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Abstract
Rationale The serotonin 5-HT2A and 5-HT2C receptors
regulate the capacity of acute cocaine to augment behavior
and monoamine levels within the nucleus accumbens
(NAC), a brain region involved in cocaine’s addictive and
psychotogenic properties.
Objectives In the present study, we tested the hypothesis that
NAC 5-HT2A and 5-HT2C receptor activation is involved in
the expression of cocaine-induced neuroplasticity following
protracted withdrawal from a sensitizing repeated cocaine
regimen (days 1 and 7, 15 mg/kg; days 2–6, 30 mg/kg, i.p.).
Methods The effects of intra-NAC infusions of the 5-HT2A
antagonist R-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophe-
nylethyl)]-4-piperidine methanol (MDL 100907; 0, 50, 100,
500 nM) or the 5-HT2C antagonist [6-chloro-5-methyl-1-(6-
(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] inodoline
dihydrochloride (SB 242084; 0, 50, 100, 500 nM) were first
assessed upon the expression of locomotor activity elicited by
a 15-mg/kg cocaine challenge injection administered at 3-
week withdrawal. A follow-up in vivo microdialysis exper-

iment then compared the effects of the local perfusion of 0,
50, or 100 nM of each antagonist upon cocaine-induced
dopamine and glutamate sensitization in the NAC.
Results Although neither MDL 100907 nor SB 242084
altered acute cocaine-induced locomotion, SB 242084 re-
duced acute cocaine-elevated NAC dopamine and glutamate
levels. Intra-NAC perfusion with either compound blocked
the expression of cocaine-induced locomotor and glutamate
sensitization, but only MDL 100907 pretreatment prevented
the expression of cocaine-induced dopamine sensitization.
Conclusions These data provide the first evidence that NAC
5-HT2A and 5-HT2C receptors are critical for the expression
of cocaine-induced neuroplasticity following protracted
withdrawal, which has relevance for their therapeutic utility
in the treatment of addiction.
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Behavioral sensitization refers to the progressive increase in
the psychomotor-activating effects of a drug with repeated
treatment and is a putative mechanism underlying both the
addictive and psychotogenic properties of cocaine (e.g.,
Post and Weiss 1988; Kalivas et al. 1998; Robinson and
Berridge 2000). Moreover, the study of behavioral sensiti-
zation is a technically facile animal model with which to
investigate the short- and long-term molecular and cellular
consequences of repeated cocaine exposure. Enduring
increases in the capacity of cocaine to elevate extracellular
levels of monoamines and glutamate within the nucleus
accumbens (NAC) are considered critical for cocaine’s
behavioral-sensitizing property (e.g., Robinson and Berridge
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2000; Vanderschuren and Kalivas 2000). The expression of
cocaine-induced behavioral and NAC neurochemical sensi-
tization is modulated, in a time-dependent manner, by
ascending serotonin projections from the median raphe
nucleus (Szumlinski et al. 2004). However, the precise
receptor mechanism(s) through which serotonin influences
the expression of cocaine-induced sensitization is not well
understood. Currently, at least 16 different serotonin
receptor subtypes are identified (e.g., Bockaert et al.
2006), of which the 5-HT2A and 5-HT2C receptors have
received considerable experimental attention vis-à-vis
their interactions with drugs of abuse (e.g., Di Giovanni
et al. 2006; Berg et al. 2008). Indeed, studies employing
selective ligands for the 5-HT2A and 5-HT2C receptors
implicate these receptors as potential sites through which
cocaine-induced increases in serotonin might impinge
upon cocaine-induced changes in behavior and NAC
neurotransmission of relevance to addiction.

In general, systemic pretreatment with 5-HT2A agonists
enhances, while antagonist pretreatment attenuates, cocaine
addiction-related behaviors (O’Neill et al. 1999; Filip and
Cunningham 2002, 2003; McMahon and Cunningham
2001; Fletcher et al. 2002; Filip et al. 2004), and the
capacity of 5-HT2A receptor stimulation to facilitate NAC
dopamine release has been implicated in this regard
(Schmidt et al. 1992). In contrast, 5-HT2C receptor stimulation
inhibits stimulated dopamine release within striatal regions
(e.g., Di Matteo et al. 1999; Gobert et al. 2000; Navailles et
al. 2004) and attenuates various measures of cocaine-induced
psychomotor activation, reward, and reinforcement (Callahan
and Cunningham 1995; Grottick et al. 2000; Filip and
Cunningham 2003; Filip et al. 2004; Fletcher et al. 2004,
2008; Neisewander and Acosta 2007). Conversely, systemic
pretreatment with selective 5-HT2C receptor antagonists
augments the NAC dopamine-elevating effects of cocaine
(Navailles et al. 2004) and increases acute cocaine-induced
locomotor activity, cocaine self-administration, as well as
cocaine-primed reinstatement of cocaine-seeking behavior
(Fletcher et al. 2002, 2006; Filip et al. 2004), but does not
significantly affect the development or expression of cocaine-
induced locomotor sensitization (Filip et al. 2004).

5-HT2A and 5-HT2C receptors exhibit moderate to high
expression within the ventral tegmental area (VTA) and its
major forebrain terminal regions, including the NAC
(Compan et al. 1998a, b; Eberle-Wang et al. 1997; Clemett
et al. 2000; Bubar and Cunningham 2006). While the effects
of intra-VTA infusions of 5-HT2A and 5-HT2C ligands upon
cocaine-induced changes in behavior and NAC dopamine
levels more or less parallel those observed upon systemic
pretreatment (McMahon et al. 2001; Fletcher et al. 2004;
Navailles et al. 2008), data obtained from studies aimed at
the NAC are either inconclusive or opposite those observed
upon systemic ligand pretreatment (McMahon et al. 2001;

Filip and Cunningham 2002). Such discrepancies might
relate to biphasic effects of receptor ligands upon cocaine’s
capacity to elevate NAC dopamine levels (Navailles et al.
2008), but this possibility has not been thoroughly investi-
gated. To gain a deeper understanding of how NAC 5-HT2A

and 5-HT2C receptors modulate the enduring behavioral and
neurochemical effects of repeated cocaine, the present study
established the dose–effect functions for the selective 5-
HT2A antagonist MDL 100907 (Kehne et al. 1996) and the
selective 5-HT2C antagonist SB 242084 (Kennett et al. 1997)
upon the long-term expression of cocaine-induced locomotor
sensitization, as well as the sensitization of cocaine-induced
increases in NAC dopamine and glutamate.

Materials and methods

Subjects Experimentally naïve male Sprague-Dawley rats
(Charles River, Hollister, CA; weighing 225–250 g at the start
of the experiment) were housed in pairs in polyethylene cages
(35×30×16 cm) in a temperature-controlled (25°C) colony
room, under a 12-h day–12-h night cycle (lights off 1900
hours). Food and water were available ad libitum. Rats were
allowed to acclimatize to the colony room for 4–5 days
following arrival. All treatment sessions occurred during the
light phase of the day–night cycle, beginning at 0900 hours.
All experimental protocols were approved by the Institutional
Animal Care and Use Committee of the University of
California at Santa Barbara and were consistent with the
guidelines of the NIH Guide for Care and Use of Laboratory
Animals (NIH Publication no. 80-23, revised 1996).

Drugs Cocaine hydrochloride (Sigma-Aldrich, St. Louis,
MO) was dissolved in 0.9% physiological saline, and
saline served for control injections (volume=1.0 ml/kg).
The 5-HT2A antagonist MDL 100907 [R-(+)-α-(2,3-
dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine
methanol] and the 5-HT2C antagonist SB 242084 ([6-
chloro-5-methyl-1-(6-(2-methylpiridin-3-yloxy)pyridine-3-yl
carbamoyl] inodoline dihydrochloride) (Solvay Pharmaceut-
icals Research, Weesp, The Netherlands) were dissolved in
45% (w/v) cyclodextrin (Sigma-Aldrich) and were diluted to
the final working concentrations of 50, 100, and 500 nM
using saline (for behavioral experiments) or aCSF (146 nM
NaCl, 1.2 mM CaCl2, 2.7 mM KCl, 1.0 mM MgCl2, pH=
7.4; for microdialysis experiments) and a 45% cyclodextrin
solution (in saline or aCSF) served for control intra-NAC
injections (vol=0.25 μl/side) and microdialysis perfusions,
respectively.

Apparatus Locomotor activity was monitored in a non-
colony room containing four black Plexiglas activity
chambers (22×43×33 cm), above which were mounted
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two digital video cameras interfaced to a PC-type computer,
and the total distance traveled by the animal (in meter) was
tabulated with ANYMaze software (Stoelting Company,
Wood Dale, IL). In vivo microdialysis was conducted in a
different non-colony room containing eight Rubbermaid™
microdialysis chambers (45×90×70 cm), each equipped
with a liquid swivel suspended from a balance arm (CMA
Microdialysis, Chelmsford, MA). aCSF or antagonist was
delivered through PE50 tubing that was connected to an
infusion pump and then routed through a 3-port liquid
switch (CMA Microdialysis) to the swivel. The HPLC
system consisted of a Coularray detector, a Model 542
autosampler, and two Model 582 solvent delivery systems
(ESA Inc., Bedford, MA), which enabled the sequential
detection of monoamines and amino acids from each dialysate
sample (detection limit for each cell=0.01 ng/sample; e.g.,
Szumlinski et al. 2008). For dopamine (27 μl/sample onto
column), the mobile phase consisted of 0.075 μM NaH2PO4,
25 μM EDTA, 0.0017 μM 1-octanesulfonic acid, 10%
acetonitrile (v/v), pH 3.0, and monoamines were separated
using a MD-150×3.2 column (15 cm; ESA Inc.) and an ESA
5014B analytical cell with two electrodes (E1, −150 mV;
E2, +220 mV) was used. For glutamate (20 μl/sample
onto column), the mobile phase consisted of 100 mM
NaH2PO4, 22% methanol (v/v), 3.5% acetonitrile (v/v) pH=
6.75, and amino acids were separated using a CAPCELL
PAK C18 MG column (5 cm; Shiseido Company Ltd., Tokyo
Japan). An ESA 5011A analytical cell with two electrodes
(E1, +150 mV; E2, +550 mV) was used for the electrochem-
ical detection of glutamate, following precolumn derivatiza-
tion with o-phthalaldehyde (2.7 mg/ml) using the
autosampler. Neurotransmitter content in each sample was
analyzed by peak height and was compared with external
standard curves (one for dopamine and one for glutamate) for
quantification using ESA Coularray for Windows software.

Surgery The ventromedial portion of the NAC (the shell)
expresses a greater degree of serotonin innervation (Brown
and Molliver 2000) and expresses higher levels of both 5-
HT2A and 5-HT2C receptors compared to the more lateral
(core) subregion (e.g., Compan et al. 1998a, b; Clemett et
al. 2000). Thus, under isoflurane anesthesia (4% for
induction; 1.5–2.5% for maintenance), microinjector guide
cannulae (26 gauge, 20 mm; Plastics One, Roanoke VA)
were implanted bilaterally 2 mm over the NAC shell for
animals slated for the behavioral experiments, and micro-
dialysis guide cannulae (20 gauge, 20 mm, Plastics One)
were implanted bilaterally 3 mm over the NAC shell for the
neurochemical experiments using the following coordinates:
AP, +1.1 mm; ML, ±2.5 mm; DV for behavior, −5.7 mm; DV
for microdialysis, −4.7 mm; 6° angle from vertical (e.g.,
Szumlinski et al. 2003, 2004). The coordinates were based on
the rat brain atlas of Paxinos and Watson (2000). The AP and

ML coordinates are relative to Bregma, while the DV
coordinates are relative to the surface of the skull. The guide
cannulae were fixed to the skull with four stainless steel skull
screws (Small Parts, Roanoke, VA) and dental acrylic.
Appropriately sized dummy cannulae were inserted into the
guide cannulae to prevent externalization. Animals were
monitored for changes in health for at least 5 days prior to
beginning drug treatment.

Behavioral sensitization procedures Following recovery
from surgery, animals were habituated to the activity
monitors for 60 min. Animals then received seven, once
daily, injections of either saline or cocaine (days 1 and 7,
15 mg/kg; days 2–6, 30 mg/kg), using a repeated treatment
regimen demonstrated previously to elicit robust long-term
sensitization in rats (e.g., Szumlinski et al. 2003, 2004). On
injections 1 and 7, the locomotor activity of the animals was
monitored for 2 h, while on injections 2–6, animals were
returned to their home cages following injection. A
comparison of the total distance traveled from injections 1
to 7 of repeated treatment served to index the extent of
locomotor habituation and locomotor sensitization exhibited
respectively by repeated saline- and cocaine-treated animals
(data not shown). A 2-h test for behavioral sensitization was
conducted 3 weeks later (Szumlinski et al. 2003, 2004), in
which the effects of an intra-NAC infusion of 0, 50, 100, or
500 nM MDL 100907 or SB 242084 were assessed upon the
capacity of a 15-mg/kg cocaine challenge injection to elicit
locomotor activity. Assignment of rats to their intra-NAC
pretreatments was such that each repeated saline and
repeated cocaine group exhibited equivalent locomotor
behavior prior to the test for sensitization (i.e., based on the
change in locomotor activity from injections 1 to 7 of
repeated treatment). The intra-NAC infusion procedures
were similar to those employed in a previous intra-cranial
infusion study (Szumlinski et al. 2004) and involved careful
removal of the dummy cannulae, bilateral insertion of
injector cannulae (33 gauge, 22 mm), and the infusion of
0.25 μl/side of the appropriate test dose at a rate of 0.25 μl/
min. Injectors remained in place for an additional 60 s to
allow for diffusion of the drug away from the injector tip, at
which time the injectors were removed and animals injected
i.p. with 15 mg/kg cocaine. Cocaine-induced locomotion
was then monitored in 10-min bins for 2 h. Sensitization on
test day was defined as a significant increase in the
locomotor activity of animals with repeated cocaine experi-
ence, relative to their saline-pretreated counterparts receiving
cocaine for the first time.

Neurochemical sensitization procedures Rats were treated
repeatedly with either saline or cocaine as described for the
behavioral study above with the exception that all injections
occurred in the colony room, and locomotor activity was
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not assessed. As in the locomotor study, 3 weeks were
allowed prior to in vivo microdialysis procedures. Animals
were randomly assigned to three groups receiving 0, 50, or
100 nM MDL 100907 or three groups receiving 0, 50, or
100 nM SB 242084. The effects of the 500 nM dose of
either antagonist were not assessed as the behavioral data
indicated that a maximal effect upon behavior was
produced by the 100 nM dose of both compounds (see
“Results” section below). Similar to earlier microdialysis
studies (e.g., Szumlinski et al. 2003, 2004), microdialysis
probes (24 gauge; 23 mm in length incl. 1.0–1.5 mm active
membrane) were inserted unilaterally into the NAC and
perfused overnight (at least 12 h prior to sample collection)
at a rate of 0.2 μl/min with aCSF (see Drugs). Probe
insertion was counterbalanced across all treatment groups
to reduce asymmetry confounds (Glick and Carlson 1989).
The following morning (∼0900 hours), the flow rate was
increased to 2.0 μl/min for a minimum of 2 h prior to
sample collection. Testing began with a 1-h baseline
collection period in which dialysate was sampled every
20 min. The assigned concentration of MDL 100907 or SB
242084 was then perfused via the microdialysis probe for
20 min, after which time all animals were injected i.p. with
15 mg/kg cocaine. Perfusion of the assigned concentration
of antagonist then continued for 3 h post-cocaine injection,
and samples were collected in 20-min fractions. As
conducted previously (e.g., Szumlinski et al. 2003, 2004,
2008), oxidation of dopamine in the dialysate was minimized
by the addition of 10 μl of preservative prior to sample
collection (4.76 mM citric acid, 150 mM NaH2PO4, 50 μM
EDTA, 3 mM sodium dodecyl sulfate, 10% methanol (v/v),
15% acetonitrile (v/v), pH 5.6). The microdialysis procedures
were repeated 3–4 days later via unilateral probe insertion
into the opposite side of the cranium. On the second session,
animals received vehicle or a different antagonist test dose
than that infused during the first microdialysis session. As
there were three doses per antagonist (0, 50, and 100 nM),
the assignment of the second dose was done in a pseudo-
counterbalanced fashion such that half of the animals
administered the 0 nM dose on session 1 received the
50 nM dose on session 2, while the remaining half received
the 100 nM dose, etc. In this way, each animal was tested
with two out of three possible antagonist concentrations over
the two microdialysis sessions.

Histology Following the tests for sensitization, rats were
euthanized and their brains removed and placed in a 10%
formalin solution. After fixation, the brains were sectioned
along the coronal plane on a vibratome at the level of the
NAC (100 μm; AP +2.2 to 1.0 mm, relative to Bregma),
according to the atlas of Paxinos and Watson (2000).
Sections were stained with cresyl violet for histological
examination under a light microscope. Only rats whose

injector cannulae (Fig. 1) or microdialysis probes (Fig. 2)
were located within the boundaries of the ventromedial
NAC (i.e., the shell) were included in the statistical analysis
of the data. The final samples sizes employed in the
statistical analysis of the data are indicated in their
corresponding figures (see “Results” section).

Statistical analysis For the locomotor studies, the 2-h time-
course of the distance traveled throughout the entire activity
chamber (distance in meter) on the test for sensitization
served as the principal variable of interest. For each
antagonist, the time-courses of locomotion were analyzed
by a pretreatment (0, 50, 100, or 500 nM)×repeated
treatment (saline vs. cocaine)×time analysis of variance
(ANOVA), with repeated measures on the time factor (12,
10-min bins). To facilitate group comparisons, the total
distance traveled during the 2-h test session was also
analyzed using a pretreatment×repeated treatment ANOVA.
To confirm the presence of sensitization, a priori compar-
isons were conducted on the time-course data using
repeated treatment×time ANOVAs and on the total loco-
motor data using a univariate ANOVA between repeated
saline- and cocaine-treated animals, separately for each
pretreatment group.

For the in vivo microdialysis experiments, the average
basal concentration of each neurotransmitter was deter-
mined based upon the three samples collected during
baseline sampling and analyzed using a pretreatment (0,
50, or 100 nM)×repeated treatment (saline vs. cocaine)×
hemisphere (left vs. right) ANOVA. As expected, there was
no main effect of, or interaction with, the hemisphere factor
for either basal dopamine (for MDL 100907, p>0.09; for
SB 242084, p>0.13) or glutamate (for MDL 100907, p>
0.25; for SB 242084, p>0.53). Thus, to simplify analyses
of the time-course data of cocaine’s effects upon dopamine
and glutamate, hemisphere was not included in any further
statistical analyses of the neurochemical findings. The time-
course of cocaine-induced changes in dopamine and
glutamate was analyzed using a pretreatment×repeated
treatment×time ANOVA, with repeated measures on the
time factor (12, 20-min samples; 3 baseline+9 post-
systemic injection). To facilitate visualization of the effects
of intra-NAC pretreatment upon the magnitude of neuro-
chemical sensitization, the data post-cocaine injection were
expressed as the percent change from the average of the
three baseline samples (Szumlinski et al. 2004) and the
time-course of the neurochemical changes subjected to a
pretreatment×repeated treatment×time ANOVA. The area
under the curve (AUC or cumulative percent change from
baseline) for the time-course data was also calculated and
then subjected to a pretreatment×repeated treatment
ANOVA. Again, to confirm the presence of neurochemical
sensitization, a priori comparisons were also conducted on
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the time-course and AUC data between repeated saline- and
cocaine-treated animals using, respectively, a repeated
treatment×time ANOVA and an univariate ANOVA,
separately for each pretreatment group.

For both the behavioral and neurochemical data, signif-
icant interactions were deconstructed for main effects,
followed by post hoc analyses using t tests. α=0.05 for
all analyses.

Results

The effects of intra-NAC 5-HT2A blockade with MDL
100907 upon the expression of cocaine-induced behavioral
sensitization Statistical analysis of the data indicated that
pretreatment with MDL 100907 did not influence the
capacity of repeated cocaine to elicit locomotor sensiti-
zation when animals were challenged with 15 mg/kg
cocaine at 3 weeks withdrawal (repeated treatment×time:
F(11,484)=1.88, p=0.04; repeated treatment×pretreat-
ment×time: p>0.90). As illustrated in Fig. 3, intra-NAC
MDL 100907 reduced cocaine-induced locomotion, but
this effect appeared to be independent of the repeated

cocaine experience of the animal (pretreatment effect: F
(3,44)=4.73, p=0.006; repeated treatment×pretreatment
interactions, p>0.05). However, planned comparisons
conducted between repeated saline and repeated cocaine
groups independently for each MDL 100907 pretreatment
indicated saline–cocaine differences for rats pretreated
with vehicle (repeated treatment effect: F(1,11)=4.98, p=
0.05) and 50 nM MDL 100907 (repeated treatment×time:
F(11,154)=1.89, p=0.04), but not for rats pretreated with
100 or 500 nM MDL 100907 (compare open vs. closed
symbols in Fig. 3). A two-way repeated treatment×
pretreatment ANOVA conducted on the total distance
traveled by the animals during the 2-h session yielded
similar statistical results as the time-course analysis
(Fig. 3c; pretreatment effect: F(3,54)=5.61, p=0.002;
repeated treatment effect: F(1,54)=8.82, p=0.005; inter-
action: p>0.10), but planned comparisons indicated
significant cocaine–saline differences only for rats pre-
treated with vehicle (F(1,12)=5.95, p=0.03; for all other
MDL 100907 doses, p>0.05). These data indicate that
blocking 5-HT2A receptors within the NAC reduces
cocaine-induced locomotion and, importantly, completely
prevents the expression of cocaine-induced locomotor
sensitization.

A

B

MDL 100907
0 nM 50 nM 100 nM 500 nM

SB 242084
0 nM 50 nM 100 nM 500 nM

Fig. 1 Summary of the
microinjector tip placements
within the nucleus accumbens of
rats pretreated with MDL
100907 (a) or SB 242084 (b).
The placements of saline-treated
animals are indicated by open
symbols, while those of
cocaine-treated animals are
indicated by closed symbols
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The effects of intra-NAC 5-HT2A blockade with MDL
100907 upon the expression of cocaine-induced neuro-
chemical sensitization An analysis of baseline NAC extra-
cellular dopamine levels prior to intra-NAC MDL 100907
infusion and the administration of the cocaine challenge
injection yielded no differences between the six groups
(Table 1).

NAC perfusion with MDL 100907 affected the dopamine
response to cocaine in a manner dependent upon the prior
cocaine experience of the animal (Fig. 4a, b) (raw data:
repeated treatment×pretreatment×time: F(22,407)=2.24, p=
0.001; normalized data: F(22,407)=2.55, p<0.0001). De-
construction of the significant three-way interaction along
the repeated treatment factor indicated a reduction in the
NAC dopamine response to cocaine by MDL 100907 in
cocaine-treated animals (raw data: repeated treatment×time:
F(22,220)=2.89, p<0.0001; normalized data: F(22,220)=
3.83, p=0.006), but not in saline-treated controls. In vehicle-
perfused animals, the 15 mg/kg cocaine challenge produced
an approximately 500% increase in NAC extracellular

dopamine levels in cocaine-treated rats, compared to the
approximately 200% increase in dopamine observed in saline-
treated controls (Fig. 4b), and planned comparisons between
these two vehicle groups indicated dopamine sensitization
(raw data: repeated treatment×time: F(11,143)=2.40, p=
0.009; normalized data: F(11,143)=2.59, p=0.005). In
contrast, cocaine–saline differences in the NAC dopamine
response to cocaine were not apparent for animals perfused
with either dose of MDL 100907 (Fig. 4b; repeated
treatment×time interactions, p>0.5). The differential effects
of MDL 100907 infusion upon the dopamine response to
cocaine between repeated saline- and cocaine-treated rats
were even more apparent when the AUC for the data
presented in Fig. 4b was considered (repeated treatment×
pretreatment: F(2,42)=9.0, p<0.001). As depicted in Fig. 4c,
the cumulative cocaine-elicited rise in dopamine was greater
in vehicle-treated cocaine animals, relative not only to their
saline controls, but also in comparison to their cocaine
counterparts pretreated with either 50 or 100 nM MDL
100907 (pretreatment effect: F(2,22)=13.32, p<0.0001). In
contrast, the cumulative cocaine-elicited rise in dopamine did
not vary across the pretreatment groups in repeated saline-
treated animals (pretreatment effect, p>0.05). These data
indicate that intra-NAC 5-HT2A blockade prevents the
expression of cocaine-induced dopamine sensitization, with-
out influencing the capacity of acute cocaine to elevate NAC
dopamine levels.

Withdrawal from repeated cocaine treatment reduced
basal NAC extracellular glutamate levels, but the magni-
tude of this cocaine effect did not vary across the three
pretreatment groups (Table 1; repeated treatment effect: F
(1,47)=12.32, p=0.001). The effects of intra-NAC MDL
100907 upon the glutamate response to the cocaine
challenge injection paralleled those observed for dopamine,
despite the cocaine-induced reduction in NAC extracellular
levels of glutamate (Fig. 4d, e; raw data: pretreatment×
repeated treatment×time: F(22,462)=1.82, p=0.01; nor-
malized data: F(22,462)=2.67, p<0.0001). Deconstruction
of the significant three-way interaction along the repeated
treatment factor indicated no effect of MDL 100907 upon
the marginal rise in NAC glutamate produced by an acute
injection of 15 mg/kg cocaine. In contrast, intra-NAC MDL
100907 completely abolished the approximately 500%
increase in extracellular glutamate produced by the
15 mg/kg cocaine challenge in cocaine-treated animals
(raw data: pretreatment×time: F(22,253)=5.09, p<0.0001;
normalized data: F(22,253)=4.91, p<0.0001]. Planned
comparisons indicated cocaine–saline differences in
vehicle-perfused animals (raw data: repeated treatment×time:
F(11,165)=2.28, p=0.02; normalized data: F(11,165)=
3.32, p<0.0001), but not in animals perfused with either
dose of MDL 100907 (Fig. 4d, e). Again, the selective
effect of intra-NAC MDL 100907 pretreatment upon the

A

B SB 242084
0 nM 50 nM 100 nM

MDL 100907
0 nM 50 nM 100 nM

Fig. 2 Summary of the microdialysis active membrane placements
within the nucleus accumbens of rats pretreated with MDL 100907 (a)
or SB 242084 (b). The placements of saline-treated animals are
indicated by open symbols, while those of cocaine-treated animals are
indicated by closed symbols
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cocaine-sensitized rise in glutamate was very apparent from
an AUC analysis of the data presented in Fig. 4e (repeated
treatment×pretreatment: F(2,47)=3.12, p=0.04). As
depicted in Fig. 4f, a cocaine-elicited rise in glutamate
was only apparent in vehicle-pretreated cocaine controls,
and this rise was abolished by intra-NAC pretreatment with
either 50 or 100 nM MDL 100907 (pretreatment effect: F
(2,25)=7.64, p=0.003). In contrast, the cumulative change
in glutamate levels exhibited by repeated saline-treated
animals did not vary with intra-NAC MDL 100907
pretreatment (pretreatment effect, p>0.05). Thus, intra-
NAC 5HT2A antagonism also completely blocks the

expression of cocaine-induced glutamate sensitization with-
in the NAC.

The effects of intra-NAC 5-HT2C blockade with SB 242084
upon the expression of cocaine-induced locomotor sensiti-
zation As illustrated in Fig. 5, intra-NAC SB 242084
pretreatment reduced cocaine-induced locomotion selec-
tively in rats with repeated cocaine experience (pretreat-
ment×repeated treatment× time: F(33,484)=3.25, p<
0.0001). Deconstruction of the three-way interaction along
the repeated treatment factor confirmed an SB 242084
effect in cocaine-treated rats (pretreatment× time: F

Dopamine (pg/sample) Glutamate (ng/sample)

MDL 100907

Saline 0 nM 2.9±0.9 (6) 4.0±1.1 (7)

Saline 50 nM 3.9±0.8 (8) 3.3±1.1 (7)

Saline 100 nM 3.2±0.7 (6) 3.4±1.1 (8)

Cocaine 0 nM 3.9±0.8 (9) 2.0±0.2 (10)

Cocaine 50 nM 5.0±1.2 (6) 1.3±0.2 (7)

Cocaine 100 nM 4.2±0.5 (8) 1.1±0.2 (9)

SB 242084

Saline 0 nM 3.8±1.1 (7) 3.1±0.6 (7)

Saline 50 nM 3.7±0.6 (7) 3.9±0.3 (11)

Saline 100 nM 2.6±0.3 (7) 3.8±0.7 (8)

Cocaine 0 nM 3.9±0.8 (9) 2.0±0.1 (10)

Cocaine 50 nM 5.2±0.8 (7) 2.9±0.3 (9)

Cocaine 100 nM 4.0±0.5 (7) 2.2±0.2 (6)

Table 1 Summary of the
extracellular dopamine and
glutamate levels exhibited by
the different repeated saline- and
cocaine-treated groups prior to
NAC perfusion with MDL
100907 and SB 242084
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(33,253)=5.21, p<0.0001), but not in saline animals, and
deconstruction along the pretreatment factor indicated the
presence of sensitization in vehicle-perfused controls (Fig. 5a;
repeated treatment×time, p>0.05), in rats perfused with
50 nM SB 242084 (Fig. 5b; repeated treatment×time: F
(11,110)=14.66, p<0.0001), and in rats perfused with
100 nM SB 242084 (Fig. 5c; repeated treatment×time: F
(11,121)=3.65, p<0.001), although this latter interaction
reflected saline–cocaine differences only during the first 10-
min time-bin (Fig. 5a vs. b, triangles; post hoc tests). No
sensitization was apparent in cocaine-treated rats perfused
with 500 nM SB 242084. Similar statistical results were
obtained upon analysis of the total distance traveled by the

animals (Fig. 5c) (pretreatment×repeated treatment: F
(3,51)=6.56, p=0.001), with planned comparisons revealing
cocaine–saline differences for rats pretreated with vehicle (F
(1,13)=8.93, p=0.01) and 50 nM SB 242084 (F(1,11)=
28.93, p<0.0001), but not the two higher SB 242084 doses.
Thus, blocking 5-HT2C receptors within the NAC also
attenuates the expression of cocaine-induced locomotor
sensitization following protracted withdrawal.

The effects of intra-NAC 5-HT2C blockade with SB 242084
upon the expression of cocaine-induced neurochemical
sensitization A comparison of the basal dopamine levels
between the different groups failed to reveal group differences
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Fig. 4 Effects of intra-NAC 5-HT2A blockade with MDL 100907
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328 Psychopharmacology (2011) 213:321–335



(Table 1). The effects of an intra-NAC infusion of SB
242840 upon the dopamine response to cocaine depended
upon the prior cocaine history of the animal (Fig. 6a, b; raw
data: pretreatment×repeated treatment×time: F(22,418)=
2.70, p<0.0001; normalized data: F(22,418)=2.24, p=
0.001). Deconstruction of the three-way interaction along
the repeated treatment factor revealed SB 242084 effects in
cocaine-treated rats (Fig. 6b; raw data: F(22,220)=3.92, p<
0.0001; normalized data: F(22,220)=2.58, p<0.0001), but
not in saline animals (Fig. 6a). Planned comparisons
indicated dopamine sensitization in vehicle-perfused controls
(raw data: repeated treatment×time: F(11,154)=3.59, p<
0.0001; normalized data: F(11,154)=2.35, p=0.01) and in
rats perfused with 50 nM SB 242840 (raw data: F(11,132)=
2.42, p=0.009; normalized data: F(11,132)=1.98, p=0.04).
In rats perfused with intra-NAC with 100 nM SB 242840, a
significant repeated treatment×time interaction was observed
when the raw time-course data were examined (F(11,132)=
4.16, p<0.0001). However, post hoc analyses failed to
indicate cocaine–saline differences at any time-point prior
to, or following, cocaine injection (Fig. 5a), and an analysis
of the normalized data made it apparent that the interaction at
100 nM SB 242084 reflected a blunted cocaine-induced rise
in dopamine in cocaine-treated vs. saline-treated rats
(Fig. 5b; F(11,132)=6.83, p<0.0001; post hoc tests). As
was found for the MDL 100907 study (see Fig. 4c), the
differential effects of SB 242084 infusion upon the dopamine
response to cocaine between repeated saline- and cocaine-
treated rats were more apparent when the AUC for the data
presented in Fig. 6b was considered (repeated treatment×

pretreatment: F(2,43)=8.78, p=0.001). As depicted in
Fig. 6c, the cumulative cocaine-elicited rise in dopamine
has greater in vehicle-treated cocaine animals, relative not
only to their saline controls, but also in comparison to their
cocaine counterparts pretreated with either 50 or 100 nM
MDL 100907 (pretreatment effect: F(2,22)=10.07, p=
0.001). In contrast, the cumulative cocaine-elicited rise in
dopamine did not vary across the pretreatment groups in
repeated saline-treated animals (pretreatment effect, p>0.05).
These data indicate that intra-NAC 5-HT2C blockade with
SB242084 prevents the expression of cocaine-induced
dopamine sensitization in the NAC, without significantly
influencing the capacity of acute cocaine to elevate NAC
dopamine levels.

As observed in the MDL 100907 study (Table 1),
withdrawal from repeated cocaine treatment reduced basal
extracellular levels of NAC glutamate also in the SB
242084 study, but the magnitude of this cocaine effect did
not vary across the three pretreatment groups (Table 1;
repeated treatment effect: F(1,50)=3.84, p=0.03). As
illustrated in Fig. 6d, e, intra-NAC SB 242084 perfusion
differentially affected the glutamate response to cocaine in
repeated saline and cocaine animals (pretreatment×treat-
ment×time: F(22,495)=2.02, p=0.004; normalized data: F
(22,495)=3.25, p<0.0001). Deconstruction of the three-
way interaction along the repeated treatment factor sup-
ported an SB242084 effect in rats treated repeatedly with
cocaine (raw data: pretreatment×time: F(22,242)=5.22, p<
0.0001; normalized data: F(22,242)=5.13, p<0.0001), but
not in saline-treated rats (interactions, p>0.10). Planned
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Fig. 5 Effects of intra-NAC 5-HT2C blockade with SB 242084 upon
the acute and sensitized locomotor response to cocaine. a Summary of
the effects of 0, 50, 100 and, 500 nM of the 5-HT2C antagonist SB
242084 administered into the NAC upon the time-course of locomotor
hyperactivity elicited by an acute injection of 15 mg/kg cocaine,
administered 3 weeks following repeated saline treatment. b Summary
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locomotion elicited by a 15 mg/kg cocaine challenge injection,
administered 3 weeks following repeated cocaine treatment. *p<0.05
for 0 nM-Cocaine vs. respective Saline; **p<0.05 for both 0 &
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comparisons revealed cocaine–saline differences between
animals perfused with vehicle (0 mM: raw data: treatment×
time: F(11,165)=2.04, p=0.03; normalized data: F(11,165)=
3.44, p<0.0001), but not in the groups infused with either
50 nM (Fig. 6d, e; interactions, p>0.40) or 100 mM
SB242084 (interactions, p>0.15). Interestingly, an analysis
of the effects of intra-NAC SB 242084 upon the cumulative
rise in NAC glutamate produced by the cocaine challenge
(from Fig. 6e) revealed a significant repeated treatment×
pretreatment interaction (F(2,45)=3.62, p=0.04), suggesting
a differential effect of SB 242084 upon cocaine-induced
glutamate release. However, as depicted in Fig. 6f, intra-
NAC SB 242084 not only abolished the cocaine-sensitized
rise in glutamate in repeated cocaine-treated animals (pre-

treatment effect: F(2,24)=8.69, p=0.002), but the 100 nM
dose also significantly reduced cumulative glutamate levels
in repeated saline-treated controls (pretreatment effect: F
(2,25)=4.00, p=0.03). Thus, intra-NAC blockade of 5HT2C

receptors by SB 242084 completely blocks the expression of
glutamate sensitization, as well as reduces basal extracellular
levels of glutamate in the NAC.

Discussion

Both 5-HT2A and 5-HT2C receptors are expressed in
moderate to high abundance within both the cell body and
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terminal regions of the mesolimbic dopamine system,
including the NAC (Compan et al. 1998a, b; Eberle-Wang
et al. 1997; Clemett et al. 2000; Bubar and Cunningham
2006). Repeated cocaine administration sensitizes the
capacity of this drug to elevate extracellular levels of
serotonin within the NAC (Parsons and Justice 1993;
Szumlinski et al. 2004), and ascending serotonin projections
to the NAC from both the median and dorsal raphe modulate
the long-term expression of cocaine-induced behavioral and
neurochemical sensitization (Szumlinski et al. 2004). How-
ever, studies designed to address the precise role for NAC 5-
HT2A and 5-HT2C receptors have yielded conflicting results
with respect to the psychomotor-activating properties of
cocaine, and little study has focused on their role in the
manifestation of cocaine-induced behavioral sensitization
following protracted periods of withdrawal from repeated
cocaine treatment. Thus, the present study employed intra-
NAC infusion of selective 5-HT2A and 5-HT2C antagonists
to examine the functional relevance of these receptors for the
acute and sensitized locomotor and neurochemical responses
to cocaine.

NAC 5-HT2A receptors and cocaine-induced neuroplasticity

In contrast to the attenuating effect of systemic 5-HT2A

antagonist pretreatment upon acute cocaine-induced loco-
motion (O’Neill et al. 1999; Filip and Cunningham 2002;
McMahon and Cunningham 2001; Filip et al. 2004) and the
expression of cocaine-induced locomotor sensitization in
rats withdrawn for 5 days from repeated cocaine treatment
(Filip et al. 2004), intra-NAC 5-HT2A blockade was
reported to produce negligible effects upon acute cocaine-
induced locomotion (McMahon et al. 2001). The results of
the present locomotor study, using a fivefold dose-range of
the selective 5-HT2A antagonist MDL 100907, are more
consistent with those of Filip et al. (2004) in that intra-NAC
MDL 100907 reduced cocaine-induced locomotion, regard-
less of the prior cocaine history of the animal (Fig. 3). Even
at the lowest dose tested (50 nM), intra-NAC MDL 100907
reduced the expression of cocaine-induced locomotion by
approximately 50% in both repeated treatment groups
(Fig. 3c), and all MDL 100907 doses reduced the level of
cocaine-induced locomotion exhibited by repeated cocaine-
treated rats down to that of their repeated saline counter-
parts (Fig. 3c). While the MDL 100907 attenuation of
cocaine-induced locomotion might reflect some disruption
in motor capacity, this possibility is mitigated by existing
evidence that neither systemic nor intra-cranial MDL
100907 pretreatment affects spontaneous/saline-induced
locomotor activity (e.g., McMahon and Cunningham
2001; McMahon et al. 2001; Filip et al. 2004). The present
data point to the activation of NAC shell 5-HT2A receptors
by cocaine-elicited increases in 5-HT as a neural substrate

mediating both the acute and the persistent effects of
cocaine upon psychomotor activity.

5-HT2A receptors facilitate neuronal excitability within
the cell body and terminal regions of the mesolimbic
dopamine system; the local perfusion of the NAC with the
non-selective 5-HT2 agonist DOI elevates extracellular
dopamine levels (Bowers et al. 2000; Yan et al. 2000),
while systemic pretreatment with both selective and non-
selective 5-HT2A antagonists (but not mixed 5-HT2B/2C)
reduce the NAC dopamine response elicited by dorsal raphe
stimulation (De Deurwaerdère and Spampinato 1999). Of
relevance to this study, systemic pretreatment with the non-
selective 5-HT2A/2C antagonist ketanserin is reported to
block the capacity of acute cocaine to elevate NAC levels
of both dopamine and serotonin (Broderick et al. 2004), and
systemic pretreatment with the 5-HT2A preferring antago-
nist SR 46349B reduces both amphetamine- and morphine-
induced dopamine release in the NAC (Auclair et al. 2004a,
b; Porras et al. 2002). Moreover, repeated cocaine-treated
rats exhibit an increased capacity of DOI to elevate NAC
dopamine levels (Yan et al. 2000), indicating a sensitization
of this effect by repeated cocaine experience. The results of
the present study extend these earlier dopamine findings by
demonstrating that the intra-NAC perfusion of the selective
5-HT2A antagonist MDL 100907 reduces the capacity of
cocaine to elevate NAC extracellular dopamine levels but,
interestingly, only in animals with repeated cocaine
experience (Fig. 4a–c).

While no published report exists concerning 5-HT2A

receptor regulation of NAC extracellular glutamate, con-
siderable electrophysiological and neurochemical data
indicate that in various frontal cortical regions, 5-HT2A

receptor activation stimulates glutamate release and/or
increases glutamate neuron excitability via both pre- and
postsynaptic mechanisms (Aghajanian and Marek 1997;
Hasuo et al. 2002; Marek and Aghajanian 1994, 1999;
Marek et al. 2001, 2006; Martin-Ruiz et al. 2001; Scruggs
et al. 2000, 2003; Wang 2005; Wang et al. 2006).
Consistent with the possibility that 5-HT2A receptors exert
a facilitatory role also over NAC extracellular levels of
glutamate, intra-NAC infusion of MDL 100907 completely
blocked the expression of cocaine-induced glutamate
sensitization, without influencing NAC glutamate levels in
animals treated acutely with this stimulant (Fig. 4d–f).
These data provide the first evidence that 5-HT2A receptors,
localized specifically to the NAC shell, are critical for the
expression of cocaine-induced dopamine and glutamate
sensitization and pose an important role for a cocaine-
sensitized increase in 5-HT2A function within the NAC
shell (Yan et al. 2000) in mediating these neurochemical
adaptations. Lesions of the cell body or terminals of
thalamocortical glutamatergic projections are reported to
upregulate 5-HT2A receptor expression within the prefrontal
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cortex (Marek et al. 2001), indicating that a reduction in
glutamate tone, at least within prefrontal cortex, is sufficient
to sensitize 5-HT2A receptors. Protracted withdrawal from
repeated cocaine is well characterized to reduce glutamate
tone within the NAC (see Vanderschuren and Kalivas 2000
for review; Table 1). This raises the intriguing possibility that
a cocaine-induced reduction in basal NAC glutamate may
trigger an increase in 5-HT2A receptor expression/function
that then promotes or facilitates subsequent glutamate and
dopamine release within this region. Given the putative roles
for cocaine-induced NAC dopamine and glutamate sensiti-
zation in mediating both the addictive and the behavioral-
sensitizing properties of this drug (for reviews Vanderschuren
and Kalivas 2000; Everitt and Wolf 2002; Kalivas 2007),
such a mechanism may have relevance for both the anti-
psychotic and anti-addictive properties of 5-HT2A antagonists
(for reviews, de Angelis 2002; Seeman 2002; Bubar and
Cunningham 2006).

NAC 5-HT2C receptors and cocaine-induced neuroplasticity

The data concerning the effects of 5-HT2C antagonists upon
cocaine-induced locomotion are highly discrepant; systemic
pretreatment with 5-HT2C antagonists augments acute
cocaine-induced locomotion (Filip et al. 2004; Fletcher et
al. 2006) but reduces (albeit moderately) the expression of
cocaine-induced sensitization in animals withdrawn for
5 days (Filip et al. 2004). In contrast, intra-NAC pretreat-
ment with the 5-HT2C antagonist RS 102221 into the shell
subregion can attenuate acute cocaine-induced locomotor
hyperactivity (McMahon et al. 2001); however, the present
study failed to detect an effect of intra-NAC 5-HT2C

blockade upon acute cocaine-induced locomotion using a
fivefold dose-range of a different, but also selective,
antagonist SB 242084 (Fig. 5). A comparison of the micro-
injector placements within the NAC revealed no obvious
discrepancies in target sites between the two studies (Fig. 1 vs.
McMahon et al. 2001) nor are the differential results easily
explained by differences in the relative affinities of RS
102221 vs. SB 242084 for the 5-HT2C receptor (both nM,
with an approximately 30-fold lower affinity for other 5-HT
receptor subtypes; Bonhaus et al. 1997; Kennett et al. 1997).
In the present study, acute cocaine animals were micro-
injected intra-NAC with SB 242084 only once, and this
occurred at 3-week withdrawal from repeated saline treat-
ment. In contrast, acute cocaine animals in the earlier study
by McMahon and colleagues (2001) were first habituated to
the microinjection handling procedures prior to the com-
mencement of testing, and rats were tested repeatedly either
under the influence of saline or cocaine, every 3 days, for a
total of eight tests. Thus, differences in the extent to which
rats were habituated to the microinjection procedures,
possible receptor adaptations secondary to repeated intra-

NAC antagonist administration and/or possible development
of cocaine-induced locomotor sensitization with once weekly
repeated testing, might all have contributed to the discrep-
ancies in results. In support of the latter possibility, intra-
NAC SB 242084 blocked cocaine-induced locomotion in
repeated cocaine-treated animals when tested at 3-week
withdrawal (Fig. 5). Such data are more or less consistent
with the moderate attenuation of shorter-term cocaine-
induced sensitization observed upon systemic pretreatment
with 5-HT2C antagonists (Filip et al. 2004) and point to an
important role for 5-HT2C receptors, located within the NAC
shell, in mediating this form of cocaine-induced behavioral
plasticity.

In contrast to 5-HT2A ligands, systemic pretreatment
with 5-HT2C compounds does not appear to affect indices
of basal or stimulated glutamate release (at least within
cortical regions) (Hasuo et al. 2002; Marek and Aghajanian
1994, 1999). However, systemic pretreatment with either
non-selective 5-HT2C/2B agonists or selective 5-HT2C

agonists decreases indices of basal and evoked dopamine
neuronal activity (Di Giovanni et al. 2000; Di Matteo et al.
1999; Di Matteo et al. 2000a, b), while systemic pretreat-
ment with either non-selective 5-HT2C/2B antagonists or
certain selective 5-HT2C antagonists dose-dependently
increases indices of basal and electrically evoked dopamine
neuronal activity (Di Giovanni et al. 1999; Di Matteo et al.
1998; 1999). Of more direct relevance to addiction, pretreat-
ment with 5-HT2C antagonists fails to alter amphetamine-
induced dopamine release (Porras et al. 2002), but both 5-
HT2C antagonists and 5-HT2C gene deletion potentiate the
dopamine responses to acute cocaine and morphine (Navailles
et al. 2004; Porras et al. 2002; Rocha et al. 2002). Conversely,
5-HT2C receptor activation reduces nicotine-induced activa-
tion of VTA neurons (Pierucci et al. 2004) and prevents the
expression of nicotine-induced dopamine sensitization in the
NAC (Di Matteo et al. 2004). Thus, 5-HT2C receptors appear
to be important regulators of impulse-dependent dopamine
release within the NAC (Porras et al. 2002). Interestingly,
recent study of the effects of perfusing the NAC with the
selective 5-HT2C agonist Ro 60-0175 and the selective 5-
HT2C antagonist SB 242084 upon cocaine-induced changes in
NAC dopamine revealed effects that were biphasic with
respect to dose; 100 nM of the agonist increased, while
100 nM of the antagonist decreased. The cocaine-induced rise
in NAC dopamine and polar opposite effects were observed
when a 1.0-μM concentration of each drug was perfused
(Navailles et al. 2008). While we failed to detect significant
effects of intra-NAC perfusion with SB 242084 upon
extracellular levels of dopamine, we did observe a reduction
in extracellular glutamate at the 100 nM SB 242084 dose in
rats treated acutely with cocaine (Fig. 6f), as well as an
attenuating effect of both doses of SB 242084 upon the
sensitized dopamine and glutamate responses exhibited by
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cocaine-sensitized animals (Fig. 6). In fact, pretreatment with
either SB 242084 dose completely prevented the expression
of both dopamine and glutamate sensitization when assessed
at 3-week withdrawal. While similarities in the effects of
NAC 5-HT2A and 5-HT2C blockade (see Fig. 4 vs. Fig. 6)
might suggest a non-selective effect of antagonist infusion, the
likelihood that the observed attenuation of the cocaine-
sensitized rise in NAC dopamine by intra-NAC SB 242084
infusion is due to blockade of the 5-HT2A receptor is low,
given that this drug exhibits a 160-fold higher affinity for the
5-HT2C vs. 5-HT2A receptor (Kennett et al. 1997) and higher
doses of SB 242084 elevate, not reduce, the cocaine-induced
rise in NAC dopamine (Navailles et al. 2008). The control of
NAC dopamine activity by 5-HT2C receptors was considered
to be indirect and involve activation of GABAergic inter-
neurons within the VTA (Di Matteo et al. 2000a, b; Navailles
et al. 2004). As 5-HT2C receptors are localized primarily to
GABAergic interneurons within the two major sources of
glutamate to the NAC—the prefrontal cortex (Liu et al. 2000;
Lopez-Gimenez et al. 2001; Pasqualetti et al. 1999) and the
basolateral amygdala (Stein et al. 2000)—one might speculate
on an indirect, GABAergic, mechanism within these limbic
sites to account also for an effect of 5-HT2C ligands upon
NAC glutamate transmission. However, the present data and
the recent report by Navailles et al. (2008) clearly indicate
that 5-HT2C receptors within the NAC properly facilitate
NAC dopamine/glutamate release. While the precise mech-
anisms through which NAC 5-HT2C receptors regulate
cocaine-induced neurotransmitter release within the NAC
require considerable investigation (see Berg et al. 2008 for
discussion), the parallels in the effects of NAC 5-HT2C
blockade upon the expression of cocaine-induced behavioral
and neurochemical sensitization implicate drug-induced
alterations in NAC 5-HT2C function as a potential neural
substrate mediating the addictive and psychotogenic proper-
ties of this drug.

Conclusions

Intra-NAC infusions of the selective 5-HT2A antagonist
MDL 100907 and the selective 5-HT2C silent antagonist SB
242084 both reduced the expression of cocaine-induced
behavioral and neurochemical sensitization observed in rats
following protracted withdrawal from repeated cocaine
exposure. As the sensitization of dopamine and glutamate
within the NAC is considered a critical cocaine-induced
neurochemical adaptation underlying the development of
addiction and related neuropsychiatric conditions (including
psychosis, depression, and possibly anxiety), the ability of 5-
HT2A and 5-HT2C antagonists to reverse the neurochemical
consequences of repeated cocaine might contribute to their
putative anti-addictive or anti-psychotic effects.
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