 20 min of contact time and then remains constant 
with a rise in contact time (Fig. 7). The shaking time (1 h) was selected to ascertain the removal equilibrium of 
Cu(II) by the nZVI/rGO magnetic nanocomposites. In general, the removal process is rapid and hence 30 min is 
enough to obtain the removal equilibrium. This is a critical advantage for the application of the nZVI/rGO mag-
netic nanocomposites to remove heavy metals from aqueous solutions in practical applications.

In order to quantitatively express the Cu(II) removal capacity by nZVI/rGO magnetic nanocomposites, 
the experimental data at various contact times for the Cu(II) removal were fitted to four kinetic models, such 
as pseudo-first order, pseudo-second order, intraparticle diffusion and Elovich models (the details of these 
kinetic models are described in the supplementary information)35. It was found that the value of calculated qe 
for the pseudo-first-order kinetics (79.56 mg/g) is lower than the experimental qe (136.25 mg/g) with the low 
R2 (0.9873), while the value of calculated qe (138.89 mg/g) agrees with the experimental qe in the case of the 
pseudo-second-order kinetic model (Table 6). Furthermore, the experimental data are also well fitted to intra-
particle diffusion model with a higher value of R2 (0.9962) than that of the pseudo-first-order kinetic model 
(R2 = 0.9873), the pseudo-second-order kinetic model (R2 = 0.9901) and the Elovich model (R2 = 0.9640). These 
results showed that the removal behavior may be described by the pseudo-second-order kinetic model combined 
with the intraparticle diffusion model, which indicated that the intraparticle diffusion resistance of Cu(II) inside 
the nZVI/rGO magnetic nanocomposites can influence the removal rate. In summary, the rapid adsorption of 
Cu(II) onto the external surface of nZVI/rGO magnetic nanocomposites is followed by slow intraparticle diffu-
sion along the mesoporous walls.

Thermodynamic study.  It is hypothesized that energy cannot be gained or lost in an isolated system and the 
entropy change is the only driving force based on fundamental thermodynamic concepts36. Therefore, estimate of 
thermodynamic parameters has a great significance for evaluating the spontaneity and feasibility of the removal 
processes. In order to investigate the influence of temperature on the removal of Cu(II) by nZVI/rGO magnetic 
nanocomposites, batch removal experiments were carried out at different operating temperatures varying from 
293 to 323 K. The thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy change (ΔH°) and entropy 
change (ΔS°)) of the removal process were calculated by the Van’t Hoff equation:

Process parameters

RSM ANN-GA ANN-PSO

Optimized 
values

Experimental 
values

Optimized 
values

Experimental 
values

Optimized 
values

Experimental 
values

Operating temperature (°C) 39.26 39.30 38.90 38.90 20.18 20.10

Initial pH 6.00 6.00 4.67 4.70 5.79 5.80

Initial Cu(II) concentration (mg/L) 250.00 250.00 155.10 155.00 150.00 150.00

Contact time (min) 30.00 30.00 28.90 28.90 30.00 30.00

Removal efficiency (%) 85.7 78.26 ± 0.57% 84.78 83.65 ± 0.62 87.26 86.80 ± 0.72%

Average values of absolute errors (%) 7.44 1.13 0.46

R2 0.9572 0.9997

Table 5.  The optimized process parameters for Cu(II) removal by nZVI/rGO magnetic nanocomposites using 
different approaches.

Figure 7.  Time-dependent Cu(II) removal by the nZVI/rGO magnetic nanocomposites. (initial pH = 6.00, 
temperature = 20 °C, composites dosage = 30 mg, and initial concentration = 100 mg/L).
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where Kd stands for the equilibrium constant, R is the gas constant (8.314 J/mol/K), T is the absolute temperature 
(K), Ce and qe are the equilibrium concentration (mg/L) and adsorption capacity (mg/g) of heavy metal ions, 
respectively. The value of Kd can be determined by plotting ln(qe/Ce) against qe and extrapolating the linear plot 
to zero qe

37.
The values of ΔH° and ΔS° were determined from the slope and intercept of Fig. S4 and are summarized in 

Table 7. The Kd values increased with a rise in the temperature indicating an enhancement interaction between 
the adsorbate and adsorbent at higher temperatures. The positive value of ΔH° indicated that the removal process 
was endothermic demonstrating that this process consumes energy. Furthermore, the positive value of ΔS° rep-
resented the randomness nature of the Cu(II) removal process at the solid/solution interface. The negative ΔG° 
values (−26.9590 to −13.1261 kJ/mol) suggested that the Cu(II) removal process was spontaneous in nature and 
the mechanism for this process was physisorption.

Adsorption isotherms.  The adsorption process proceeded until the adsorbent and adsorbate achieve 
a dynamic equilibrium38. In order to evaluate the relationship between Cu(II) and the nZVI/rGO magnetic 
nanocomposites, the experimental data for Cu(II) removal were fitted to several isotherms, such as Langmuir, 
Frenudlich, Dubinin-Radushkevich (D-R) and Temkin isotherms (the more detailed descriptions for the four 
isotherms are presented in the supplementary information). Furthermore, statistical analysis was carried out to 
determine the validity of isotherms on the basis of four parameters, such as R2, chi square test (x2), average per-
centage errors (APE), the sum of absolute errors (SAE)39.

The amount of Cu(II) ions adsorbed on the nZVI/rGO nanocomposites increased with a rise in initial Cu(II) 
concentration (Fig. S5), since high concentrations provided a driving force for the ion transportation from the 
solution to the nZVI/rGO nanocomposites. As can be seen in Table 8 and Fig. S6, the high value of R2 and the low 
values of x2, APE and SAE were obtained for the Langmuir isotherm. This fact demonstrated that the Cu(II) ions 
form homogeneous monolayer coverage on the surface of nZVI/rGO magnetic nanocomposites. The maximum 
adsorption capacity was calculated to be 476.19 mg/g, which was in satisfactory agreement with the experimen-
tal value (433.88 mg/g). As given in Table 9, the removal capacity of the nZVI/rGO magnetic nanocomposites 
is significantly higher than that of other materials. The excellent Cu(II) removal capacity and magnetic sepa-
ration ability of nZVI/rGO nanocomposites are the important advantages for the environmental remediation. 
The adsorption capacity of Cu(II) by the nZVI/rGO composites was lower than that of Pb(II) (904 mg/g) and 
was higher than that of Cd(II) (46.45 mg/g) determined in our earlier work40,41. The reason for this is that the 
values for covalent index, atomic weight, electronegativity and ionic radius of Pb(II) were higher than those of 
Cu(II) and Cd(II) (Table 10). In addition, the values of RL in this work vary from 0.05 to 0.40 indicating that the 

Model Parameters
Values of 
parameters

Experimental qe 
(mg/g)

Pseudo-first-order kinetics

k1 (1/min) 0.1244

qe (mg/g) 79.56

R2 0.9873 136.25

Pseudo-second-order kinetics

k2 (g/mg/min) 0.0040

qe (mg/g) 138.89

R2 0.9901

Intraparticle diffusion

17.38

k3(mg/g/min1/2)

B (mg/g) 53.19

R2 0.9962

Elovich equation

α (mg/g/min) 544.41

β (g/mg) 0.05

R2 0.9640

Table 6.  Removal kinetic parameters for Cu(II) by the nZVI/rGO magnetic nanocomposites.

ΔS° (kJ/mol/K) ΔH° (kJ/mol) ΔG° (kJ/mol)

0.4663 123.9997
293 K 303 K 313 K 323 K

−13.1261 −16.5417 −21.8946 −26.9590

Table 7.  Thermodynamic parameters of Cu(II) removal by nZVI/rGO magnetic nanocomposites.
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adsorption of Cu(II) ions by nZVI/rGO magnetic nanocomposites is more favorable at higher initial concentra-
tions than at lower initial concentrations (Fig. S7).

The value of KF for the Freunlich model was 38.11 illustrating that the nZVI/rGO magnetic nanocomposites 
possessed an excellent adsorption capacity for Cu(II), which was higher than that of other materials8,42,43. In 
addition, the values of n and 1/n were found to be 2.93 and 0.34 demonstrating that the Cu(II) adsorption onto 
the nZVI/rGO magnetic nanocomposites was favorable under the studied conditions. The low value of RT/aT 
(0.09 kJ/mol) for the Temkin isotherm indicated that this adsorption process is dominated by a physical adsorp-
tion. It is known that the adsorption took place by ion exchange when the adsorption mean free energy (E) for the 
D-R model lied between 8 and 16 kJ/mol, whereas the adsorption proceeded physically when the value of E was 
below 8 kJ/mol44. The value of E in this study was found to be 0.37 kJ/mol, therefore the adsorption of Cu(II) onto 
nZVI/rGO magnetic nanocomposites is of a physical type45-49.

Removal mechanism of Cu(II).  The heavy metal ions removal from aqueous solutions by nZVI/rGO mag-
netic nanocomposites is dominated by various mechanisms, such as complex formation, electrostatic interaction, 
ion-exchange, precipitation and reduction33,50. The XPS spectra of wide scan, Fe 2p and Cu 2p for the nanocom-
posites before and after the Cu(II) removal were measured to investigate the removal mechanisms by the nZVI/
rGO magnetic nanocomposites (Fig. 8). The wide scan spectrum of nZVI/rGO indicated the existence of carbon, 
oxygen and iron, while the peak of Cu appeared in the wide scan of nZVI/rGO-Cu(II). The presence of this peak 
demonstrated the Cu(II) immobilization on the surface of nZVI/rGO (Fig. 8a). The Fe 2p spectrum of nZVI/rGO 
contains four peak at 706.80 eV, 711 eV, 720 eV and 725 eV, representing the binding energies of 2p 3/2, shake-up 
satellite 2p 3/2 and 2p 1/2, respectively (Fig. 8b). This result indicated the existence of a layer of iron oxides, which 
was ascribed to Fe2O3 + FeO. In addition, a small peak at 706.80 eV demonstrates the presence of zero-valent 
iron (Fe0). The relative intensity of Fe0 was significantly lower than that of Fe(II) and Fe(III), which revealed the 
core-shell structure of nZVI. After the Cu(II) removal, the Fe0 and Fe(II) peaks disappeared indicating that Fe0 
and Fe(II) on the surface of nZVI/rGO were transformed to Fe(III). The Cu 2p spectrum of nZVI/rGO-Cu(II) 

Isotherms Langmuir Freundlich Temkin Dubinin-Radushkevich

Constants

KL (L/mg) 0.03 KF (mg/g) 65.37 RT/at (kJ/mol) 0.09 qm (mg/g) 371.34

qmax (mg/g) 476.19 n 2.93 bt (L/g) 0.37 α (mol2/J2) 3 × 10−5

R2 0.9961 1/n 0.34 R2 0.9845 E (kJ/mol) 0.37

R2 0.9736 R2 0.8282

x2 3.58 8.23 10.11 50.24

APE 0.03 0.05 0.06 0.15

SAE 67.97 106.96 123.73 293.90

Experimental qmax (mg/g) 433.88

Table 8.  Isotherm parameters for the adsorption of Cu(II) onto the nZVI/rGO magnetic nanocomposites.

Materials qmax (mg/g) Reference

Cystoseira crinitophylla biomass 160.00 42

Fe3O4@SiO2-EDTA 37.59 4

GO/SiO2 158.90 43

Magnetic chitosan 35.50 45

PAA/PVA 49.30 46

PAH-GO 349.03 15

Carbon based adsorbent 33.33 47

Bentonites 43.10 48

EDTA-MNP 73.26 49

nZVI/rGO magnetic nanocomposites 476.19 Present study

Table 9.  Comparison of Cu(II) removal capacity by the nZVI/rGO magnetic nanocomposites with other 
materials.

Pb(II) Cu(II) Cd(II)

Covalent index 5.559 4.874 4.278

Atomic weight 207.2 63.54 112.411

Electronegativity 1.9 1.9 1.7

Ionic radius 1.19 0.73 0.97

Table 10.  The physical properties of Pb(II), Cu(II) and Cd(II).
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showed three peaks at 933.10 eV, 943.20 eV and 953.10 eV, representing the energies of 2p 3/2, shake-up satellite 
2p 3/2 and 2p 1/2 (Fig. 8c). Two peaks at 932.75 eV and 952.85 eV illustrated that the reduction of Cu(II) also 
took place on the surface of the nZVI/rGO magnetic nanocomposites. This result was in good agreement with 
the analysis of Fe 2p spectrum.

In our earlier studies, we found that Cd(II) ions cannot be reduced to Cd(0) and a small part of Pb(II) ions 
was reduced to Pb(0) by the nZVI/rGO nanocomposites40,41. The metal ions with a significantly more positive 
standard reduction potential (STP) than that of Fe0 can be removed by a reduction mechanism, while the metals 
having a STP more negative than or close to that of Fe0 can be removed by an adsorption mechanism. The order 
for the standard reduction potential (STP) of these heavy metals was: Cu(II) (0.34 V) >Pb(II) (−0.12 V) >Cd(II) 
(−0.35 V) >Fe(II) (−0.44 V). Therefore, the Cu(II) removal mechanism by nZVI/rGO nanocomposites was con-
trolled by the adsorption and reduction.

Conclusions
In this study, the nZVI/rGO magnetic nanocomposites were prepared and applied to remove the Cu(II) ions 
from aqueous solutions. The characterizations of nZVI/rGO nanocomposites were performed by using TEM, 
SQID magnetometer and XPS, showing the morphology, magnetic and surface properties. The process param-
eters (operating temperature, initial pH, initial concentration and contact time) of the Cu(II) removal by 
nZVI/rGO nanocomposites were optimized by RSM, ANN-GA and ANN-PSO. The results showed that the 
ANN model offered more accurate predictions than the RSM model with a higher R2 value and a lower MSE 
value. Both ANOVA and sensitivity analysis demonstrated that the most critical parameter was contact time 
for the Cu(II) removal. Using the ANN-PSO based tool, the Cu(II) removal efficiency from aqueous solutions 
was improved by 3.15% and 8.54% as compared to that of the ANN-GA model and the RSM model. The high 
removal efficiency and low absolute error of the ANN-PSO model indicated that this model was proven to be 
an alternative for modeling and optimizing the Cu(II) removal process. Furthermore, experimental data were 
best fitted to the Langmuir isotherm with 476.19 mg/g of maximum adsorption capacity. The removal kinetics 
of Cu(II) by the nZVI/rGO magnetic nanocomposites followed the pseudo-second order kinetic model and 
intraparticle diffusion model. The thermodynamic parameters revealed that the Cu(II) removal process is 
spontaneous and endothermic in nature. Finally, the Cu(II) removal by nZVI/rGO magnetic nanocompos-
ites was investigated by the XPS analysis, which demonstrated that the removal process was controlled by 
the adsorption and reduction mechanisms. Therefore, the nZVI/rGO magnetic nanocomposites is suitable 
for the remediation of Cu(II) pollution because of its high removal efficiency and easy magnetic separation. 
Future studies can be carried out concerning the modeling and optimization of the complex removal processes 

Figure 8.  XPS analysis of nZVI/rGO composites reacting with Cu(II): wide scan of nZVI/rGO and nZVI/rGO-
Cu(II) nanocomposites (a); Fe 2p of nZVI/rGO and nZVI/rGO-Cu(II) nanocomposites (b); Cu 2p of nZVI/
rGO-Cu(II) nanocomposites (c). (100 mg/L Cu(II) solution, initial pH = 6.00, composites dosage = 30 mg, 
contact time = 1 h and temperature = 20 °C).
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with the aid of empirical models (e.g., RSM and ANN models) and mechanistic models combined with more 
advanced AI techniques.

Materials and Methods
Materials.  In this study, graphite powder (<30 µm) was supplied by Sinopharm Chemical Reagent. All chem-
icals of analytical grades (CuSO4·5H2O, FeSO4·7H2O, NaOH and HCl) were used without further purification. 
The Cu(II) stock solution (1000 mg/L) was prepared by dissolving an amount of CuSO4·5H2O in deionized water, 
which was further diluted for a desired concentration. The preparation procedure of nZVI/rGO magnetic nano-
composites was referred to the supplementary information.

Characterization of nZVI/rGO magnetic nanocomposites.  The size and morphology of nZVI/rGO 
nanocomposites were measured using SEM (Quanta FEG250, FEI, USA) and the high-resolution TEM images of 
nZVI/rGO nanocomposites were taken by a TecnaiG2 F20 microscope (FEI, USA). The magnetic hysteresis loops 
of nZVI/rGO nanocomposites were recorded on a SQUID magnetometer (MPMS XL-7, Quantum Design, USA). 
The XPS measurements were recorded on an ESCALAB 250Xi spectrometer (Thermo Fisher Scientific, USA) 
with monochromatized Al Kα radiation (1486.6 eV) and all binding energies were corrected with the binding 
energy of C1s as a reference. The other characterizations (XRD, SEM, Raman, N2 sorption and FTIR) of nZVI/
rGO nanocomposites were carried out in our earlier study40,41.

Removal experiments.  The Cu(II) removal from aqueous solutions by nZVI/rGO magnetic nanocom-
posites were carried out in 100 mL centrifuge tubes. A known amount of nZVI/rGO magnetic nanocomposites 
(30 mg) was added to 50 mL of Cu(II) solutions with various concentrations (50–600 mg/L). The ranges of operat-
ing temperature, initial pH and contact time were from 20 to 50 °C, 1 to 6 and 1 to 60 min, respectively. The initial 
pH of Cu(II) solution was adjusted to the required values by using 0.1 M NaOH or 0.1 M HCl. The nZVI/rGO 
magnetic nanocomposites were separated from aqueous solutions by a magnet after removal experiments and the 
residual concentration of Cu(II) was then measured by flame atomic absorption spectrophotometer (WFX-210, 
Ray Leigh Corporation, Beijing, China). All experiments were performed in triplicate and the average values of 
the results were used for data analysis.

Back propagation artificial neural network (BP-ANN).  ANNs are known for their learning, modeling 
and prediction capacities of the data, which are composed of input, hidden and output layers. The neurons in 
three layers of an ANN model are the processing units operating independently of others and describe the rela-
tionship between independent and dependent variables51. Back propagation is an iterative optimization process 
in which the mean square error is minimized by adjusting the values of the weight and bias between the neurons. 
The activation functions were used to produce an output by converting a weighted sum of the input52. The acti-
vation function between the input and hidden layer was a tangent sigmoid transfer function, while the function 
between the hidden and output layer was a linear transfer function. The number of neurons in hidden layer was 
chosen based on the minimum value of MSE53. The training data for the ANN model were normalized between 
−1 and 1 to avoid numerical overflows due to large or small weights. The normalized equation can be described 
as follows:

y x x
x x

2 1
(3)i

min

max min
=

−
−

−

where yi stands for the normalized value of x, and xmin and xmax represent the minimum and maximum values of 
x, respectively. To compute the weight of a neuron in hidden layer, Eq. (4) can be put forward:

∑=
=

W w x
(4)b

a

k
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where k is the number of neuron in input layer, wab is the connection weight between neuron a in input layer and 
neuron b in hidden layer, and xa is the value of neuron a in input layer. Similarly, the weight of a neuron in output 
layer can be calculated as follows:

∑=
=

W w x
(5)c

b

z

bc b
1

where z is the number of neuron in hidden layer, wbc represents the connection weight between neuron b in 
hidden layer and neuron c in output layer, and xb stands for the value of neuron b in hidden layer. The weight of 
neuron in hidden layer or output layer was used in the activation function, which produced a predicted output 
by Eq. (6).

= +y f W B( ) (6)

where y, f, W and B are the output, activation function, weight and bias in hidden layer or output layer, 
respectively.

Sensitivity analysis was carried out to investigate the connection weights of the developed ANN model. To 
assess the relative importance of the dependent variables on the independent variable for the Cu(II) removal, 
both Garson equation and possible combination of variables were utilized54,55. The Garson equation can be given 
as follows:
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where Oeg is the relative effect of the eth dependent variable on the gth independent variable, w is the connection 
weight, e, f and g are the number of neurons in the input layer, hidden layer and output layer, respectively.

In this study, a three-layered BP-ANN was established with a tansig function at hidden layer and a purelin 
function at output layer. Input layer has four neurons that represent operating temperature (X1), initial pH (X2), 
initial concentration (X3) and contact time (X4), while output layer has one neuron that represents the Cu(II) 
removal efficiency. Gradient descent back-propagation with momentum and adaptive learning rate (traingdx) 
with 2000 iteration and the goal of MSE (10−5) were employed. Experimental data sets (29 sets) were generated 
from RSM, which were randomly divided into two groups (24 sets for training and 5 sets for testing). The range of 
independent variables (Table S2) was chosen from the single factor experiments, which can be found in Fig. S8. 
The description of RSM can be found in the supplementary information.

Genetic algorithm.  Genetic algorithm is an AI-based stochastic non-linear optimization method through 
simulating the biological selection and genetic mechanism28. This algorithm begins with a population of random 
solution by using operating temperature, initial pH, initial concentration and contact time as optimization vari-
ables. The fitness function was obtained from the developed BP-ANN model, which can be expressed as follows:

= ∗ ∗ + +F Purelin JW sig KW x x x x b b( tan ( [ ; ; ; ] ) ) (8)j k1 2 3 4

where F is the removal efficiency, JW and bk represent the weight and bias in output layer, and KW and bj stand 
for the weight and bias in hidden layer, respectively.

The optimization for the removal process consists of three steps: selection, crossover and mutation. Selection 
is a operation that chooses outstanding individuals from the present population in order to propagate an excel-
lent offspring28. The purpose of crossover and mutation is to interchange the information and genes between 
the individuals, while mutation randomly selects individuals in the population and changes a few genes of the 
individuals56. Both crossover and mutation are employed to create the new and better individuals from parents55. 
The optimization parameters applied in this study including the number of input neurons, initial population, 
maximum generation, crossover probability and mutation probability were 4, 20, 100, 0.8 and 0.01.

Particle swarm optimization.  PSO is an evolutionary algorithm proposed by Kennedy and Eberhart, 
which can avoid trapping in a local minimum since it is not based on gradient descent algorithm31. This was 
inspired by the simulation of the foraging behavior of birds, which searches for the optimization by updating 
the generations57. PSO has a series of operating parameters, such as the initial population, inertia weight and 
acceleration coefficients (personal learning coefficient = c1 and global learning coefficient = c2)32. It starts with 
the following steps: (i) generation of initial population with random positions and velocities; (ii) assessment of 
fitness function for each particle. The former value will be replaced when a new position with better fitness value 
is obtained; (iii) calculation of the new velocity for the particles; (iv) update the position of particle by moving 
toward maximal objective function; (v) this operation will be converged until the iteration number reach the 
maximum58. In the present study, the swarm size, maximum iteration, c1, c2, minimum inertia weight and max-
imum inertia weight were 20, 50, 2, 2, 0.3 and 0.9.
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